CDF

Perl Reference Manual

Version 3.9.0, February 1, 2023

Space Physics Data Facility
NASA / Goddard Space Flight Center

Space Physics Data Facility
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 (U.S.A.)

This software may be copied or redistributed as long as it is not sold for profit, but it can be incorporated into any other
substantive product with or without modifications for profit or non-profit. If the software is modified, it must include
the following notices:

- The software is not the original (for protection of the original author’s reputations from any problems introduced
by others)

- Change history (e.g. date, functionality, etc.)

This Copyright notice must be reproduced on each copy made. This software is provided as is without any express or
implied warranties whatsoever.

Internet - nasa-cdf-support(@nasa.onmicrosoft.com

Permission is granted to make and distribute verbatim copies of this document provided this copyright and permission
notice are preserved on all copies.

Contents

1 COMPIING.cannnneiiiiiiirnricnisssnnricssssnricsss |

1.1 How t0 use the Perl-CDF PACKAZEccveruieiieiieiieiiete sttt ettt te st e e e ensessaessaenseensesnneses 1

2 Programming INterfaceiccinveriiciissnriicsssnniicssssnnnicssssnnsssssssssnssssssssssssssssnssssss 3

2.1 TEEM RETEIEICING e evteetieiiectieie ettt ettt et ettt e et et e e s e e teesaeeseesseenseensesaeeeseanseenseensenseasaenseessenssenseansens 3
2.2 PaSSING ATZUITICNLSeetieiieiieiiesieestteteetestesteeseesteeseesseesseenseessessseseesseenseassesnsesseesseenseassesssenseenseensesssenseesseansens 3
2.3 CDF Status CONSTANLSeoutiiiieiieieeteiitentiett et ettt ettt et sttt esbeetaesasesaeesaeeseeeaaesaeesbeesseeesestsenseeteenneesnensaenneen 4
2.4 CDF FOTIMALSeuteiieiie ittt ettt et ettt ettt st b et et e sae e s bt et e eaae st sat e bt enseeus e bt e sueemneeaneessenanenreen 4
2.5 CDF Data TYPeS. . uvieiteeruiieetieeiiee st teett e sttt et ettt e sttt ettt e bt e sabeeeabte sttt eabaesateesabeesuteesbbeesateensbeasbessbteanstesabeeenneesnne 4
2.6 DAt ENCOGINES ...eeiviieiiieeiieeiiie ettt sttt stteette et e e teeebeestteeetseessbeaasseessaeansaeesseaenseesnseeasseesssaensseessseansseensseensnennes 5
2.7 DAt DIECOMINES ...eeeuvveeiiiiiiieeiie et ettt ettt e st e etee e teeesteesabeeesseessbaesaeesseanseeensaeanseessseeanseesssaeasseessesnssessseenssennes 6
2.8 VaTTADIE IMAJOTIEIES. .. euvieerieeiieeieeeteeete e ettt eteeteeeeteeeteesbeeeaseessbeaasseesssaensaeesseaensaesssaeanseesssaensseessseessseensseanseennes 8
2.9 Record/DImeENSION VATTANCES.cevteuiiiieitietieiteitieet ettt ettt e st et e et e bt e bt eaeees e bt et e eteeseeebaesbeensesaesaeenaes 8
2,10 COMPIESSIONS ..euvvreeerreeureererierteertteessteessteasseeeseeassseasseessseesssessssesassesssseessseensseesssesnssesssseessesesssesssesssseesssessnsesssseens 8
B N 0T 1 1) 1 OSSPSR 9

B O B 7 1 6T o) (¢ SRS 9

2112 SPATSE ATTAYS c.eveeuveeitiieeteeitie e sttt ettt ettt e steeetee e bt e sabeesateesb bt e sat e e seeesbeeabaeeasae s bt e enseeeabeeeabeesabeesnbeesaseennteensees 10
2,12 AHTIDULE SCOPES ..evieiieitiiieeieetiett et ete et et teteeteeeteeteesseesseessesaeesseenseessesssesseanseanseessaseeseansesssesssenseesseensenneenses 10
2,13 ReEAA-ONLY MOGES ...ttt ettt e e st e e bt et e st e st e s seesseessesseenseenseeseeessenseenseensesssesssenseensesnneses 10
214 ZIMOGES ..ottt bbbt h e he e h ettt h e sh e e bbbt eh e e st et et et e bt bbbt eae et eneen 10
2,15 —0.0 10 0.0 MOAES ...uveemiieieeiiieiteetiet ettt ettt ettt et ettt ettt et ea e bt et et e at e bt e bt en e et eet e b te bt e nbeebeeatenaeenas 11
2,16 OPeratioNal LAMILScccveeiiiiriieiieeeieeitteette et e eieeeteesteeesbeesbeessseesssaessseeseeenseeensseaseessssesnsessssesssseessseessseenses 11
2.17 Limits of Names and Other Character StrNEScccuieriieiiierieeieeiieeieeeieesieesteesreesbeeseeeeeaeessaeesseesnseesnses 11
2.18 Backward File Compatibility With CDF 2.7ccciiiiiiiiiieiie ettt ete e stte et eeaeeaaesetaeenseeebeessseennnes 12
2,19 CRECKSUINL. ..ttt ettt s bt et e et et e s a e s bt et e e st e et e ehe e s bt emt e ea e e meeebe e bt emsees e emaeshee bt enseenbesneenee 13
2.20 Data ValIdAtiOnco.eeeiiiiiiiiieiiieieet ettt ettt sttt ettt e e b ettt e st e h e bt e h e et e ee e e et e b e e bt et e enbe s e ees 14
221 BrBYE INEEEET ..conteieiiie ettt ettt e b et ettt e b e et bt eea e bt ena bt e s at e e ate e b bt e eht e e bt e enae e e baeebae et 15

RIBINT#:1 1 1o 0 90 I D1 T0S) o 2 T SRR b 4

3.1 (01D 115 { @ (< 11O OO OO PEUPORUPORUPRRTPN 17
3.1.1 250101 o) LT () ISR USSP 18
3.2 CDFattrENtrYINQUITEeetieeiieie ettt ettt ettt et et et esae e st e st enseensesseessaenseenseensesneesseeseensesnsennns 18
3.2.1 250101 o) LT () I SRRSO 19
33 (01 2 111 { € £, OO O OO U PORUP PP 20
3.3.1 250101 o) LT () ISR USRS 20
3.4 CDFAUITIQUITE ... cuvveeveeeiiie ettt ettt et e e et e e eteeebeeebeeesbeeesseesssaeasseeasseesssaensseesssaensssenssesnseeanseesnseesnseansseens 21
3.4.1 EXAIMPIE(S) +reuvveeriiiitieeiie it eeite et et e sttt ette e tteesteessteeesbeessbaeesaeesssaeasseessseansseassaesnseeanseeasseesseenssesssseensseenns 22
3.5 CDFAUINUINL. .c.veeeitieeieeeiiteeteee it e et e et e e e tbeeeteeetaeesseeassaeesseeessaeasseesnsaeasseensseeassaeassaessseensesanssesnssesaseaenseesnseensseens 22
3.5.1 EXAIMPIE(S) 1eeuvveeuriiiiiieeiieiitteeie e et et e sttt ette e tteesteesabeeesbeessbaeasseesssaeasseessseansaeassaeanseeanseeasseesseansseessseensneenns 23
3.6 (O) 1§ LTSRS 23
3.6.1 250101 o) LT () ISR USSP 24
3.7 CDFAUIRENAIMEeeiuiiiiiiieiiieie ettt ettt ettt e bt e et ee st e e sab e e sateesabeeeb bt esabeebteesbteenbbeebeeenbeesnsaesnseens 25
3.7.1 250101 o) LT () I SRS USRS 25
3.8 (O] B) 3¢ 101U PRSP 25
3.8.1 250101 o) LT () I TP 26
39 CDFCT@ALE ...ttt ettt ettt ettt e a et bt e abte e et b e e bt e sat e e s abeesbb e e sab e e st e e sabeenateanbbeebeesabeesnbeesabaesaseens 26
3.9.1 EXAIMPIE(S) +reuvveeriiiiieeeiie it eeieeette et e sttt ette e tteesteessteeesbeesssaeesaeessaeaseeessseansaesssaesnsaeanseeasseesseanssessssaennsesnns 27

R L OB) 3 1<) [=PSRN 28

T 020 T 5 21101 1< () IS PSSR 28

K70 B B O] D)Y oY SRS 28
31101 EXAMPLE(S) reeeurieiieeeiiieiie ettt estteeiteeteeeteeseteesaeestseessteestaeesseeensaessseeasseeansaeasseesssaensseensseesseesnsseenseesnseeenseens 29
T B O B) 21y (o) SRS 29
T 0 B 5 €111 o) (<! () USROS 30
3,13 CDFGEICHECKSUIN ...ueiivieieiieieecitieie ettt ette et et eeteeebeeeabeesebeessseesssaessaeessbaeseeensseanseesnsaeanssesnsaesnseennseensseensses 30
T 1 T B 521111 o) (<! () USSR 30
3.14 CDFGEtFIIEBACKWAI.c.uiieiieiiieeiieie ettt ettt ettt et e et e e s teesebe e saeetaeessseenseeenseaanseesnsaeanseessseennseensses 31
T o T 5 21101 1< () I USRS 31
T B T O B)/ A 1§16 3 ST 31
T G B 5 21101 1< () I PSSP 32
T LT O B) 1 e 11 (<SSR 32
T T B 5 211010 1< () I USRS 33
317 CDFOPCI .ttt ettt et ettt et e et e sa bt it e s bt e bt e et e h b e e bt e e bt e e bt e e bt e e ba e e be e sateeebeeehbeesaneenats 33
T I B 5 ;1111 o) 1= () PSSRSO 34
3,18 CDFSELCRECKSUMLeicutiiieiieieeiitiesie ettt e et e eteeeteeeteesbeessbeesebeeasseeessaeasseessbaeaseeensseanseesssaesnseesnsesanseennseensseensses 34
18,1 EXAMPLE(S) veeeerieirieeiiieiie ettt ettt eite et e eteesteesaeestseesteestaeesseeeasaessseeasseesnsaeanseesssaenssessssaeaseeensaeenseeanseeeseens 35
3.19 CDFSEtFIIEBACKWALGcccuviieiiieiieeeieie ettt ettt et e s tee st e e s beesabeesebeesaeessseensaeenseaenseesnsaeanseessseennseensses 35
3.19.1 EXAMPLE(S) veeeerieruieeeiiieiie ettt esiteeiteeteeeteeseteesaeestseeseeestaeasseeensaessseaasseeansaeanseesssaensseenssaesseesnsseenseesnseennseens 35
3.20 CDFSEtVAIIAALEccuveeeieeieiieeieeeiieeeiteete et e eteeetteete e et e sbeesateeesseesssaesseeessseesseessseansaeensesanseesnsaeassesssseennseensses 36
TR O B 5 21101 1< () P USRS 36
T80 B O B) 7§ { O 0TSSR 36
T8 I B 5 21101 1< () I USRS 37
322 CDEFVATCTEALEeeeutieeitieiieeeiiee ettt ettt ite ettt et te et e s bt e sabeesabeesate e sateeateesbteensteeabte e bt e enbbeenbeesabeesabeesnteesaneananes 37
TR B 5 21101 1< () P PSS 38
R I B O B) 217 € PSPPSR 39
R I T B 5 €111 o) (<! () PSSRSO 39
324 CDEFVHPGEL ..coiiieiieiieeteeete ettt ettt ettt st te b e e et e st e s teesbeesseeas e e st e eseesseesseesbenseesteessaesseesseseesaeesseenteennenes 40
R TR B 5 €111 o) (<! () OSSR 40
I T O B) 2114 5 o) o4 L S ST USRP 41
R I T B 5 €111 o) (<! () PSSRSO 41
3.20 CDEFVAIINQUITEeeeiiieeieiieie ettt eetie e ste et et e s tee s eesseeseeeaee st eesseesseanseessassenseanseeaseassenseenseensesnsessseseensesnsesnsensns 42
TR T B 5 21101 1< () P PP S 43
3.27 CDEFVATNUINeeiitieittteet ettt ettt ettt et ettt e et e s bt e s at e e s abe e b be e sheeenate e bt e ensteeabbeembeesabaesnbeesebeesabeennbeesaneennnes 43
TR0 T 5 21101 1< () I SRR 44
328 CDFVATPUL .ottt ettt sttt e s bt esat e et e bt e ea b te e bt e e bt e et e e e abeeeabee st e e sabeenaees 44
TR T B 5 21101 1< () I USSR 45
3.29 CDFVAIRENAIME.uiiiiiiiiiieeie ettt ete et e eteeette et e et e e beesabeeesseesssaeaseeessseesaeesssesnsaeensesansessnsaeassasssseennseensses 45
3.20.1 EXAIMPLE(S) veeeerieiuieeieiieiieeitteesiteeiteeteeeteeseteesaeestaeesseeestseessseassaesnseaasseesnsaeanseeassaensseesssaeaseesnsseenseeenseeeseens 46

4 Internal INterface - CDFLD ..coueceireeeeieeerenneceereeeeecceseeeeesccssssssssccsssssssssssssesesee 47

4.1 EXAMPIE(S) +eeuveeeuiieiieeitieecteetie et e e tte et e ettt e ettt este e st be e sbeesbeeessaensaeassaenseesasbeanseesssaeanseeessaeensaensseeasseesseensaaennees 47
4.2 Current ObJEectS/States (TEEIMIS)eevveeeiieiieeiiieiie ettt eteertte et eeteeeteeebeesebeesaeessseessseessseessseessesnseaesseesnssennseens 49
43 RETUINEA STATUS ...ttt et et b et a e et sae e sb e e bt e bt eaeeshe et e et e enteemneebeenbeennean 52
4.4 INAENTATION/SEYIEeieteeeetieeie ettt ettt et e st eete e et beeesteestbeeesaeesbeessaaenseeessaenseeansaaanseessseessseesnsaesnseens 53
4.5 N 117 GO OO O TP U TP UPORUPRRUPPRRRPRN 53
4.0 OPCIALIONS. . . .eeeveeeietieieetestesstesseesseeteeseaseanseessasseesseenseassesssesseesseensesssesssenseanseenseessenssanseansessseassenseensesnsesanenses 54
A ¥ (01 () 25 1111 o) Lt TSRS 111
4.7.1 TVATTADIE CTEATION ...ttt ettt ettt st s b e st eh ettt et ae b st bbbttt e et enee 111
4.7.2 zVariable Creation (Character Data TYPE).....cccuereeruieriiiieiierieeree ettt ettt sae e se e e e 111
4.7.3 Hyper Read with SUDSAMPLING........cccveiieiiiiiiiieiiecie ettt sttt ste e e e sseenseeneenes 112
4.7.4 ATTDULE RENAIMINE ...ecutiiiiiieiieciie ettt te ettt e e stb e e sebeeaae e beaesseesasbeenseesssaesnseesssaesnseensss 113
4.7.5 SEQUENTIAL A CCESS. . eeuvvieereeitiieeteestieesteeetteesteestteesseessteessseesseessseessesassseenseessseessseesnsesssseessseesssesssseesssennes 113
4.7.6 ATIDULE TENITY WITEES ..ioviiiiiiieiiiieiie ettt ettt e te ettt e st e eaae e tbeesaeeeatbeeseeensaeanseesssaeenseennss 114

4.7.7 MUltiple ZVariable WTIEcc.eeeiiieiiiciieeie ettt ettt e stte ettt et e e et eestaeeaaessteesnseesnseesnseennseaessaennns 114

4.8

A Potential Mistake We Don't Want You t0 MaKEcooviiiiiiiiiiiiiieeeeeee e 115

5 QUICK INtErface.....cccceeeeeererercrersrrssscsssssnnssase L 17

5.1

5.1.1

5.2

5.2.1

53

5.3.1

54

54.1

5.5

5.5.1

5.6

5.6.1

(D) 35011 51 05 1 2 J USRS 117
25101 o) LT () ISR 117
CDFZELCDETINTO. ... eictieeiie ettt ettt ettt te et e ee et e e s teeeabeessbeaasseesssaensaeessaaessseensseanseesssaesnseessseennseesss 118
|35 €211 410 (T () I OSSPSR 118
CDFetGloDAIMEtADIALAeecevieeieeeiiieeieeeie et ette et et eeteesbeeessee st beeeseeessaeesssesssaeensaeessesanseesnseeasseensses 119
|35 €211 410 (T () ISP 119
CDFEEVATINTO ...eviieiieciiecie ettt ettt ettt e e e et e e s e e e ess e e s beassbeessaeansseeseaenseesnsaeanseesnsaeenseensses 120
|35 €211 41 0] (T () ISP 121
CDFGEtVATAIIDALAccuviiieieieie ettt ettt et e st s e e e beesaesseesseesseesseeseeeseanseanseessesseanseensenssennnenseas 121
250101 o) LT () I RS RR 122
CDFZEtVArMEtaDataeeviiiiiieiieeitie ettt ettt sttt et e sate e sb e e at e e et e bt e sabeesabeesabeeeabeesateesabeesnnes 123
25101 o) LT () ISR 123

6 Interpreting CDF Status Codesccccovvueerecrssvnnnicssssanenccssssassscsssssssssssssssssssssssss 125

7 EPOCH Utility ROULINES ...cueeeiieiirnniiccsssnniecssssnnsessssssasssssssssssssssssssassssssssassssssss 127

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22
7.23
7.24
7.25
7.26
7.27
7.28
7.29
7.30
7.31
7.32
7.33
7.34

COMPUIEEPOCH ..ottt ettt ettt et e bt e sb e e et b e s bt e e abtesabeesabeesateesabeesaeeenateensees 127
EPOCHDICAKAOWN.......eiieeeiieieiieieeie ettt ettt et te st et e sae e et ensesseesseanseenseessanssesseenseeasesssenseesseensesnsenses 128
170] 21 TeT0 T4 151 21 o [= TSRS 128
ENCOUCEPOCH ...ttt ettt sttt et e et e e s tb e e be et beesseeeatbeasseeassaeessaesssaeansaeasseessseensseensseenses 129
11114 (51 29 O 1O 5 1 O PSSO 129
ENCOACEPOCHZooiiiiiiiiee ettt ettt e et e st e et e e s tb e e ae e tbeeaseeenbaeasseeessaeessaesssaeansaesseessseensseessaeses 130
ENCOACEPOCHI ...ttt sttt e st e et e e st e e ae et beeeseeestaeasseeessaeessaesssaeansaeasseessseensseesseeseas 130
ENCOUCEPOCHA ...ttt ettt ettt e et e st e et e st e e sae e bbeeaseeenbaeasseeessaeessaessseeansaeasseessseenssessseenses 130
ENCOUCEPOCHXtiiitiieciiieie ettt ettt et e et e st eeetbe e s tb e e sae e tbeeaseeensbeasseeassaeassaesssaeansaeassesssseensseensseeses 130
TOPATSEEPOCH ...ttt ettt et e ettt st e s et e sat e e st e e sabeesbeeabessbeeeseenane 131
PATSEEPOCH ...ttt ettt ettt et e sab e e shte e bbe e bt e e sbeeabeesabtesabaesbeeeaneenn 132
PATSEEPOCH T ...ttt ettt e b e sat e e bt e s bt e eabee e bee e bt e eabeeenbeesabeesaneenn 132
PATSEEPOCHZ ...ttt sttt ettt e bt e sat e e bt e s bt e eabeeeabte ettt eabbesnbeesabeesaneenn 132
PATSEEPOCHS ...ttt sttt e sh et e bt e sat e e bt e sbt e e bt e ebae ettt et beebeesabeesaneenn 132
PATSEEPOCHA ...ttt sttt h et e bt e sat e e bt e sbteea bt e s bbe ettt eabbeenbeesabeesaneenn 132
COMPULEEPOCH L O......oiiiiieciiieit ettt ettt et e st e e s e e sbeeetbeestsaessaeebeaenseesasaeassessssaesnseessseennsesnsss 133
EPOCH 1 ODICAKAOWNcviieiieeiieeieeeite et e sieeettesteeeteesteessaeesseeesssaesseeansaesnseessseessseesnsasssseesnseenssesssseenssennns 133
TOENCOAEEPOCH L O.......eiiiiieeiieciie ettt ettt te ettt e te et e e aeaenbae s baaesseesasaessseesssaensseesssaenseessseenseenne 133
ENCOUCEPOCHIO ...ttt sttt st e et e e st e e ae e tbeesseeestaeesseeessaeesseesssaeansaeasseessseensseessaenses 134
ENCOACEPOCHIO 1 ..ottt st b ettt s ae et e st et e b e bt et e esbeeaeenbeentean 134
ENCOACEPOCHIO 2 ..ottt bbbt et st sae et e st et e beenbeenteenbeeneenbeenteas 135
LT o o 1) 2 O T = Y T PRSP 135
ENCOACEPOCHIO 4 ...ttt ettt e st e b e e e e besstesseeseensesnsesseenseanseensennsenseensenn 135
ENCOACEPOCH IO X ..ottt ettt ettt et e sae s st e s e enseeseentesseeseenseenseseenseanseensennsenseensenn 136
TOPATSEEPOCH T ...ttt et st e st e st e s be e sh b e e sat e e bt e e et e ensaeeseesane 137
PATSEEPOCHTO ...ttt ettt e b e et et e s bt e et e e bae e bt e sabbeenbeesabeesaneens 137
PATSEEPOCHTO 1 ...t ettt ettt st et e bttt eatesb e et es e e eeseeesbeenteenbe s e saee 137
PAISEEPOCHTO 2 ...ttt ettt sttt ettt et e sb e et en e e tesbee s bt ente et e e 137
PAISEEPOCHIO 3 ..ottt ettt st et e bttt eatesb et es e e tesbee s bt et e enbe e e 138
PAISEEPOCHIO 4 ...ttt et ettt et et e s bt et es e e tesbeesbe et e enae s e sae 138
EPOCHIOUNTXTIME ..c..tvievieeiieeieeeieeeiteetee st eesteestbeessseesteesseeessaessssaesseesnsaesssesssseessseesssasasseesssesnssesnssesnseennns 138
UNIXTIMEIOEPOCHcoiiiieiiiciieeie ettt et ste ettt e e ste e estaesateesataeesseessbaasssesssbaanssessssaenssesseeenseennss 139
EPOCHITOtOUNIXTIMEeetiiieeiieie ettt sttt e steeae st e ssee st estesseesseasseenseessesssesseenseenseensesssesseanseensesnns 139
UniXTIMEIOEPOCH L6covieiieiieie ettt ettt ae et e st e st e seeseenseessesaenseenseansesssensaensens 139

8 TT2000 Utility ROULINES cccueeeerureesncesnecssnecsnecssanessanssssaessanssssessssasssssssssassssaecsss 143

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

COMPULETT2000eeieieiiie ettt ettt ettt e s et e et e e bt eabte et be e bt e esatesabeeeabeesabeesnbeesaseenaseesees 143
TT2000DIEAKAOWIL ...ttt ettt e et e e et e e e e e e e et e e e eaaeeeeaaeeeeareeeeesneeeeenneeesenneeeann 144
TOENCOAETT2000 ... ceeeeeeieeeeeeetee et eeee e e e e e et eeeeeeseataeeeeeeeeeeaaareeeeessansaseeseeeesaesaseeeesessennennes 144
E€NCOAETT2000 ...t e e et e e e e e ettt eeeee et aaeeeeeeeeaataaeeeeessanstareeeesessantaareeeeesssnraaneeeeas 145
TOPATSETT 2000co it ee e e e e et e e e e e e e e et aaeaeeeeeseesstaaeeeesssessaseseeeeseensaasenesessenarenes 146
PATSETT2000 ...ccueiieiiieiie et eete ettt et e et e sttt e et e e sbeessueessaeesseeseeessaessseesssaeansaesnsaeasseesssasasseesssaenssensseeenseennes 146
TT2000T0UNIXTIMIE «..vvvvieiieeiiiieeie ettt e e e e e et e e e e e e ata e e e eeeeeeeataaeeeeeeeeesnasaeeseesennsraaeeeeesesesaaneeeeas 146
UnNIXTIMELOTTZ2000eeeeeeieiiieeieie ettt e e e et e e e e e ee et e e e e e eeeeaaaaeeeseessaasaeseseeesseesanseeesessennrnees 147

1EAPSECONASINTOieieeeeieiieiieee ettt ettt sttt et e et e e e e s st esseensessaesseesseanseenseessenseenseenseeseensaensenn 147

Chapter 1

1 Compiling

Since Perl is an interpreter language and its scripts are checked for any syntax error during their execution, there are no
separate steps for compilation and linking as other programming languages like C and Fortran.

The Perl-CDF package includes two interfaces: Internal Interface and Standard Interface. The Standard Interface only
covers limited functions that deal mainly with the older rVariables and their attributes in the CDF. This interface is
mirrored the original functions that are covered in the C’s Standard Interface. The Internal Interface, based on the C’s
Internal Interface, provides a complete suite of CDF functionality.

1.1 How to use the Perl-CDF package

In order to use either one or both interfaces from any Perl script, the search path for the Perl-CDF package must be set
up properly. In addition, the Perl-CDF package needs to be imported as well prior to using the either CDF interface.
There are two ways to define the search path for the Perl-CDF package. One way is to include the location of the Perl-
CDF package at the beginning of a Perl script. The following code illustrates how to define a Perl-CDF package that is
installed under /home/cdf/PerlCDF32:

use strict;

BEGIN { unshift @INC,"/home/cdf/PerlCDF32/blib/arch’,
'/home/cdf/PerlCDF32/blib/lib'; }

use CDF; # Import the CDF module - optional

The other way is to define the location of the Perl-CDF package at the command line when invoking the Perl script.
The following command is equivalent to the above example:

perl -I/home/cdf/PerlCDF32/blib/arch -I/home/cdf/PerlCDF32/blib/lib <perl script name>

Since the Perl CDF interface uses the shared CDF library, the user has to tell the operating system where to find the
shared library. For Linux, DEC Alpha/OSF1, Sun Solaris or SGI, the environment variable LD_LIBRARY_PATH
must be set to point to the directory that contains the shared CDF library, libedf.so. For example, if the shared CDF
library is installed under /usr/local/share/cdf32/1ib and you are using the C-shell, enter:

setenv LD LIBRARY PATH /ust/local/share/cdf32/lib

For HP-UX, the shared library is libedf.sl. For IBM RS6000, the library is libedf.o.

For BSD-based Mac OS X, the environment variable is DYLD_LIBRARY_PATH that must be set to point to the
directory containing the shared library libedf.dylib.

For Windows 9x/NT/2000/XP, similarly, set the PATH variable to point to the directory that contains dlledf.dll.
Two Perl test scripts, testPerlCDFii.pl and testPerlCDFsi.pl, are provided in the distribution. Both use extensive

Perl-CDF interface functions: testPerlCDF1ii.pl tests CDF's Internal Interface functions while testPerl CDFsi.pl tests the
Standard Interface functions. They can be used as sample scripts for development.

Chapter 2

2 Programming Interface

2.1 Item Referencing

The following sections describe various aspects of the Perl programming interface for CDF applications. These include
the constants that are available to CDF applications written in Perl. These constants are defined in the Perl-CDF
package.

Unlike other programming languages (e.g. C, Fortran, Java, etc.), Perl only has three basic data types: scalars, arrays of
scalars and hashes of scalars. No other defined data types are needed for any of the Perl-CDF operation items.

For Perl applications, all CDF items are referenced starting at zero (0). These include variable, attribute, and attribute
entry numbers, record numbers, dimensions, and dimension indices. Note that both rVariables and zVariables are
numbered starting at zero (0).

2.2 Passing Arguments

For calling Perl-CDF APIs, the arguments are passed by values or references, based on the input or output operation.
The general rules for passing the arguments to APIs are:

Input Normally, for a scalar argument, it is passed by value', e.g., $format, if it is sending
information to the CDF for an operation (e.g. setting the CDF file format, data type, variable
name, compression method, etc.). However, if the scalar is passed in as a data value?, it is
required by design that it be passed by reference, .e.g., \$dataValue, \$padValue,
\$entryData, etc. For an argument requiring an array, no matter how many elements in the
array, it is always passed by reference, e.g., \@indices.

Output The argument is passed by reference, e.g., \$format for a scalar or \@indices for an array, if
the argument(s) in an operation is to acquire information from the CDF.

! The scalar data can be interpreted properly into an integer (of data type long in C) by the CDF library for a non-string
data. A string is also a valid scalar data.

2 A data value is referred as a variable’s record data or padded data, or a global or variable attribute’s entry data. Its
value will be interpreted based upon its data type when the variable or entry is created.

Refer to the two test Perl scripts mentioned above for example. Since Perl doesn’t do type checking, it’s application
developer’s responsibility to ensure that proper arguments are being used. For example, an integer data should be
passed to an operation that writes the data value to a CDF variable that is defined as CDF_INT4 or CDF_INT2.

2.3 CDF Status Constants

All CDF functions, except CDFvarNum, CDFgetVarNum, CDFattrNum, CDFgetAttrNum, CDFgetFileBackward and
CDFgetChecksum functions, return a status code indicating the completion status of the function. The CDFerror
function can be used to inquire the meaning of the status code. Appendix A lists the possible status codes along with
their explanations. Chapter 5 describes how to interpret status codes.

CDF_OK A status code indicating the normal completion of a CDF function.

CDF_WARN Threshold constant for testing severity of non-normal CDF status codes.

Chapter 5 describes how to use these constants to interpret status codes.

2.4 CDF Formats

SINGLE FILE The CDF consists of only one file. This is the default file format.

MULTI FILE The CDF consists of one header file for control and attribute data and one
additional file for each variable in the CDF.

2.5 CDF Data Types

One of the following constants must be used when specifying a CDF data type for an attribute entry or variable.

CDF BYTE 1-byte, signed integer.
CDF _CHAR 1-byte, signed character.
CDF _INT1 1-byte, signed integer.
CDF_UCHAR 1-byte, unsigned character.
CDF UINT1 1-byte, unsigned integer.
CDF _INT2 2-byte, signed integer.
CDF_UINT2 2-byte, unsigned integer.
CDF _INT4 4-byte, signed integer.

CDF_UINT4
CDF_INT8
CDF_REAL4
CDF_FLOAT
CDF_REALS
CDF_DOUBLE
CDF_EPOCH
CDF_EPOCHI16

CDF_TIME_TT2000

4-byte, unsigned integer.
8-byte, signed integer.
4-byte, floating point.
4-byte, floating point.
8-byte, floating point.
8-byte, floating point.
8-byte, floating point.
two 8-byte, floating point.

8-byte, signed integer.

CDF CHAR and CDF UCHAR are considered character data types. These are significant because only variables of
these data types may have more than one element per value (where each element is a character).

2.6 Data Encodings

A CDF's data encoding affects how its attribute entry and variable data values are stored (on disk). Attribute entry and
variable values passed into the CDF library (to be written to a CDF) should always be in the host machine's native
encoding. Attribute entry and variable values read from a CDF by the CDF library and passed out to an application
will be in the currently selected decoding for that CDF (see the Concepts chapter in the CDF User's Guide).

HOST_ENCODING

NETWORK ENCODING

VAX ENCODING

ALPHAVMSd ENCODING

ALPHAVMSg_ENCODING

ALPHAVMSi ENCODING

ALPHAOSF1_ENCODING

Indicates host machine data representation (native). This is the default
encoding, and it will provide the greatest performance when
reading/writing on a machine of the same type.

Indicates network transportable data representation (XDR).

Indicates VAX data representation. Double-precision floating-point
values are encoded in Digital's D FLOAT representation.

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital's D FLOAT
representation.

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital's G _FLOAT

representation.

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in IEEE representation.

Indicates DEC Alpha running OSF/1 data representation.

SUN_ENCODING Indicates SUN data representation.
SGi_ENCODING Indicates Silicon Graphics Iris and Power Series data representation.

DECSTATION_ENCODING
Indicates DECstation data representation.

IBMRS ENCODING Indicates IBMRS data representation (IBM RS6000 series).

HP_ENCODING Indicates HP data representation (HP 9000 series).

IBMPC _ENCODING Indicates Intel 1386 data representation.

NeXT ENCODING Indicates NeXT data representation.

MAC _ENCODING Indicates Macintosh data representation.

ARM _LITTLE ENCODING Indicates ARM running little-endian data representation.

ARM_BIG ENCODING Indicates ARM running big-endian data representation.

[A64VMSi ENCODING Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in IEEE representation.

[A64VMSd ENCODING Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital’s D FLOAT
representation.

[A64VMSg ENCODING Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital’s G_FLOAT
representation.

When creating a CDF (via the Standard interface) or respecifying a CDF's encoding (via the Internal Interface), you
may specify any of the encodings listed above. Specifying the host machine's encoding explicitly has the same effect
as specifying HOST _ENCODING.

When inquiring the encoding of a CDF, either NETWORK ENCODING or a specific machine encoding will be
returned. (HOST_ENCODING is never returned.)

2.7 Data Decodings

A CDF's decoding affects how its attribute entry and variable data values are passed out to a calling application. The
decoding for a CDF may be selected and reselected any number of times while the CDF is open. Selecting a decoding
does not affect how the values are stored in the CDF file(s) - only how the values are decoded by the CDF library. Any
decoding may be used with any of the supported encodings. The Concepts chapter in the CDF User's Guide describes a
CDF's decoding in more detail.

HOST_DECODING Indicates host machine data representation (native). This is the default
decoding.

NETWORK DECODING

VAX_DECODING

ALPHAVMSd DECODING

ALPHAVMSg DECODING

ALPHAVMSi _DECODING

ALPHAOSF1_DECODING
SUN_DECODING
SGi_DECODING
DECSTATION_DECODING
IBMRS_DECODING
HP_DECODING
IBMPC_DECODING

NeXT DECODING
MAC_DECODING
ARM_LITTLE_DECODING
ARM _BIG_DECODING

[A64VMSi_DECODING

[A64VMSd DECODING

IA64VMSg_DECODING

Indicates network transportable data representation (XDR).

Indicates VAX data representation. Double-precision floating-point
values will be in Digital's D_FLOAT representation.

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in Digital's D FLOAT
representation.

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in Digital's G _FLOAT

representation.

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in IEEE representation.

Indicates DEC Alpha running OSF/1 data representation.
Indicates SUN data representation.

Indicates Silicon Graphics Iris and Power Series data representation.
Indicates DECstation data representation.

Indicates IBMRS data representation (IBM RS6000 series).
Indicates HP data representation (HP 9000 series).
Indicates Intel 1386 data representation.

Indicates NeXT data representation.

Indicates Macintosh data representation.

Indicates ARM running little-endian data representation.
Indicates ARM running big-endian data representation.

Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in IEEE representation.

Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital’s D _FLOAT
representation.

Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital’s G_FLOAT
representation

The default decoding is HOST DECODING. The other decodings may be selected via the Internal Interface with the
<SELECT ,CDF DECODING > operation. The Concepts chapter in the CDF User's Guide describes those situations
in which a decoding other than HOST DECODING may be desired.

2.8 Variable Majorities

A CDF's variable majority determines the order in which variable values (within the variable arrays) are stored in the
CDF file(s). The majority is the same for rVariables and zVariables.

ROW_MAJOR C-like array ordering for variable storage. The first dimension in each
variable array varies the slowest. This is the default.

COLUMN_MAIJOR Fortran-like array ordering for variable storage. The first dimension in
each variable array varies the fastest.

Knowing the majority of a CDF's variables is necessary when performing hyper reads and writes. During a hyper read
the CDF library will place the variable data values into the memory buffer in the same majority as that of the variables.
The buffer must then be processed according to that majority. Likewise, during a hyper write, the CDF library will
expect to find the variable data values in the memory buffer in the same majority as that of the variables.

The majority must also be considered when performing sequential reads and writes. When sequentially reading a
variable, the values passed out by the CDF library will be ordered according to the majority. When sequentially
writing a variable, the values passed into the CDF library are assumed (by the CDF library) to be ordered according to
the majority.

As with hyper reads and writes, the majority of a CDF's variables affect multiple variable reads and writes. When
performing a multiple variable write, the full-physical records in the buffer passed to the CDF library must have the
CDF's variable majority. Likewise, the full-physical records placed in the buffer by the CDF library during a multiple
variable read will be in the CDF's variable majority.

For C applications the compiler-defined majority for arrays is row major. The first dimension of multi-dimensional
arrays varies the slowest in memory.

2.9 Record/Dimension Variances

Record and dimension variances affect how variable data values are physically stored.

VARY True record or dimension variance.

NOVARY False record or dimension variance.
If a variable has a record variance of VARY, then each record for that variable is physically stored. If the record
variance is NOVARY, then only one record is physically stored. (All of the other records are virtual and contain the
same values.)
If a variable has a dimension variance of VARY, then each value/subarray along that dimension is physically stored. If

the dimension variance is NOVARY, then only one value/subarray along that dimension is physically stored. (All
other values/subarrays along that dimension are virtual and contain the same values.)

2.10 Compressions

The following types of compression for CDFs and variables are supported. For each, the required parameters are also
listed. The Concepts chapter in the CDF User's Guide describes how to select the best compression type/parameters for
a particular data set. Among the available compression types, GZIP provides the best result.

NO_COMPRESSION

RLE_COMPRESSION

HUFF COMPRESSION

AHUFF_COMPRESSION

GZIP_COMPRESSION

2.11 Sparseness

2.11.1 Sparse Records

No compression.
Run-length encoding compression. There is one parameter.

1. The style of run-length encoding. Currently, only the run-length
encoding of zeros is supported. This parameter must be set to
RLE_OF ZEROs.

Huffman compression. There is one parameter.

1. The style of Huffman encoding. Currently, only optimal encoding
trees are supported. An optimal encoding tree is determined for each
block of bytes being compressed. This parameter must be set to
OPTIMAL ENCODING TREES.

Adaptive Huffman compression. There is one parameter.

1. The style of adaptive Huffman encoding. Currently, only optimal
encoding trees are supported. An optimal encoding tree is determined
for each block of bytes being compressed. This parameter must be set
to OPTIMAL ENCODING_TREES.

Gnu's “zip" compression.> There is one parameter.

1. The level of compression. This may range from 1 to 9. 1 provides the
least compression and requires less execution time. 9 provide the most
compression but require the most execution time. Values in-between
provide varying compromises of these two extremes. 6 normally
provides a better balance between compression and execution.

The following types of sparse records for variables are supported.

NO_SPARSERECORDS

PAD SPARSERECORDS

PREV_SPARSERECORDS

No sparse records.

Sparse records - the variable's pad value is used when reading values from
a missing record.

Sparse records - values from the previous existing record are used when
reading values from a missing record. If there is no previous existing
record the variable's pad value is used.

3 Disabled for PC running 16-bit DOS/Windows 3.x.

2.11.2 Sparse Arrays

The following types of sparse arrays for variables are supported.*

NO_SPARSEARRAYS No sparse arrays.

2.12 Attribute Scopes

Attribute scopes are simply a way to explicitly declare the intended use of an attribute by user applications (and the
CDF toolkit).

GLOBAL SCOPE Indicates that an attribute's scope is global (applies to the CDF as a
whole).
VARIABLE SCOPE Indicates that an attribute's scope is by variable. (Each rEntry or zEntry

corresponds to an rVariable or zVariable, respectively.)

2.13 Read-Only Modes

Once a CDF has been opened, it may be placed into a read-only mode to prevent accidental modification (such as when
the CDF is simply being browsed). Read-only mode is selected via the Internal Interface using the
<SELECT ,CDF READONLY MODE > operation. When read-only mode is set, all metadata is read into memory
for future reference. This improves overall metadata access performance but is extra overhead if metadata is not
needed. Note that if the CDF is modified while not in read-only mode, subsequently setting read-only mode in the same
session will not prevent future modifications to the CDF.

READONLYon Turns on read-only mode.

READONLYoff Turns off read-only mode.

2.14 zModes

Once a CDF has been opened, it may be placed into one of two variations of zMode. zMode is fully explained in the
Concepts chapter in the CDF User's Guide. A zMode is selected for a CDF via the Internal Interface using the
<SELECT ,CDF zMODE > operation.

zMODEoff Turns off zMode.

4 The sparse arrays are not supported and will not be implemented.

10

zMODEonl1 Turns on zMode/1.

zMODEon2 Turns on zMode/2.

215 -0.0 to 0.0 Modes

Once a CDF has been opened, the CDF library may be told to convert -0.0 to 0.0 when read from or written to that
CDF. This mode is selected via the Internal Interface using the <SELECT ,CDF NEGtoPOSfp0_ MODE > operation.

NEGtoPOSfpOon Convert -0.0 to 0.0 when read from or written to a CDF.

NEGtoPOSfp0off Do not convert -0.0 to 0.0 when read from or written to a CDF.

2.16 Operational Limits

These are limits within the CDF library. If you reach one of these limits, please contact CDF User Support.
CDF _MAX DIMS Maximum number of dimensions for the rVariables or a zVariable.
CDF_MAX PARMS Maximum number of compression or sparseness parameters.

The CDF library imposes no limit on the number of variables, attributes, or attribute entries that a CDF may have. on
the PC, however, the number of rVariables and zVariables will be limited to 100 of each in a multi-file CDF because of
the 8.3 naming convention imposed by MS-DOS.

2.17 Limits of Names and Other Character Strings

CDF PATHNAME LEN Maximum length of a CDF file name (excluding the NUL? terminator and
the .cdf or .vnn appended by the CDF library to construct file names). A
CDF file name may contain disk and directory specifications that conform
to the conventions of the operating systems being used (including logical
names on OpenVMS systems and environment variables on UNIX

systems).
CDF_VAR NAME LEN256 Maximum length of a variable name (excluding the NUL terminator).
CDF_ATTR NAME LEN256 Maximum length of an attribute name (excluding the NUL terminator).
CDF_COPYRIGHT LEN Maximum length of the CDF Copyright text (excluding the NUL
terminator).
CDF _STATUSTEXT LEN Maximum length of the explanation text for a status code (excluding the

NUL terminator).

> The ASCII null character, 0x0.

11

2.18 Backward File Compatibility with CDF 2.7

By default, a CDF file created by CDF V3.0 or a later release is not readable by any of the CDF releases before CDF
V3.0 (e.g. CDF 2.7.x, 2.6.x, 2.5.x, etc.). The file incompatibility is due to the 64-bit file offset used in CDF 3.0 and
later releases (to allow for files greater than 2G bytes). Note that before CDF 3.0, 32-bit file offset was used.

There are two ways to create a file that’s backward compatible with CDF 2.7 and 2.6, but not 2.5. A new Perl script,
CDFsetFileBackward, can be called to control the backward compatibility from an application before a CDF file is
created (i.e. CDFcreate). This function takes an argument to control the backward file compatibility. Passing a flag
value of BACKWARDFILEon, also defined in the Perl-CDF package, to the function will cause new files to be
backward compatible. The created files are of version V2.7.2, not V3.*. This option is useful for those who wish to
create and share files with colleagues who still use a CDF V2.6 or V2.7 library. If this option is specified, the
maximum file is limited to 2G bytes. Passing a flag value of BACKWARDFILEoff will use the default file creation
mode and new files created will not be backward compatible with older libraries. The created files are of version 3.*
and thus their file sizes can be greater than 2G bytes. Not calling this function has the same effect of calling the
function with an argument value of BACKWARDFILEoff.

The following example create two CDF files: “MY_TEST1.cdf” is a V3.* file while “MY_TEST2.cdf” a V2.7 file.

my $idl, $id2; # CDF identifier.

my $status; # Returned status code.
my $numDims = 0; # Number of dimensions.
my @dimSizes=(0); # Dimension sizes.

$status = CDF::CDFlib (CREATE , CDF _, “MY_TEST1”, $numDims, \@dimSizes, \$id1,
NULL);
UserStatusHandler ("1.0", $status) if ($status < CDF_OK) ;

CDF::CDFsetFileBackward(BACKWARDFILEon);

$status = CDF::CDFlib (CREATE , CDF_, “MY_TEST2”, $numDims, \@dimSizes, \$id2,
NULL);

UserStatusHandler ("2.0", $status) if ($status < CDF_OK) ;

Another method is through an environment variable and no function call is needed (and thus no code change involved
in any existing applications). The environment variable, CDF_FILEBACKWARD on all Unix platforms and
Windows, or CDFSFILEBACKWARD on Open/VMS, is used to control the CDF file backward compatibility. If its
value is set to “TRUE”, all new CDF files are backward compatible with CDF V2.7 and 2.6. This applies to any
applications or CDF tools dealing with creation of new CDFs. If this environment variable is not set, or its value is set
to anything other than “TRUE”, any files created will be of the CDF 3.* version and these files are not backward
compatible with the CDF 2.7.2 or earlier versions .

Normally, only one method should be used to control the backward file compatibility. If both methods are used, the
function call through CDFsetFileBackward will take the precedence over the environment variable.

You can use the CDFgetFileBackward script to check the current value of the backward-file-compatibility flag. It
returns 1 if the flag is set (i.e. create files compatible with V2.7 and 2.6) or 0 otherwise.

12

my S$status; # Returned status code.
my $flag; # File backward flag.

$flag = CDF::CDFgetFileBackward();

2.19 Checksum

To ensure the data integrity while transferring CDF files from/to different platforms at different locations, the
checksum feature was added in CDF V3.2 as an option for the single-file format CDF files (not for the multi-file
format). By default, the checksum feature is not turned on for new files. Once the checksum bit is turned on for a
particular file, the data integrity check of the file is performed every time it is open; and a new checksum is computed
and stored when it is closed. This overhead (performance hit) may be noticeable for large files. Therefore, it is
strongly encouraged to turn off the checksum bit once the file integrity is confirmed or verified.

If the checksum bit is turned on, a 16-byte signature message (a.k.a. message digest) is computed from the entire file
and appended to the end of the file when the file is closed (after any create/write/update activities). Every time such
file is open, other than the normal steps for opening a CDF file, this signature, serving as the authentic checksum, is
used for file integrity check by comparing it to the re-computed checksum from the current file. If the checksums
match, the file’s data integrity is verified. Otherwise, an error message is issued. Currently, the valid checksum modes
are: 0 for NO_CHECKSUM and 1 for MD5_CHECKSUM, both defined in cdf.h. With MD5 CHECKSUM, the
MDS5 algorithm is used for the checksum computation. The checksum operation can be applied to CDF files that were
created with V2.7 or later.

There are several ways to add or remove the checksum bit. One way is to use the Interface call (Standard or Internal)
with a proper checksum mode. Another way is through the environment variable. Finally, CDFedit and CDFconvert
(CDF tools included as part of the standard CDF distribution package) can be used for adding or removing the
checksum bit. Through the Interface call, you can set the checksum mode for both new or existing CDF files while the
environment variable method only allows to set the checksum mode for new files.

See Section 3.13 and 3.18 for the Standards Interface functions and Section 4.6 for the Internal Interface functions.
The environment variable method requires no function calls (and thus no code change is involved for existing
applications). ~ The environment variable CDF_CHECKSUM on all Unix platforms and Windows, or
CDF$CHECKSUM on Open/VMS, is used to control the checksum option. If its value is set to “MD5”, all new CDF
files will have their checksum bit set with a signature message produced by the MDS5 algorithm. If the environment
variable is not set or its value is set to anything else, no checksum is set for the new files.

The following example uses the Internal Interface to set a new CDF file with the MDS5 checksum and set another
existing file’s checksum to none.

my $idl, $id2;

my S$status;

my $numDims = 0;
my @dimSizes = (0);
my $checksum;

CDF identifier.
Returned status code.
Number of dimensions.
Dimension sizes.
Checksum code.

H o H H R

$status = CDF::CDFlib (CREATE , CDF _, “MY_TEST1”, $numDims, \@dimSizes, \$id1,
NULL);

13

UserStatusHandler ("1.0", $status) if ($status < CDF_OK) ;

$checksum = 1;

$status = CDF::CDFlib (SELECT _, CDF _, $idl,
PUT_, CDF_CHECKSUM , $checksum,
NULL);

UserStatusHandler ("2.0", $status) if ($status < CDF_OK) ;

$status = CDF::CDFlib (OPEN_, CDF_, “MY_TEST2”, \$id2,
NULL);
UserStatusHandler ("3.0", $status) if ($status < CDF_OK) ;

$checksum = 0;

$status = CDF::CDFlib (SELECT _, CDF _, $id2,
PUT_, CDF_CHECKSUM , $checksum,
NULL);

UserStatusHandler ("4.0", $status) if ($status < CDF_OK) ;

Alternatively, the Standard Interface function CDFsetChecksum can be used for the same purpose.

The following example uses the Internal Interface whether the checksum mode is enabled for a CDF.

my $id; # CDF identifier.
my S$status; # Returned status code.
my $checksum; # Checksum code.

$status = CDF::CDFlib (OPEN , CDF , “MY_TEST!1”, \$id,
NULL);
UserStatusHandler ("1.0", $status) if ($status < CDF_OK) ;

$status = CDF::CDFlib (SELECT _, CDF _, $id,
GET_, CDF_CHECKSUM _, \$checksum,
NULL,);

UserStatusHandler ("2.0", $status) if ($status < CDF_OK) ;

if ($checksum == MD5 CHECKSUM) {

}

Alternatively, the Standard Interface function CDFgetChecksum can be used for the same purpose.

2.20 Data Validation

14

To ensure the data integrity from CDF files and secure opetating of CDF-based applications, a data validaion feature is
added while a CDF file is opened. This process, as the default, performs sanity checks on the data fields in the CDF
internal data structures to make sure that the values are within ranges and consistnent with the defined
values/types/entries. It also tries to ensure that the linked lists.within the file that connect the attributes and variables are
not broken or short-circuited. Any compromised CDF files, if not validated properly, could cause applications to
function unexpectedly, e.g., segmentation fault due to a buffer overflow. The main purpose of this feature is to safe-
guard the CDF operations: catch any bad data in the file and end the application gracefully if any bad data is identified.
An overhead (performance hit) is expected and it may be noticeable for large or very fragmented files. Therefore, it is
advised that this feature be turned off once a file’s integrity is confirmed or verified. Or, the file in question may need
a file conversion, which will consolidate the internal data structures and eliminate the fragmentations. Check the
cdfconvert tool program in the CDF User’s Guide. ¢

This validation feature is controlled by the setting /unseting the environment variable CDF_VALIDATE on all Unix
platforms, Mac OS X and Windows, or CDF$VALIDATE on Open/VMS. If its value is not set or set to “yes”, all
open CDF files are subjected to this data validation process. If the environment variable is set to “no”, then no
validation is perfomed. The environment variable can be set at logon or through command line, which becomes in
effective during terminal session, or by an application, which is good only while the application is run. Setting the
environment variable, subroutine CDFsetValidate, at application level will overwrite the setup from the command
line. The validation is set to be on when value 1 (one) is passed into as the argument. Value 0 (zero) will set off the
validation. CDFgetValidate will return the validation mode, 1 (one) means data being validated, o (zero) otherwise. If
the environment variable is not set, the default is to have the data validated when a CDF file is open.

The following example sets the data validation off when the CDF file, “TEST”, is open.

my $id; ; # CDF identifier.
my S$status; # Returned status code.

CDF::CDFsetValidate(0);

$status = CDF::CDFlib (OPEN _, CDF _, “TEST”, \$id,
NULL);

UserStatusHandler ("2.0", $status) if ($status < CDF_OK) ;

2.21 8-Byte Integer

Both data types of CDF_INT8 and CDF_TIME_TT2000 use 8-byes signed integer. Tests show that on the 32-bit Perl
environment, large values from these data types, especially common 18-digits values for TT2000 data type, will not be
precisely preserved. In oder to preserve the data values, the Math::BigInt module is used.for these types. When a data
of such types is returned by a CDF module, it is wraped into a BigInt object. Similarly, passing a value of these types, it
should also be in Biglnt object.

The following example shows the difference between a Biglnt object and a regular value from CDF _TIME TT2000
data type after it is encoded on a 32-bit Perl.

use Math::Biglnt;

BEGIN { unshift @INC,"/Users/cdf/PerlCDF33_2/blib/arch/,

¢ The data validation during the open process will not check the variable data. It is still possible that data could be
corrupted, especially compression is involved. To fully validate a CDF file, use cdfdump tool with “-detect” switch.

15

'/Users/cdf/PerlCDF33_2/blib/lib"; }
use CDF;

my $ttb = Math::BigInt->new('340203790171876765");
my $ttr = 340203790171876765;

my ($tt2000b, $tt2000r);

CDF::encodeTT2000($ttb, $t2000b);
CDF::encodeTT2000($ttr, $tt2000r);

print $tt2000b,"(bigint) vs ",$tt2000r,"(regular) \n";

2010-10-13T01:02:03.987876765(bigint) vs 2010-10-13T01:02:03.987876736(regular)

16

Chapter 3

3 Standard Interface

The Standard Interface functions described in this chapter represents the Standard Interface functions. They are based
on the original Standard Interface developed for the C. This set of interfaces only provides a very limited functionality
within the CDF library. For example, it can not handle zVariables and has no access to attribute’s entry corresponding
to the zVariables (zEntries). If you want to create or access zVariables and zEntries, or operate any single item not
accessible from the Standard Interface in a CDF file, you must use the Internal Interface described in Chapter 4.

Standard Interface functions are easier-to-use and require a much shorter learning curve than the Internal Interface, but
it’s not as efficient as Internal Interface and can only create and maipulate rVariables, not zVariables. If you are not
familiar with Internal Interface and need a very simple CDF in a short time, the use of Standard Interface is
recommended. However, the Internal Interface (see Chapter 4 for details) is strongly recommended since it’s not really
hard to learn (see testPerlCDFii.pl included in the Perl-CDF package) and much more flexible and powerful than the
Standard Interface.

There are two types of variables (rVariable and zVariable) in CDF, and they can happily coexist in a CDF. Every
rVariable in a CDF must have the same number of dimensions and dimension sizes while each zVariable can have its
own dimensionality. Since all the rVariables in a CDF must have the same dimensions and dimension sizes, there'll be
a lot of disk space wasted if a few variables need big arrays and many variables need small arrays. Since zVariable is
more efficient in terms of storage and offers more functionality than rVariable, use of zVariable is strongly
recommended. As a matter of fact, there’s no reason to use rVariables at all if you are creating a CDF file from scratch.
One may wonder why there are rVariables and zVariables, not just zVariables. When CDF was first introduced, only
rVariables were available. The inefficiencies with rVariables were quickly realized and addressed with the introduction
of zVariables in later CDF releases.

The following sections describe the Standard Interface functions callable from Perl applications. Any function in
Standard Interface that deals with a variable, its value or attribute, applies only to rVariables. Most functions return a
status code (see Chapter 5). The Internal Interface is described in Chapter 4. An application can use either or both
interfaces when necessary.

3.1 CDFattrCreate

CDF::CDFattrCreate(
my id,

my S$attrName,

my S$attrScope,

out -- Completion status code.
in -- CDF identifier.

in -- Attribute name.

in -- Scope of attribute.

H H H H

17

my \$attrNum); # out -- Attribute number.

CDFattrCreate creates an attribute in the specified CDF. An attribute with the same name must not already exist in the
CDF.

The arguments to CDFattrCreate are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

attrName The name of the attribute to create. This may be at most CDF ATTR NAME LEN256
characters (excluding the NUL terminator). Attribute names are case-sensitive.

attrScope The scope of the new attribute. Specify one of the scopes described in Section 2.12.

attrNum The number assigned to the new attribute. This number must be used in subsequent CDF

function calls when referring to this attribute. An existing attribute's number may be
determined with the CDFgetAttrNum function.

3.1.1 Example(s)

The following example creates two attributes. The TITLE attribute is created with global scope - it applies to the entire
CDF (most likely the title of the data set stored in the CDF). The Units attribute is created with variable scope - each
entry describes some property of the corresponding variable (in this case the units for the data).

my $id; # CDF identifier.

my $status; # Returned status code.

my $UNITSattrName = "Units"; # Name of "Units" attribute.

my $UNITSattrNum; # "Units" attribute number.

my S$TITLEattrNum; # "TITLE" attribute number.
"TITLE" attribute scope.

my S$TITLEattrScope = GLOBAL SCOPE;

$status = CDF::CDFattrCreate ($id, "TITLE", $TITLEattrScope, \$TITLEattrNum);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

$status = CDF::CDFattrCreate ($id, $UNITSattrName, VARIABLE SCOPE, \$UNITSattrnum);
UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);

3.2 CDFattrEntryInquire

CDF::CDFattrEntryInquire(# out-- Completion status code.
my $id, # in-- CDF identifier.

my $attrNum, # in -- Attribute number.

my $entryNum, # in-- Entry number.

18

my \$dataType,
my \$numElements);

out-- Data type.
out-- Number of elements (of the data type).

CDFattrEntryInquire is used to inquire about a specific attribute entry. To inquire about the attribute in general, use
CDFattrInquire. CDFattrEntrylnquire would normally be called before calling CDFattrGet in order to determine the
data type and number of elements (of that data type) for an entry. This would be necessary to correctly allocate enough
memory to receive the value read by CDFattrGet.

The arguments to CDFattrEntrylnquire are defined as follows:

id

attrNum

entryNum

dataType

NumElements

3.2.1

Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

The attribute number for which to inquire an entry. This number may be determined
with a call to CDFattrNum (see Section 3.5).

The entry number to inquire. If the attribute is global in scope, this is simply the gEntry
number and has meaning only to the application. If the attribute is variable in scope, this
is the number of the associated rVariable (the rVariable being described in some way by
the rEntry).

The data type of the specified entry. The data types are defined in Section 2.5.
The number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

The following example returns each entry for an attribute. Note that entry numbers need not be consecutive - not
every entry number between zero (0) and the maximum entry number must exist. For this reason NO_SUCH_ENTRY
is an expected error code. Note also that if the attribute has variable scope, the entry numbers are actually rVariable
numbers.

my
my
my
my
my
my
my
my
my

$id;

$status;
$attrN;
$entryN;
$attrName;
$attrScope;
$maxEntry;
$dataType;
$numkElems;

CDF identifier.

Returned status code.

Attribute number.

Entry number.

Attribute name.

Attribute scope.

Maximum entry number used.

Data type.

Number of elements (of the data type).

FH o H H O H H H R

$attrN = CDF::CDFgetAttrNum ($id, "TMP");

UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

$status = CDF::CDFattrinquire ($id, $attrN, \$attrName, \$attrScope, \$maxEntry);
UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);

19

for (SentryN = 0; SentryN <= $maxEntry; SentryN++) {
$status = CDF::CDFattrEntryInquire ($id, $attrN, $entryN, \$dataType, \$numElems);
if ($status < CDF_OK) {
if ($status = NO_SUCH_ENTRY) UserStatusHandler (“3.0”. $status);

}
else {

process entries
}

33 CDFattrGet

CDF::CDFattrGet(# out-- Completion status code.
my $id, # in-- CDF identifier.

my $attrNum, # in -- Attribute number.

my $entryNum, # in-- Entry number.

my \$value); # out-- Attribute entry value.

CDFattrGet is used to read an attribute entry from a CDF. In most cases it will be necessary to call
CDFattrEntryInquire before calling CDFattrGet in order to determine the data type and number of elements (of that
data type) for the entry.

The arguments to CDFattrGet are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.

attrNum The attribute number. This number may be determined with a call to CDFattrNum (Section
3.5).

entryNum The entry number. If the attribute is global in scope, this is simply the gEntry number and

has meaning only to the application. If the attribute is variable in scope, this is the number
of the associated rVariable (the rVariable being described in some way by the rEntry).

value The value read. This buffer must be large enough to hold the value. The function
CDFattrEntrylnquire would be used to determine the entry data type and number of
elements (of that data type). The value is read from the CDF and placed in the variable
value.

3.3.1 Example(s)

The following example displays the value of the UNITS attribute for the rEntry corresponding to the PRES LVL
rVariable (but only if the data type is CDF_CHAR). Note that the CDF library does not automatically NUL terminate
character data (when the data type is CDF_CHAR or CDF_UCHAR) for attribute entries (or variable values).

20

my $id;

my S$numElems;
my S$buffer;

Number of elements (of data type).
Buffer to receive value.

CDF identifier.
my S$status; # Returned status code.
my S$attrN; # Attribute number.
my SentryN; # Entry number.
my $dataType; # Data type.

#

#

$attrN = CDF::CDFattrNum (id, "UNITS");
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
$entryN = CDF::CDFvarNum (id, "PRES_LVL"); # The rEntry number is the rVariable number.

UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
$status = CDF::CDFattrEntrylnquire (§$id, SattrN, $entryN, \$dataType, \$numElems);

UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

if ($dataType == CDF_CHAR) {
$status = CDF::CDFattrGet ($id, $attrN, $SentryN, \$buffer);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

print "Units of PRES LVL variable: $buffer \n";
}

3.4 CDFattrInquire

CDF::CDFattrInquire(# out-- Completion status code.

my $id, # in-- CDF identifier.

my $attrNum, # in -- Attribute number.

my \$attrName, # out -- Attribute name.

my \$attrScope, # out-- Attribute scope.

my \$maxEntry); # out-- Maximum gEntry or rEntry number.

CDFattrlnquire is used to inquire about the specified attribute. To inquire about a specific attribute entry, use
CDFattrEntryInquire.

The arguments to CDFattrInquire are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.
attrNum The number of the attribute to inquire. This number may be determined with a call to

CDFattrNum (see Section 3.5).
attrName The attribute's name.

attrScope The scope of the attribute. Attribute scopes are defined in Section 2.12.

21

maxEntry

34.1

For gAttributes this is the maximum gEntry number used. For vAttributes this is the
maximum rEntry number used. In either case this may not correspond with the number of
entries (if some entry numbers were not used). The number of entries actually used may be
inquired with the CDFlib function (see Section 4). If no entries exist for the attribute, then
a value of -1 will be passed back.

Example(s)

The following example displays the name of each attribute in a CDF. The number of attributes in the CDF is first
determined using the function CDFinquire. Note that attribute numbers start at zero (0) and are consecutive.

my
my
my
my

my
my
my
my
my
my
my
my
my

$id;
$status;
$numDims;

@dimSizes = (CDF_MAX DIMS);

$encoding;
$majority;
$maxRec;
$numVars;
$numAttrs;
$attrN;
$attrName;
$attrScope;
$maxEntry;

CDF identifier.

Returned status code.

Number of dimensions.

Dimension sizes (allocate to allow the maximum
number of dimensions).

Data encoding.

Variable majority.

Maximum record number in CDF.

Number of variables in CDF.

Number of attributes in CDF.

attribute number.

attribute name -- +1 for NUL terminator.

attribute scope.

Maximum entry number.

$status = CDF::CDFinquire ($id, \$numDims, \@dimSizes, \$encoding, \$majority,

\$maxRec, \$numVars, \$numAttrs);

UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
for ($attrN = 0; $attrN < $numAttrs; $attrN++) {

$status = CDFattrInquire ($id, $attrN, \$attrName, \$attrScope, \$maxEntry);

if ($status < CDF_OK) # INFO status codes ignored.
UserStatusHandler (“2.0”, $status);

else
print ("$attrName \n”);

3.5 CDFattrNum

CDF:: CDFattrNum(# out -- Attribute number.
my $id, # in-- CDF id
my S$attrName); # in -- Attribute name

22

CDFattrNum is used to determine the attribute number associated with a given attribute name. If the attribute is found,
CDFattrNum returns its number - which will be equal to or greater than zero (0). If an error occurs (e.g., the attribute
name does not exist in the CDF), an error code is returned. Error codes are less than zero (0).

The arguments to CDFattrNum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.
attrName The name of the attribute for which to search. Attribute names are case-sensitive.

CDFattrNum may be used as an embedded function call when an attribute number is needed.

3.5.1 Example(s)

In the following example the attribute named pressure will be renamed to PRESSURE with CDFattrNum being used as
an embedded function call. Note that if the attribute pressure did not exist in the CDF, the call to CDFattrNum would
have returned an error code. Passing that error code to CDFattrRename as an attribute number would have resulted in
CDFattrRename also returning an error code.

my $id; # CDF identifier.
my S$status; # Returned status code.
my S$attrNum; # Attribute number.

$attrNum = CDF::CDFattrNum($id,"pressure");
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
$status = CDF::CDFattrRename ($id, $attrNum, "PRESSURE");
UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);

3.6 CDFattrPut

CDF::CDFattrPut(out -- Completion status code.
my $id, in-- CDF identifier.

my $attrNum, in -- Attribute number.

my $entryNum, in -- Entry number.

in -- Data type of this entry.
in -- Number of elements (of the data type).
in -- Attribute entry value.

my S$dataType,
my $numElements,
my $value);

o H H O H

CDFattrPut is used to write an entry to a global or rVariable attribute in a CDF. The entry may or may not already
exist. If it does exist, it is overwritten. The data type and number of elements (of that data type) may be changed when
overwriting an existing entry.

The arguments to CDFattrPut are defined as follows:

23

id

attrNum

entryNum

dataType

numElements

value

3.6.1

Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

The attribute number. This number may be determined with a call to CDFgetAttrNum.

The entry number. If the attribute is global in scope, this is simply the gEntry number
and has meaning only to the application. If the attribute is variable in scope, this is the
number of the associated rVariable (the rVariable being described in some way by the
rEntry).

The data type of the specified entry. Specify one of the data types defined in Section
2.5.

The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (an array of characters).
For all other data types this is the number of elements in an array of that data type.

The value(s) to write. The entry value is written to the CDF from memory address
value.

The following example writes two attribute entries. The first is to gEntry number zero (0) of the gAttribute TITLE.
The second is to the variable scope attribute VALIDs for the rEntry that corresponds to the rVariable TMP.

my
my
my
my
my
my
my
my
my

$id;

$status;

$entryNum;
$numElements;
$title = "CDF title.";

@TMPvalids = (15,30);

$TITLE_LEN = 10;
$attrNum;
$varNum;

$entryNum = 0;
$attrNum = CDF:: CDFgetAttrNum(id,"TITLE");

UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

$status = CDF::CDFattrPut ($id, $attrNum, $entryNum, CDF_CHAR, 10, S$title);
UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);

$numElements = 2;
$attrNum = CDF:: CDFgetAttrNum(id,"VALIDs");

UserStatusHandler (“3.0”. $status) if ($status < CDF_OK);

$varNum = CDF:: CDFgetVarNum(id,"TMP");

UserStatusHandler (“4.0”. $status) if ($status < CDF_OK);

$status = CDF::CDFattrPut ($id, $attrNum, $varNum, CDF_INT2, $numElements, \@TMPvalids);

CDF identifier.

Returned status code.

Entry number.

Number of elements (of data type).

Value of TITLE attribute, entry number 0.

Value(s) of VALIDs attribute, rEntry for rVariable TMP.
Length of CDF title.

Attribute number.

rVariable number.

o H H O H H H H

24

UserStatusHandler (“5.0”. $status) if ($status < CDF_OK);

3.7 CDFattrRename

CDF::CDFattrRename(# out-- Completion status code.
my $id, # in-- CDF identifier.
my $attrNum, # in -- Attribute number.

#

my S$attrName); in -- New attribute name.

CDFattrRename is used to rename an existing attribute. An attribute with the new name must not already exist in the
CDF.

The arguments to CDFattrRename are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.
attrNum The number of the attribute to rename. This number may be determined with a call to

CDFattrNum (see Section 3.5).

attrName The new attribute name. Attribute names are case-sensitive.

3.7.1 Example(s)

In the following example the attribute named LAT is renamed to LATITUDE.

my $id; # CDF identifier.
my $status; # Returned status code.
my S$attrNum; # Attribute number.

$attrNum = CDF:: CDFgetAttrNum(id,"LAT");
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
$status = CDF::CDFattrRename ($id, $attrNum, "LATITUDE");
UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);

3.8 CDFclose

25

CDF::CDFclose(# out-- Completion status code.
my $id); # in-- CDF identifier.

CDFclose closes the specified CDF. The CDF's cache buffers are flushed; the CDF's open file is closed (or files in the
case of a multi-file CDF); and the CDF identifier is made available for reuse.

NOTE: You must close a CDF with CDFclose to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFclose, the
CDF's cache buffers are left unflushed.

The arguments to CDFclose are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate or
CDFopen.

3.8.1 Example(s)

The following example will close an open CDF.

my $id; # CDF identifier.
my S$status; # Returned status code.

$status = CDF::CDFclose ($id);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

3.9 CDFcreate

CDF::CDFcreate(
my $CDFname,
my $numDims,
my \@dimSizes,
my $encoding,
my $majority,
my \$id);

out -- Completion status code.

in -- CDF file name.

in -- Number of dimensions, rVariables.
in -- Dimension sizes, rVariables.

in -- Data encoding.

in -- Variable majority.

out -- CDF identifier.

H o H H H H

CDFecreate creates a CDF as defined by the arguments. A CDF cannot be created if it already exists. (The existing
CDF will not be overwritten.) If you want to overwrite an existing CDF, you must first open it with CDFopen, delete it
with CDFdelete, and then recreate it with CDFcreate. If the existing CDF is corrupted, the call to CDFopen will fail.
(An error code will be returned.) In this case you must delete the CDF at the command line. Delete the dotCDF file
(having an extension of .cdf), and if the CDF has the multi-file format, delete all of the variable files (having extensions
of .v0,.vl,. .. and .z0,.z1,.. .).

The arguments to CDFcreate are defined as follows:

26

CDFname

numDims

dimSizes

encoding

majority

id

The file name of the CDF to create. (Do not specify an extension.) This may be at most
CDF PATHNAME LEN characters (excluding the NUL terminator). A CDF file name
may contain disk and directory specifications that conform to the conventions of the
operating system being used (including logical names on OpenVMS systems and
environment variables on UNIX systems).

UNIX: File names are case-sensitive.

Number of dimensions the rVariables in the CDF are to have. This may be as few as zero
(0) and at most CDF_ MAX DIMS.

The size of each dimension. Each element of dimSizes specifies the corresponding
dimension size. Each size must be greater then zero (0). For 0-dimensional rVariables this

argument is ignored (but must be present).

The encoding for variable data and attribute entry data. Specify one of the encodings
described in Section 2.6.

The majority for variable data. Specify one of the majorities described in Section 2.8.

The identifier for the created CDF. This identifier must be used in all subsequent operations
on the CDF.

When a CDF is created, both read and write access are allowed. The default format for a CDF created with CDFcreate
is specified in the configuration file of your CDF distribution. Consult your system manager for this default. The
CDFIlib function (Internal Interface) may be used to change a CDF's format.

NOTE: CDFclose must be used to close the CDF before your application exits to ensure that the CDF will be correctly
written to disk (see Section 3.8).

3.9.1 Example(s)

The following example creates a CDF named “testl.cdf” with network encoding and row majority.

ﬁy $id;

my S$status;

my $numDims
my (@dimSizes = (180,360,10);
my $majority = ROW_MAIJOR;

CDF identifier.

Returned status code.

Number of dimensions, rVariables.
Dimension sizes, rVariables.
Variable majority.

H o H H R

$status = CDF::CDFcreate ("testl", $numDims, \@dimSizes, NETWORK ENCODING, $majority, &id);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

ROW_MAIJOR and NETWORK ENCODING are defined in the Perl-CDF package.

27

3.10 CDFdelete

CDF::CDFdelete(# out-- Completion status code.
my id); # in-- CDF identifier.

CDFdelete deletes the specified CDF. The CDF files deleted include the dotCDF file (having an extension of .cdf), and
if a multi-file CDF, the variable files (having extensions of .v0,.v1,. . . and .z0,.z1,.. .).

You must open a CDF before you are allowed to delete it. If you have no privilege to delete the CDF files, they will
not be deleted. If the CDF is corrupted and cannot be opened, the CDF file(s) must be deleted at the command line.

The arguments to CDFdelete are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate or
CDFopen.

3.10.1 Example(s)

The following example will open and then delete an existing CDF.

my $id; # CDF identifier.
my S$status; # Returned status code.

$status = CDF::CDFopen ("test2", \$id);

if ($status < CDF_OK) # INFO status codes ignored.
UserStatusHandler (“1.0”, $status);

else {
$status = CDF::CDFdelete ($id);
UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);

}

3.11 CDFdoc

CDF::CDFdoc(
my $id,

my \$version,
my \$release,
my \$Copyright);

out -- Completion status code.
in -- CDF identifier.

out -- Version number.

out -- Release number.

out -- Copyright.

H o H H

28

CDFdoc is used to inquire general information about a CDF. The version/release of the CDF library that created the
CDF is provided (e.g., CDF V3.1 is version 3, release 1) along with the CDF Copyright notice. The Copyright notice is
formatted for printing without modification.

The arguments to CDFdoc are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.

version The version number of the CDF library that created the CDF.

release The release number of the CDF library that created the CDF.

Copyright The Copyright notice of the CDF library that created the CDF. This string will contain a

newline character after each line of the Copyright notice.

3.11.1 Example(s)

The following example returns and displays the version/release and Copyright notice.

CDF identifier.
Returned status code.
CDF version number.
CDF release number.
Copyright notice.

my $id;

my S$status;

my $version;
my S$release;
my $Copyright;

H o H H

$status = CDF::CDFdoc (8id, \$version, \$release, \$Copyright);

if ($status < CDF_OK) # INFO status codes ignored
UserStatusHandler (“1.0”, status);

else {
print ("CDF VS$version.$release\n”);
print ("$Copyright”);

}

3.12 CDFerror

CDF::CDFerror(# out-- Completion status code.
my $status, # in-- Status code.
my $message); # out-- Explanation text for the status code.

CDFerror is used to inquire the explanation of a given status code (not just error codes). Chapter 5 explains how to
interpret status codes and Appendix A lists all of the possible status codes.

29

The arguments to CDFerror are defined as follows:
status The status code to check.

message The explanation of the status code.

3.12.1 Example(s)

The following example displays the explanation text if an error code is returned from a call to CDFopen.

my $id; # CDF identifier.
my S$status; # Returned status code.
my S$text; # Explanation text.

$status = CDF::CDFopen ("giss wetl", \$id);

if ($status < CDF_WARN) { # INFO and WARNING codes ignored.
CDF::CDFerror ($status, \$text);
print ("ERROR> $text\n”);

}

3.13 CDFgetChecksum

CDF::CDFgetChecksum (# out-- Completion status code.
my $id, # in-- CDF identifier.
my \$checksum); # out-- CDF’s checksum mode.

CDFgetChecksum returns the checksum mode of a CDF. The CDF checksum mode is described in Section 2.19.

The arguments to CDFgetChecksum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.
checksum The checksum mode (NO_CHECKSUM or MD5 CHECKSUM).

3.13.1 Example(s)

The following example returns the checksum mode for the open CDF file.

30

my $id; # CDF identifier.
my S$status; # Returned status code.
my S$checksum; # CDEF’s checksum.

$status = CDF::CDFgetChecksum ($id, \$checksum);
if ($status = CDF_OK) UserStatusHandler ($status);

3.14 CDFgetFileBackward

CDF::CDFgetFileBackward() # out -- Backward file indicator.

CDFgetFileBackward is used to get the backward file indicator. When the indicator is 1 (true), all newly created files
are of Version 2.7, backward compatible files, not V3.*.

The arguments to CDFgetFileBackward defined as follows:

N/A

3.14.1 Example(s)

In the following example, the backward file indicator is retrieved.

my $backwardFlag; # File backward flag.

$backwardFlag = CDF::CDFgetFileBackward();

3.15 CDFgetValidate

CDF::CDFgetValidate () # out-- Validation mode.

CDFgetValidate returns the validation mode when opening CDF files. The CDF validation mode is described in
Section 2.20.

The arguments to CDFgetValidate are defined as follows:

N/A

31

3.15.1 Example(s)

The following example returns the data validation mode when opening the CDF files.

my $validate;

CDEF’s validation mode.

$validate = CDF::CDFgetValidate ();

3.16 CDFinquire

CDF::CDFinquire(

my
my
my
my
my
my
my
my

$id,
\$numDims,
\@dimSizes,
\$encoding,
\$majority,
\$maxRec,
\$numVars,
\$numAttrs);

out -- Completion status code.

in -- CDF identifier

out -- Number of dimensions, rVariables.

out -- Dimension sizes, rVariables.

out -- Data encoding.

out -- Variable majority.

out -- Maximum record number in the CDF, rVariables.
out -- Number of rVariables in the CDF.

out -- Number of attributes in the CDF.

HoH H H HHFHFHH®

CDFinquire returns the basic characteristics of a CDF. An application needs to know the number of rVariable
dimensions and their sizes before it can access rVariable data (since all rVariables’ dimension and dimension size are
the same). Knowing the variable majority can be used to optimize performance and is necessary to properly use the
variable hyper functions (for both rVariables and zVariables).

The arguments to CDFinquire are defined as follows:

id

numDims

dimSizes

encoding

majority

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

The number of dimensions for the rVariables in the CDF.

The dimension sizes of the rVariables in the CDF. dimSizes is a 1-dimensional array
containing one element per dimension. FEach element of dimSizes receives the
corresponding dimension size. For 0-dimensional rVariables this argument is ignored (but

must be present).

The encoding of the variable data and attribute entry data. The encodings are defined in
Section 2.6.

The majority of the variable data. The majorities are defined in Section 2.8.

32

maxRec

numVars

numAttrs

3.16.1 Example(s)

The maximum record number written to an rVariable in the CDF. Note that the maximum
record number written is also kept separately for each rVariable in the CDF. The value of
maxRec is the largest of these. Some rVariables may have fewer records actually written.
Use CDFrVarMaxWrittenRecNum to inquire the maximum record written for an
individual rVariable.

The number of rVariables in the CDF.

The number of attributes in the CDF.

The following example returns the basic information about a CDF.

my
my
my
my

my
my
my
my
my

$id;
$status;
$numDims;
@dimSizes

$encoding;
$majority;
$maxRec;
$numVars;
$numAttrs;

CDF identifier.

Returned status code.

Number of dimensions, rVariables.

Dimension sizes, rVariables (allocate to allow the
maximum number of dimensions).

Data encoding.

Variable majority.

Maximum record number, rVariables.

Number of rVariables in CDF.

Number of attributes in CDF.

HoH HoH H H HHHH®

$status = CDF::CDFinquire ($id, \$numDims, \@dimSizes, \$encoding, \$majority,

\$maxRec, \$numVars, \$numAttrs);

UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

3.17 CDFopen

CDF::CDFopen(
my $CDFname,
my \$id);

out-- Completion status code.
in-- CDF file name.
out-- CDF identifier.

CDFopen opens an existing CDF. The CDF is initially opened with only read access. This allows multiple
applications to read the same CDF simultaneously. When an attempt to modify the CDF is made, it is automatically
closed and reopened with read/write access. (The function will fail if the application does not have or cannot get write
access to the CDF.)

The arguments to CDFopen are defined as follows:

33

CDFname The file name of the CDF to open. (Do not specify an extension.) This may be at most
CDF PATHNAME LEN characters (excluding the NUL terminator). A CDF file name
may contain disk and directory specifications that conform to the conventions of the
operating system being used (including logical names on OpenVMS systems and
environment variables on UNIX systems).

UNIX: File names are case-sensitive.

id The identifier for the opened CDF. This identifier must be used in all subsequent operations
on the CDF.

NOTE: CDFclose must be used to close the CDF before your application exits to ensure that the CDF will be correctly
written to disk.

3.17.1 Example(s)

The following example will open a CDF named “NOAA1.cdf”.

my $id; # CDF identifier.
my S$status; # Returned status code.
my $CDFname ="NOAAI"; # File name of CDF.

$status = CDF::CDFopen ($CDFname, \$id);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

3.18 CDFsetChecksum

CDF::CDFsetChecksum (# out-- Completion status code.
my $id, # in-- CDF identifier.
my S$checksum); # in-- CDF’s checksum mode.

CDFsetChecksum specifies the checksum mode for the CDF. The CDF checksum mode is described in Section 2.19.
The arguments to CDFsetChecksum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate or
CDFopen.

checksum The checksum mode (NO_CHECKSUM or MD5 CHECKSUM).

34

3.18.1 Example(s)

The following example turns off the checksum flag for the open CDF file..

my $id; # CDF identifier.
my $status; # Returned status code.

my $checksum; # CDF’s checksum.

$checksum= 0;
$status = CDF::CDFsetChecksum ($id, $checksum);
if ($status = CDF_OK) UserStatusHandler ($status);

3.19 CDFsetFileBackward

CDF::CDFsetFileBackward(#
my $flag) # in-- Backward file flag

CDFsetFileBackward is used to set the backward file indicator. When the indicator is 1 (true), all newly created files
are of Version 2.7, backward compatible files, not V3.*.

The arguments to CDFsetFileBackward defined as follows:

flag The backward file flag

3.19.1 Example(s)

In the following example, the backward file indicator is set to true so a new CDF file(s) of V2.7, instead of V3.*, will
be created.

my $backwardFlag; # Backward file flag.

$backwadFlag = I;
CDF::CDFsetFileBackward($backwardFlag);

35

3.20 CDFsetValidate

CDF::CDFsetValidate (
my $validate); # in-- CDEF’s validation mode.

CDFsetValidate specifies the validation mode when opening a CDF file. The CDF validation mode is described in
Section 2.20.

The arguments to CDFsetValidate are defined as follows:

validate The validation mode.

3.20.1 Example(s)

The following example turns on the data validation when opening the CDF file, “TEST™..

my $id; # CDF identifier.
my $status; # Returned status code.

CDF::CDFsetValidate (1);

$status = CDF::CDFIlib(OPEN _, CDF _, “TEST”, \$id,
NULL);

if ($status = CDF_OK) UserStatusHandler ($status);

3.21 CDFvarClose

CDF::CDFvarClose(# out-- Completion status code.
my $id, # in-- CDF identifier.
my $varNum); # in-- rVariable number.

CDFvarClose closes the specified rVariable file from a multi-file format CDF. The variable's cache buffers are flushed
before the variable's open file is closed. However, the CDF file is still open.

NOTE: You must close all open variable files to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFclose, the
CDF's cache buffers are left unflushed.

The arguments to CDFclose are defined as follows:

36

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate or

CDFopen.

varNum The variable number for the open rVariable’s file. This identifier must have been initialized by a call

to CDFgetVarNum.

3.21.1 Example(s)

The following example will close an open rVariable in a multi-file CDF.

my $id; # CDF identifier.
my S$status; # Returned status code.
my $varNum; # rVariable number.

$varNum = CDF::CDFvarNum (id, “Flux”);

UserStatusHandler (“1.0”. $varNum) if ($varNum < CDF_OK);

$status = CDF::CDFvarClose (id, $varNum);

UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);

3.22 CDFvarCreate

CDF::CDFvarCreate(
my $id,

my $varName,

my S$dataType,

my $numElements,
my $recVariance,
my \@dimVariances,
my \$varNum);

in --
in --
in --
in --
in --
in --

H HFHHHFHFHFH

out -- Completion status code.

CDF identifier.

rVariable name.

Data type.

Number of elements (of the data type).
Record variance.

Dimension variances.

out -- rVariable number.

CDFvarCreate is used to create a new rVariable in a CDF. A variable (rVariable or zVariable) with the same name

must not already exist in the CDF.

The arguments to CDFvarCreate are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.
varName The name of the rVariable to create. This may be at most CDF_ VAR NAME LEN256

characters (excluding the NUL terminator). Variable names are case-sensitive.

dataType The data type of the new rVariable. Specify one of the data types defined in Section 2.5.

37

numElements

recVariance

dimVariances

varNum

3.22.1 Example(s)

The number of elements of the data type at each value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string (each
value consists of the entire string). For all other data types this must always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The rVariable's record variance. Specify one of the variances defined in Section 2.9.

The rVariable's dimension variances. Each element of dimVariances specifies the
corresponding dimension variance. For each dimension specify one of the variances
defined in Section 2.9. For 0-dimensional rVariables this argument is ignored (but must
be present).

The number assigned to the new rVariable. This number must be used in subsequent
CDF function calls when referring to this rVariable. An existing rVariable's number may
be determined with the CDFvarNum or CDFgetVarNum function.

The following example will create several rVariables in a CDF. In this case EPOCH is a 0-dimensional, LATITUDE

and LONGITUDE are 2-diemnational, and TEMPERATURE is a 1-dimensional.

my
my
my
my
my
my
my
my
my
my
my
my
my
my
my
my
my

@EPOCHdimSizes = (3);
@LATLONdimSizes = (2,3);

EPOCH dimension sizes.
LAT/LON dimension sizes.

$id; # CDF identifier.
$status; # Returned status code.
$EPOCHrecVary = VARY; # EPOCH record variance.
$LATrecVary = NOVARY; # LAT record variance.
$LONrecVary = NOVARY; # LON record variance.
$TMPrecVary = VARY; # TMP record variance.
$EPOCHdimVarys = NOVARY; # EPOCH dimension variances.
@LATdimVarys = (VARY,VARY); # LAT dimension variances.
@LONdimVarys = (VARY,VARY); # LON dimension variances.
@TMPdimVarys = (VARY,VARY); # TMP dimension variances.
$EPOCHvarNum; # EPOCH zVariable number.
$SLATvarNum; # LAT zVariable number.
$LONvarNum; # LON zVariable number.
TMPvarNum; # TMP zVariable number.

#

#

#

@TMPdimSizes = (3);

TMP dimension sizes.

$status = CDF::CDFvarCreate ($id, "EPOCH", CDF_EPOCH, 1,
$EPOCHrecVary, \@EPOCHdimVarys, \SEPOCH varNum);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

$status = CDF::CDFvarCreate ($id, "LATITUDE", CDF_INT2, 1,
$LATrecVary, \@LATdimVarys, \$LATvarNum);
UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);

$status = CDF::CDFvarCreate ($id, "LONGITUDE", CDF INT2, 1,

$LONrecVary, \@LONdimVarys, \$LONvarNum);
UserStatusHandler (“3.0”. $status) if ($status < CDF_OK);

$status = CDF::CDFvarCreate ($id, "TEMPERATURE", CDF_REALA4, 1,

$TMPrecVary, \@TMPdimVarys, \$TMPvarNum);
UserStatusHandler (“4.0”. $status) if ($status < CDF_OK);

3.23 CDFvarGet

CDF::CDFvarGet(# out-- Completion status code.
my $id, # in-- CDF identifier.

my $varNum, # in-- rVariable number.

my $recNum, # in-- Record number.

my \@indices, # in -- Dimension indices.

my \$value); # out-- Value.

CDFvarGet is used to read a single value from an rVariable.
The arguments to CDFvarGet are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

varNum The rVariable number from which to read data.

recNum The record number at which to read.

indices The dimension indices within the record.

value The data value read. This buffer must be large enough to hold the value.

3.23.1 Example(s)

The following example returns two data values, the first and the fifth element, in Record 0 from an rVariable named
MY _ VAR, a 2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF.

CDF identifier.
rVariable number.

The record number.
The dimension indices.
The data values.

my $id;

my $varNum;

my $recNum;

my @indices;

my $valuel, $value2;

o H H

$varNum = CDF::CDFvarNum ($id, “MY_VAR”);

39

if ($varNum < CDF_OK) Quit (“....”);

$recNum = 0;
$indices[0] = 0;
$indices[1] = 0;

$status = CDF::CDFvarGet ($id, $varNum, $recNum, \@indices, \$valuel);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

$indices[0] = 1L;
$indices[1] = 1L;

$status = CDF::CDFvarGet ($id, $varNum, $recNum, \@indices, \$value2);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

3.24 CDFvHpGet

CDF::CDFvHpGet(
my $id,

my $varNum,

my $recStart,

my $recCount,
my $reclnterval,
my \@indices,

my \@counts,

my \@intervals,
my \@buffer);

o H o FH H O H H

out -- Completion status code.

in --
in --
in --
in --
in --
in --
in --
in --

CDF identifier.

rVariable number.

Starting record number.

Number of records.

Subsampling interval between records.
Dimension indices of starting value.

Number of values along each dimension.
Subsampling intervals along each dimension.

out -- Buffer of values.

CDFvHpGet is used to fill a buffer of one or more values from the specified rVariable. It is important to know the
variable majority of the CDF before using CDFvHpGet because the values placed into the buffer will be in that
majority. CDFinquire can be used to determine the default variable majority of a CDF distribution. The Concepts
chapter in the CDF User's Guide describes the variable majorities.

3.24.1 Example(s)

The following example will read an entire record of data from an rVariable. The CDF’s rVariables are 3-dimensional
with sizes [180,91,10] and CDF’s variable majority is ROW_MAJOR. For the rVariable the record variance is VARY,
the dimension variances are [VARY,VARY,VARY], and the data type is CDF_REAL4. This example is similar to the
example provided for CDFvarGet except that it uses a single call to CDFvHpGet rather than numerous calls to

CDFvarGet.
my $id;
my S$status;
my @tmp;
my $varN;

my S$recStart =
my S$recCount =

my S$reclnterval = 1;
my @indices = (0,0,0);

CDF identifier.
Returned status code.
Temperature values.
rVariable number.
Record number.
Record counts.
Record interval.
Dimension indices.

FH o H H O H H H

40

my @counts = (180,91,10); # Dimension counts.
my @intervals = (1,1,1); # Dimension intervals.

$varN = CDF::CDFgetVarNum ($id, "Temperature");

if (§varN < CDF_OK) UserStatusHandler ($varN);

status = CDF::CDFgetHyperGet ($id, $varN, S$recStart, $recCount, $reclnterval,
\@indices, \@counts, \@intervals, \@tmp);

UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

Note that if the CDF's variable majority had been COLUMN_ MAIJOR, the tmp array would have been declared float
tmp[10][91][180] for proper indexing.

3.25 CDFvHpPut

CDF::CDFvHpPut(
my $id,

my $varNum,

my $recStart,

my $recCount,
my $reclnterval,
my \@indices,
my \@counts,

my \@intervals,
my \@buffer);

out -- Completion status code.

in -- CDF identifier.

in -- rVariable number.

in -- Starting record number.

in -- Number of records.

in -- Interval between records.

in -- Dimension indices of starting value.

in -- Number of values along each dimension.

in -- Interval between values along each dimension.
in -- Buffer of values.

o O H O H O H R

CDFvarHyperPut is used to write one or more values from the data holding buffer to the specified rVariable. It is
important to know the variable majority of the CDF before using this routine because the values in the buffer to be
written must be in the same majority. CDFinquire can be used to determine the default variable majority of a CDF
distribution. The Concepts chapter in the CDF User's Guide describes the variable majorities.

3.25.1 Example(s)

The following example writes values to the rVariable LATITUDE of a CDF that is an 2-dimensional array with
dimension sizes [360,181]. For LATITUDE the record variance is NOVARY, the dimension variances are
[NOVARY,VARY], and the data type is CDF_INT2. This example is similar to the CDFvarPut example except that it
uses a single call to CDvHpPut rather than numerous calls to CDFvarPut.

my $id; # CDF identifier.

my S$status; # Returned status code.

my $lat; # Latitude value.

my @lats; # Buffer of latitude values.
my $varN; # rVariable number.

my S$recStart = 0; # Record number.

41

my S$recCount = 1;
my S$reclnterval = 1;
my @indices = (0,0);
my @counts = (1,181)
my @intervals = (1,1);

Record counts.
Record interval.
Dimension indices.
Dimension counts.
Dimension intervals.

E

H o H HH

$varN = CDF::CDFvarNum ($id, "LATITUDE");
if (varN < CDF_OK) UserStatusHandler ($varN);
for ($lat = -90; $lat <= 90; $lat ++)

$lats[90+lat] = $lat;

$status = CDF::CDFvHpPut ($id, $varN, $recStart, $recCount, $recInterval,

UserStatusHandler (“1.0°

\@indices, \@counts, \@intervals, \@]lats);
. $status) if ($status < CDF_OK);

3.26 CDFvarlnquire

CDF::CDFvarlnquire(
my $id,

my $varNum,

my $varName,

my \$dataType,

my \$numElements,
my \$recVariance,
my \@dimVariances);

out -- Completion status code.

in -- CDF identifier.

in -- rVariable number.

out -- rVariable name.

out -- Data type.

out -- Number of elements (of the data type).
out -- Record variance.

out -- Dimension variances.

H o H H O H H R

CDFvarlnquire is used to inquire about the specified rVariable. This function would normally be used before reading
rVariable values (with CDFvarGet or CDFvHpGet) to determine the data type and number of elements (of that data

type).

The arguments to CDFvarlnquire are defined as follows:

id

varNum

varName

dataType

numElements

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

The number of the rVariable to inquire. This number may be determined with a call to
CDFvarNum (see Section 3.27).

The rVariable's name. This character string must not be greater than
CDF VAR NAME LEN256 characters.

The data type of the rVariable. The data types are defined in Section 2.5.
The number of elements of the data type at each rVariable value. For character data types
(CDF_CHAR and CDF _UCHAR), this is the number of characters in the string. (Each

value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

42

recVariance The record variance. The record variances are defined in Section 2.9.

dimVariances The dimension variances. Each element of dimVariances receives the corresponding
dimension variance. The dimension variances are defined in Section 2.9. For 0-
dimensional rVariables this argument is ignored (but a placeholder is necessary).

3.26.1 Example(s)

The following example returns about an rVariable named HEAT FLUX in a CDF. Note that the rVariable name
returned by CDFvarlnquire will be the same as that passed in to CDFgetVarNum.

CDF identifier.

Returned status code.

rVariable number.

rVariable name.

Data type of the rVariable.

Number of elements (of data type).
Record variance.

Dimension variances (allocate to allow the
maximum number of dimensions).

my $id;

my S$status;

my $varNum;
my $varName;
my $dataType;
my $numElems;
my S$recVary;
my @dimVarys;

FHoH H H FH H H H R

$varNum = CDF:: CDFgetVarNum(id,"HEAT FLUX");
UserStatusHandler (“1.0”. $varNum) if ($varNum < CDF_OK);
$status = CDF::CDFvarlnquire ($id, $varNum, \$varName, \$dataType,
\$numElems, \SrecVary, \@dimVarys);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

3.27 CDFvarNum

CDF::CDFvarNum(# out-- Variable number.
my $id, # in-- CDF identifier.
my $varName); # in-- Variable name.

CDFvarNum is used to determine the number associated with a given variable name. If the variable is found,
CDFvarNum returns its variable number - which will be equal to or greater than zero (0). If an error occurs (e.g., the
variable does not exist in the CDF), an error code is returned. Error codes are less than zero (0). The returned variable
number should be used in the functions of the same variable type, rVariable or zVariable. If it is an rVariable, functions
dealing with rVariables should be used. Similarly, functions for zVariables should be used for zVariables.

The arguments to CDFvarNum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
or CDFopen.

43

varName The name of the variable to search. Variable names are case-sensitive.

3.27.1 Example(s)

In the following example CDFvarNum is used as an embedded function call when inquiring about an rVariable.

CDF identifier.

Returned status code.

rVariable number.

Variable name.

Data type of the rVariable.

Number of elements (of the data type).
Record variance.

Dimension variances.

my $id;

my S$status;

my $varNum;

my $varName;

my $dataType;

my $numElements;
my $recVariance;
my (@dimVariances;

HoH H H H H H

$varNum = CDF:: CDFvarNum(id,"LATITUDE");

UserStatusHandler (“1.0”. $varNum) if ($varNum < CDF_OK);

$status = CDF::CDFvarlnquire ($id, $varNum, \$varName, \$dataType,
\$numElements, \$recVariance, \@dimVariances);

UserStatusHandler (“2.0”. $status) if ($status < CDF_OK);

In this example the rVariable named LATITUDE was inquired. Note that if LATITUDE did not exist in the CDF, the
call to CDFgetVarNum would have returned an error code. Passing that error code to CDFvarlnquire as an rVariable
number would have resulted in CDFvarlnquire also returning an error code. Also note that the name written into
varName is already known (LATITUDE). In some cases the rVariable names will be unknown - CDFvarlnquire would
be used to determine them. CDFvarlnquire is described in Section 3.26.

3.28 CDFvarPut

CDF::CDFvarPut(# out-- Completion status code.
my $id, # in-- CDF identifier.

my $varNum, # in-- rVariable number.

my $recNum, # in-- Record number.

my \@indices, # in-- Dimension indices.

my \$value); # in-- Value.

CDFvarPut writes a single data value to an rVariable. CDFvarPut may be used to write more than one value with a
single call.

The arguments to CDFvarPut are defined as follows:

44

id

varNum

recNum

indices

value

The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

The rVariable number to which to write. This number may be determined with a call to
CDFvarNum.

The record number at which to write.
The dimension indices within the specified record at which to write. Each element of
indices specifies the corresponding dimension index. For 0-dimensional variables, this

argument is ignored (but must be present).

The data value to write.

3.28.1 Example(s)

The following example will write two data values (1% and 5" elements) of a 2-dimensional rVariable (2 by 3) named
MY _ VAR to record number 0.

my $id;

my $varNum;

my S$recNum;

my (@indices;

my $valuel, $value2;

CDF identifier.
rVariable number.

The record number.
The dimension indices.
The data values.

H o H H R

$varNum = CDF::CDFgetVarNum ($id, “MY_VAR”);
if ($varNum < CDF_OK) Quit (“....”);

$recNum = 0;

$indices[0] = 0;
$indices[1] = 0;
$valuel = 10.1;

$status = CDF::CDFvarPut ($id, $varNum, $recNum, \@indices, \$valuel);

UserStatusHandler (“1
$indices[0] = 1;
$indices[1] = 1;
$value2 =20.2;

.0”. $status) if ($status < CDF_OK);

$status = CDF::CDFvarPut ($id, $varNum, $recNum, \@indices, \$value2);

UserStatusHandler (“1

.0”. $status) if ($status < CDF_OK);

3.29 CDFvarRename

CDF::CDFvarRename(
my $id,

out-- Completion status code.
in-- CDF identifier.

45

my $varNum,

my $varName);

in -- rVariable number.
in-- New name.

CDFvarRename is used to rename an existing rVariable. A variable (rVariable or zVariable) name must be unique.

The arguments to CDFvarRename are defined as follows:

id

varNum

varName

The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate or CDFopen.

The rVariable number to rename. This number may be determined with a call to
CDFvarNum.

The new rVariable name. The maximum length of the new name is
CDF VAR NAME LEN256 characters (excluding the NUL terminator). Variable names
are case-sensitive.

3.29.1 Example(s)

In the following example the rVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDFvarNum returns a value less than zero (0) then that value is not an rVariable number but rather a warning/error

code.
my $id;
my S$status;

my $varNum;

CDF identifier.
Returned status code.
rVariable number.

$varNum = CDF::CDFvarNum ($id, "TEMPERATURE");
if ($varNum < CDF OK) {
if (fvarNum != NO_SUCH_VAR) UserStatusHandler (varNum);

}

else {

$status = CDF::CDFvarRename ($id, $varNum, "TMP");
if ($status != CDF_OK) UserStatusHandler (status);

46

Chapter 4

4 Internal Interface - CDFlib

The Internal interface consists of only one routine, CDFlib. CDFlib can be used to perform all possible operations on a
CDF. In fact, all of the Standard Interface functions are implemented using the Internal Interface. CDFlib must be used
to perform operations not possible with the Standard Interface functions. These operations would involve CDF features
added after the Standard Interface functions had been defined (e.g., specifying a single-file format for a CDF, accessing
zVariables, or specifying a pad value for an rVariable or zVariable). Note that CDFlib can also be used to perform
certain operations more efficiently than with the Standard Interface functions.

CDFlib takes a variable number of arguments that specify one or more operations to be performed (e.g., opening a
CDF, creating an attribute, or writing a variable value). The operations are performed according to the order of the
arguments. Each operation consists of a function being performed on an item. An item may be either an object (e.g., a
CDF, variable, or attribute) or a state (e.g., a CDF's format, a variable's data specification, or a CDF's current attribute).
The possible functions and corresponding items (on which to perform those functions) are described in Section 4.6.
The function prototype for CDFIib is as follows:

status = CDF::CDFlib (function, ...);

4.1 Example(s)

The easiest way to explain how to use CDFlib would be to start with a few examples. The following example shows
how a CDF would be created with the single-file format (assuming multi-file is the default).

my $id; # CDF identifier (handle).

my $status; # Status returned from CDF library.
my $CDFname = "testl"; # File name of the CDF.

my $numDims = 2; # Number of dimensions.

my @dimSizes = {100,200}; # Dimension sizes.

my $encoding = HOST ENCODING; # Data encoding.

my $majority = ROW_MAIJOR; # Variable data majority.

my $format = SINGLE FILE; # Format of CDF.

$status = CDFcreate ($CDFname, $numDims, \@dimSizes, $encoding, $majority, \$id);

47

if ($status = CDF_OK) UserStatusHandler ($status);

$status = CDF::CDFlib (PUT__, CDF_FORMAT , $format, NULL);
if ($status != CDF_OK) UserStatusHandler ($status);

The call to CDFcreate created the CDF as expected but with a format of multi-file (assuming that is the default). The
call to CDFIib is then used to change the format to single-file (which must be done before any variables are created in
the CDF).

The arguments to CDFlib in this example are explained as follows:

PUT_ The first function to be performed. In this case an item is going to be put to the “current”
CDF (anew format). PUT _is defined in cdf.h (as are all CDF constants). It was not
necessary to select a current CDF since the call to CDFcreate implicitly selected the CDF
created as the current CDF.” This is the case since all of the Standard Interface functions
actually call the Internal Interface to perform their operations.

CDF_FORMAT The item to be put. in this case it is the CDF's format.

format The actual format for the CDF. Depending on the item being put, one or more
arguments would have been necessary. In this case only one argument is necessary.

NULL This argument could have been one of two things. It could have been another item to put
(followed by the arguments required for that item) or it could have been a new function
to perform. In this case it is a new function to perform - the NULL function. NULL
indicates the end of the call to CDFlib. Specifying NULL at the end of the argument
list is required because not all compilers/operating systems provide the ability for a
called function to determine how many arguments were passed in by the calling function.

The next example shows how the same CDF could have been created using only one call to CDFlib. (The declarations
would be the same.)

$status = CDF::CDFlib (CREATE , CDF_, $CDFname, $numDims, \@dimSizes, \$id,
PUT__, CDF_ENCODING , $encoding,
CDF_MAIJORITY , $majority,
CDF_FORMAT , $format,
NULL);
if ($status = CDF_OK) UserStatusHandler ($status);

The purpose of each argument is as follows:
CREATE The first function to be performed. In this case something will be created.

CDF _ The item to be created - a CDF in this case. There are four required arguments that
must follow. When a CDF is created (with CDFlib), the format, encoding, and
majority default to values specified when your CDF distribution was built and
installed. Consult your system manager for these defaults.

" In previous releases of CDF, it was required that the current CDF be selected in each call to CDFlib. That
requirement has been eliminated. The CDF library now maintains the current CDF from one call to the next of CDFlib.

48

CDFname
numDims
dimSizes

id

PUT_

CDF_ENCODING _

encoding

CDF_MAIJORITY _

majority

CDF_FORMAT _

format

NULL _

The file name of the CDF.
The number of dimensions in the CDF.
The dimension sizes.

The identifier to be used when referencing the created CDF in subsequent
operations.

This argument could have been one of two things. Another item to create or a new
function to perform. In this case it is another function to perform - something will
be put to the CDF.

The item to be put - in this case the CDF's encoding. Note that the CDF did not
have to be selected. It was implicitly selected as the current CDF when it was
created.

The encoding to be put to the CDF.

This argument could have been one of two things. Another item to put or a new
function to perform. In this case it is another item to put - the CDF's majority.

The majority to be put to the CDF.

Once again this argument could have been either another item to put or a new
function to perform. It is another item to put - the CDF's format.

The format to be put to the CDF.
This argument could have been either another item to put or a new function to

perform. Here it is another function to perform - the NULL function that ends the
call to CDFlib.

Note that the operations are performed in the order that they appear in the argument list. The CDF had to be created
before the encoding, majority, and format could be specified (put).

4.2 Current Objects/States (Items)

The use of CDFlib requires that an application be aware of the current objects/states maintained by the CDF library.
The following current objects/states are used by the CDF library when performing operations.

CDF (object)

A CDF operation is always performed on the current CDF. The current CDF is implicitly selected whenever a
CDF is opened or created. The current CDF may be explicitly selected using the <SELECT ,CDF_># operation.
There is no current CDF until one is opened or created (which implicitly selects it) or until one is explicitly

selected.’

8 This notation is used to specify a function to be performed on an item. The syntax is <function_,item_>.
% In previous releases of CDF, it was required that the current CDF be selected in each call to CDFlib. That requirement
no longer exists. The CDF library now maintains the current CDF from one call to the next of CDFlib.

49

rVariable (object)
An rVariable operation is always performed on the current rVariable in the current CDF. For each open CDF a
current rVariable is maintained. This current rVariable is implicitly selected when an rVariable is created (in the
current CDF) or it may be explicitly selected with the <SELECT ,rVAR > or <SELECT ,rVAR NAME >
operations. There is no current rVariable in a CDF until one is created (which implicitly selects it) or until one is
explicitly selected.

zVariable (object)
A zVariable operation is always performed on the current zVariable in the current CDF. For each open CDF a
current zVariable is maintained. This current zVariable is implicitly selected when a zVariable is created (in the
current CDF) or it may be explicitly selected with the <SELECT ,zVAR > or <SELECT ,zZVAR NAME >
operations. There is no current zVariable in a CDF until one is created (which implicitly selects it) or until one is
explicitly selected.

attribute (object)
An attribute operation is always performed on the current attribute in the current CDF. For each open CDF a
current attribute is maintained. This current attribute is implicitly selected when an attribute is created (in the
current CDF) or it may be explicitly selected with the <SELECT ,ATTR > or <SELECT ,ATTR NAME >
operations. There is no current attribute in a CDF until one is created (which implicitly selects it) or until one is
explicitly selected.

gEntry number (state)
A gAttribute gEntry operation is always performed on the current gEntry number in the current CDF for the
current attribute in that CDF. For each open CDF a current gEntry number is maintained. This current gEntry
number must be explicitly selected with the <SELECT ,gENTRY > operation. (There is no implicit or default
selection of the current gEntry number for a CDF.) Note that the current gEntry number is maintained for the
CDF (not each attribute) - it applies to all of the attributes in that CDF.

rEntry number (state)
A vAttribute rEntry operation is always performed on the current rEntry number in the current CDF for the
current attribute in that CDF. For each open CDF a current rEntry number is maintained. This current rEntry
number must be explicitly selected with the <SELECT ,rENTRY > operation. (There is no implicit or default
selection of the current rEntry number for a CDF.) Note that the current rEntry number is maintained for the CDF
(not each attribute) - it applies to all of the attributes in that CDF.

zEntry number (state)
A vAttribute zEntry operation is always performed on the current zEntry number in the current CDF for the
current attribute in that CDF. For each open CDF a current zEntry number is maintained. This current zEntry
number must be explicitly selected with the <SELECT ,zZENTRY > operation. (There is no implicit or default
selection of the current zEntry number for a CDF.) Note that the current zEntry number is maintained for the CDF
(not each attribute) - it applies to all of the attributes in that CDF.

record number, rVariables (state)
An rVariable read or write operation is always performed at (for single and multiple variable reads and writes) or
starting at (for hyper reads and writes) the current record number for the rVariables in the current CDF. When a
CDF is opened or created, the current record number for its rVariables is initialized to zero (0). It may then be
explicitly selected using the <SELECT ,rVARs RECNUMBER > operation. Note that the current record
number for rVariables is maintained for a CDF (not each rVariable) - it applies to all of the rVariables in that
CDF.

record count, rVariables (state)
An rVariable hyper read or write operation is always performed using the current record count for the rVariables
in the current CDF. When a CDF is opened or created, the current record count for its rVariables is initialized to
one (1). It may then be explicitly selected using the <SELECT ,rVARs RECCOUNT > operation. Note that the
current record count for rVariables is maintained for a CDF (not each rVariable) - it applies to all of the
rVariables in that CDF.

50

record interval, rVariables (state)
An rVariable hyper read or write operation is always performed using the current record interval for the
rVariables in the current CDF. When a CDF is opened or created, the current record interval for its rVariables is
initialized to one (1). It may then be explicitly selected using the <SELECT ,rVARs RECINTERVAL >
operation. Note that the current record interval for rVariables is maintained for a CDF (not each rVariable) - it
applies to all of the rVariables in that CDF.

dimension indices, rVariables (state)
An rVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current dimension indices for the rVariables in the current CDF. When a CDF is opened or
created, the current dimension indices for its rVariables are initialized to zeroes (0,0,...). They may then be
explicitly selected using the <SELECT ,rVARs DIMINDICES > operation. Note that the current dimension
indices for rVariables are maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that
CDF. For 0-dimensional rVariables the current dimension indices are not applicable.

dimension counts, rVariables (state)
An rVariable hyper read or write operation is always performed using the current dimension counts for the
rVariables in the current CDF. When a CDF is opened or created, the current dimension counts for its rVariables
are initialized to the dimension sizes of the rVariables (which specifies the entire array). They may then be
explicitly selected using the <SELECT ,rVARs DIMCOUNTS > operation. Note that the current dimension
counts for rVariables are maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that
CDF. For 0-dimensional rVariables the current dimension counts are not applicable.

dimension intervals, rVariables (state)
An rVariable hyper read or write operation is always performed using the current dimension intervals for the
rVariables in the current CDF. When a CDF is opened or created, the current dimension intervals for its
rVariables are initialized to ones (1,1,...). They may then be explicitly selected using the
<SELECT ,rVARs DIMINTERVALS > operation. Note that the current dimension intervals for rVariables are
maintained for a CDF (not each rVariable) - they apply to all of the rVariables in that CDF. For 0-dimensional
rVariables the current dimension intervals are not applicable.

sequential value, rVariable (state)
An rVariable sequential read or write operation is always performed at the current sequential value for that
rVariable. When an rVariable is created (or for each rVariable in a CDF being opened), the current sequential
value is set to the first physical value (even if no physical values exist yet). It may then be explicitly selected
using the <SELECT ,rVAR SEQPOS_ > operation. Note that a current sequential value is maintained for each
rVariable in a CDF.

record number, zVariable (state)

A zVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current record number for the current zVariable in the current CDF. A multiple variable read
or write operation is performed at the current record number of each of the zVariables involved. (The record
numbers do not have to be the same.) When a zVariable is created (or for each zVariable in a CDF being
opened), the current record number for that zVariable is initialized to zero (0). It may then be explicitly selected
using the <SELECT ,zZVAR RECNUMBER > operation (which only affects the current zVariable in the current
CDF). Note that a current record number is maintained for each zVariable in a CDF.

record count, zVariable (state)
A zVariable hyper read or write operation is always performed using the current record count for the current
zVariable in the current CDF. When a zVariable created (or for each zVariable in a CDF being opened), the
current record count for that zVariable is initialized to one (1). It may then be explicitly selected using the
<SELECT ,zZVAR RECCOUNT > operation (which only affects the current zVariable in the current CDF). Note
that a current record count is maintained for each zVariable in a CDF.

record interval, zVariable (state)

51

A zVariable hyper read or write operation is always performed using the current record interval for the current
zVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened), the
current record interval for that zVariable is initialized to one (1). It may then be explicitly selected using the
<SELECT ,zVAR RECINTERVAL > operation (which only affects the current zVariable in the current CDF).
Note that a current record interval is maintained for each zVariable in a CDF.

dimension indices, zVariable (state)

A zVariable read or write operation is always performed at (for single reads and writes) or starting at (for hyper
reads and writes) the current dimension indices for the current zVariable in the current CDF. When a zVariable is
created (or for each zVariable in a CDF being opened), the current dimension indices for that zVariable are
initialized to zeroes (0,0,...). They may then be explicitly selected using the <SELECT ,zZVAR DIMINDICES >
operation (which only affects the current zVariable in the current CDF). Note that current dimension indices are
maintained for each zVariable in a CDF. For 0-dimensional zVariables the current dimension indices are not
applicable.

dimension counts, zVariable (state)

A zVariable hyper read or write operation is always performed using the current dimension counts for the current
zVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened), the
current dimension counts for that zVariable are initialized to the dimension sizes of that zVariable (which
specifies the entire array). They may then be explicitly selected using the <SELECT ,zZVAR DIMCOUNTS >
operation (which only affects the current zVariable in the current CDF). Note that current dimension counts are
maintained for each zVariable in a CDF. For 0-dimensional zVariables the current dimension counts are not
applicable.

dimension intervals, zVariable (state)

A zVariable hyper read or write operation is always performed using the current dimension intervals for the
current zVariable in the current CDF. When a zVariable is created (or for each zVariable in a CDF being opened),
the current dimension intervals for that zVariable are initialized to ones (1,1,...). They may then be explicitly
selected using the <SELECT ,zZVAR DIMINTERVALS > operation (which only affects the current zVariable in
the current CDF). Note that current dimension intervals are maintained for each zVariable in a CDF. For 0-
dimensional zVariables the current dimension intervals are not applicable.

sequential value, zVariable (state)

A zVariable sequential read or write operation is always performed at the current sequential value for that
zVariable. When a zVariable is created (or for each zVariable in a CDF being opened), the current sequential
value is set to the first physical value (even if no physical values exist yet). It may then be explicitly selected
using the <SELECT ,zZVAR SEQPOS_> operation. Note that a current sequential value is maintained for each
zVariable in a CDF.

status code (state)

4.3

When inquiring the explanation of a CDF status code, the text returned is always for the current status code. One
current status code is maintained for the entire CDF library (regardless of the number of open CDFs). The current
status code may be selected using the <SELECT ,CDF STATUS > operation. There is no default current status
code. Note that the current status code is NOT the status code from the last operation performed.'°

Returned Status

CDFlib returns a status code. Since more than one operation may be performed with a single call to CDFlib, the
following rules apply:

10 The CDF library now maintains the current status code from one call to the next of CDFlib.

52

1. The first error detected aborts the call to CDFlib, and the corresponding status code is returned.

2. In the absence of any errors, the status code for the last warning detected is returned.

3. In the absence of any errors or warnings, the status code for the last informational condition is returned.
4. In the absence of any errors, warnings, or informational conditions, CDF _OK is returned.

Chapter 5 explains how to interpret status codes. Appendix A lists the possible status codes and the type of each: error,
warning, or informational.

4.4 Indentation/Style

Indentation should be used to make calls to CDFlib readable. The following example shows a call to CDFlib using
proper indentation.

$status = CDF::CDFlib (CREATE , CDF , $CDFname, $numDims, \@dimSizes, \$id,
PUT , CDF FORMAT , $format,
CDF_MAJORITY , $majority,
CREATE , ATTR , $attrName, $scope, \$attrNum,
rVAR , $varName, $dataType, $numElements,
$recVary, \@dimVarys, \$varNum,
NULL);

Note that the functions (CREATE , PUT , and NULL) are indented the same and that the items (CDF ,
CDF FORMAT , CDF MAJORITY , ATTR , and rVAR) are indented the same under their corresponding
functions.

The following example shows the same call to CDFlib without the proper indentation.
$status = CDF::CDFlib (CREATE , CDF_, $CDFname, $numDims, \@dimSizes, \$id, PUT _,
CDF_FORMAT , $format, CDF_MAJORITY , $majority, CREATE ,
ATTR , $attrName, $scope, \$attrNum, rVAR , $varName, $dataType,
$numElements, $recVary, \@dimVarys, \$varNum, NULL);

The need for proper indentation to ensure the readability of your applications should be obvious.

4.5 Syntax

CDFIib takes a variable number of arguments. There must always be at least one argument. The maximum number of
arguments is not limited by CDF but rather by the C compiler and operating system being used. Under normal
circumstances that limit would never be reached (or even approached). Note also that a call to CDFlib with a large
number of arguments can always be broken up into two or more calls to CDFlib with fewer arguments.

The syntax for CDFlib is as follows:

$status = CDF::CDFlib (fncl, iteml, argl, arg2, ...argN,
item2, argl, arg2, ...argN,

53

itemN, argl, arg2, ...argN,
fnc2, iteml, argl, arg2, ...argN,
item2, argl, arg2, ...argN,

itemN, argl, arg2, ...argN,

fncN, iteml, argl, arg2, ...argN,
item2, argl, arg2, ...argN,

itemN, argl, arg2, ...argN,
NULL);
where fncx is a function to perform, itemx is the item on which to perform the function, and argx is a required

argument for the operation. The NULL_function must be used to end the call to CDFlib. The completion status, status,
is returned.

4.6 Operations...

An operation consists of a function being performed on an item. The supported functions are as follows:

CLOSE _ Used to close an item.

CONFIRM _ Used to confirm the value of an item.

CREATE _ Used to create an item.

DELETE Used to delete an item.

GET _ Used to get (read) something from an item.

NULL Used to signal the end of the argument list of an internal interface call.
OPEN _ Used to open an item.

PUT_ Used to put (write) something to an item.

SELECT _ Used to select the value of an item.

For each function the supported items, required arguments, and required preselected objects/states are listed below.
The required preselected objects/states are those objects/states that must be selected (typically with the SELECT
function) before a particular operation may be performed. Note that some of the required preselected objects/states
have default values as described at Section 4.2.

<CLOSE _,CDF >
Closes the current CDF. When the CDF is closed, there is no longer a current CDF. A CDF must be closed to
ensure that it will be properly written to disk.
There are no required arguments.

The only required preselected object/state is the current CDF.

<CLOSE_,rVAR >
Closes the current rVariable (in the current CDF). This operation is only applicable to multi-file CDFs.

There are no required arguments.

54

The required preselected objects/states are the current CDF and its current rVariable.

<CLOSE _,zVAR >
Closes the current zVariable (in the current CDF). This operation is only applicable to multi-file CDFs.

There are no required arguments.
The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,ATTR_>
Confirms the current attribute (in the current CDF). Required arguments are as follows:

out: \$attrNum
Attribute number.
The only required preselected object/state is the current CDF.
<CONFIRM_,ATTR_EXISTENCE >
Confirms the existence of the named attribute (in the current CDF). If the attribute does not exist, an error code
will be returned. in any case the current attribute is not affected. Required arguments are as follows:

in: \$attrName

The attribute name. This may be at most CDF_ ATTR NAME LEN256 characters (excluding the
NUL terminator).

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF >
Confirms the current CDF. Required arguments are as follows:

out: \$id
The current CDF.
There are no required preselected objects/states.
<CONFIRM_,CDF_ACCESS >
Confirms the accessibility of the current CDF. If a fatal error occurred while accessing the CDF the error code
NO_MORE_ ACCESS will be returned. If this is the case, the CDF should still be closed.
There are no required arguments.
The only required preselected object/state is the current CDF.
<CONFIRM_,CDF_CACHESIZE >
Confirms the number of cache buffers being used for the dotCDF file (for the current CDF). The Concepts
chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are
as follows:

out: \$numBuffers

The number of cache buffers being used.

55

The only required preselected object/state is the current CDF.

<CONFIRM_,CDF _DECODING >
Confirms the decoding for the current CDF. Required arguments are as follows:

out: \$decoding
The decoding. The decodings are described in Section 2.7.
The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_NAME >
Confirms the file name of the current CDF. Required arguments are as follows:

out: \$CDFname
File name of the CDF.
The only required preselected object/state is the current CDF.

<CONFIRM_,CDF_NEGtoPOSfp0_MODE_>
Confirms the -0.0 to 0.0 mode for the current CDF. Required arguments are as follows:

out: \$mode
The -0.0 to 0.0 mode. The -0.0 to 0.0 modes are described in Section 2.15.
The only required preselected object/state is the current CDF.

<CONFIRM_,CDF _READONLY MODE >
Confirms the read-only mode for the current CDF. Required arguments are as follows:

out: \$mode
The read-only mode. The read-only modes are described in Section 2.13.
The only required preselected object/state is the current CDF.
<CONFIRM_,CDF_STATUS >
Confirms the current status code. Note that this is not the most recently returned status code but rather the most
recently selected status code (see the <SELECT ,CDF_STATUS > operation).
Required arguments are as follows:
out: \$status
The status code.

The only required preselected object/state is the current status code.

<CONFIRM_,zZMODE >
Confirms the zMode for the current CDF. Required arguments are as follows:

out: \$mode

The zMode. The zModes are described in Section 2.14.

56

The only required preselected object/state is the current CDF.
<CONFIRM_,COMPRESS CACHESIZE >
Confirms the number of cache buffers being used for the compression scratch file (for the current CDF). The
Concepts chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required
arguments are as follows:
out: \$numBuffers
The number of cache buffers being used.
The only required preselected object/state is the current CDF.
<CONFIRM_,CUREENTRY_ EXISTENCE >
Confirms the existence of the gEntry at the current gEntry number for the current attribute (in the current CDF).
If the gEntry does not exist, an error code will be returned.
There are no required arguments.
The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<CONFIRM ,CURrENTRY_EXISTENCE >
Confirms the existence of the rEntry at the current rEntry number for the current attribute (in the current CDF).
If the rEntry does not exist, an error code will be returned.
There are no required arguments.
The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<CONFIRM ,CURzENTRY_ EXISTENCE >
Confirms the existence of the zEntry at the current zEntry number for the current attribute (in the current CDF).
If the zEntry does not exist, an error code will be returned.
There are no required arguments.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM _,gENTRY >
Confirms the current gEntry number for all attributes in the current CDF. Required arguments are as follows:

out: \$entryNum
The gEntry number.
The only required preselected object/state is the current CDF.

<CONFIRM_,gENTRY EXISTENCE >

57

Confirms the existence of the specified gEntry for the current attribute (in the current CDF). If the gEntry does
not exist, an error code will be returned. in any case the current gEntry number is not affected. Required
arguments are as follows:
in: $entryNum
The gEntry number.
The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<CONFIRM_,rENTRY >
Confirms the current rEntry number for all attributes in the current CDF. Required arguments are as follows:

out: \$entryNum
The rEntry number.
The only required preselected object/state is the current CDF.
<CONFIRM_,tENTRY_EXISTENCE >

Confirms the existence of the specified rEntry for the current attribute (in the current CDF). If the rEntry does
not exist, An error code will be returned. in any case the current rEntry number is not affected. Required
arguments are as follows:

in: $entryNum

The rEntry number.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM ,rVAR >
Confirms the current rVariable (in the current CDF). Required arguments are as follows:

out: \$varNum
rVariable number.
The only required preselected object/state is the current CDF.
<CONFIRM_,r'VAR_CACHESIZE >
Confirms the number of cache buffers being used for the current rVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:
out: \$numBuffers
The number of cache buffers being used.

The required preselected objects/states are the current CDF and its current rVariable.

<CONFIRM_,r'VAR_EXISTENCE >

58

Confirms the existence of the named rVariable (in the current CDF). If the rVariable does not exist, an error
code will be returned. in any case the current rVariable is not affected. Required arguments are as follows:

in: $varName

The rVariable name. This may be at most CDF_ VAR NAME LEN256 characters (excluding the
NUL terminator).

The only required preselected object/state is the current CDF.
<CONFIRM_,rVAR_PADVALUE_>
Confirms the existence of an explicitly specified pad value for the current rVariable (in the current CDF). If An
explicit pad value has not been specified, the informational status code NO PADVALUE _SPECIFIED will be
returned.
There are no required arguments.
The required preselected objects/states are the current CDF and its current rVariable.
<CONFIRM_,rVAR_RESERVEPERCENT >
Confirms the reserve percentage being used for the current rVariable (of the current CDF). This operation is
only applicable to compressed rVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:
out: \$percent
The reserve percentage.
The required preselected objects/states are the current CDF and its current rVariable.
<CONFIRM_,rVAR_SEQPOS >
Confirms the current sequential value for sequential access for the current rVariable (in the current CDF). Note
that a current sequential value is maintained for each rVariable individually. Required arguments are as follows:
out: \$recNum
Record number.

out: \@indices

Dimension indices. Each element of indices receives the corresponding dimension index. For O-
dimensional rVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current rVariable.
<CONFIRM_,rVARs DIMCOUNTS_>
Confirms the current dimension counts for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
out: \@counts

Dimension counts. Each element of counts receives the corresponding dimension count.

The only required preselected object/state is the current CDF.

59

<CONFIRM_,rVARs_DIMINDICES >
Confirms the current dimension indices for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
out: \@indices
Dimension indices. Each element of indices receives the corresponding dimension index.
The only required preselected object/state is the current CDF.
<CONFIRM_,rVARs_DIMINTERVALS >
Confirms the current dimension intervals for all rVariables in the current CDF. For 0-dimensional rVariables
this operation is not applicable. Required arguments are as follows:
out: \@intervals
Dimension intervals. Each element of intervals receives the corresponding dimension interval.

The only required preselected object/state is the current CDF.

<CONFIRM_,rVARs RECCOUNT >
Confirms the current record count for all rVariables in the current CDF. Required arguments are as follows:

out: \$recCount
Record count.
The only required preselected object/state is the current CDF.

<CONFIRM_,rVARs RECINTERVAL >
Confirms the current record interval for all rVariables in the current CDF. Required arguments are as follows:

out: \$recInterval
Record interval.
The only required preselected object/state is the current CDF.

<CONFIRM_,rVARs RECNUMBER >
Confirms the current record number for all rVariables in the current CDF. Required arguments are as follows:

out: \$recNum
Record number.
The only required preselected object/state is the current CDF.
<CONFIRM_,STAGE CACHESIZE >
Confirms the number of cache buffers being used for the staging scratch file (for the current CDF). The
Concepts chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required
arguments are as follows:

out: \$numBuffers

The number of cache buffers being used.

60

The only required preselected object/state is the current CDF.

<CONFIRM_,zZENTRY >
Confirms the current zEntry number for all attributes in the current CDF. Required arguments are as follows:

out: \$entryNum
The zEntry number.
The only required preselected object/state is the current CDF.
<CONFIRM_,zENTRY_EXISTENCE_>

Confirms the existence of the specified zEntry for the current attribute (in the current CDF). If the zEntry does
not exist, an error code will be returned. in any case the current zEntry number is not affected. Required
arguments are as follows:

in: $entryNum

The zEntry number.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<CONFIRM_,zVAR >
Confirms the current zVariable (in the current CDF). Required arguments are as follows:

out: \$varNum
zVariable number.
The only required preselected object/state is the current CDF.
<CONFIRM_,zVAR_CACHESIZE >
Confirms the number of cache buffers being used for the current zVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:
out: \$numBuffers
The number of cache buffers being used.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zVAR_DIMCOUNTS_>
Confirms the current dimension counts for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:
out: \@counts
Dimension counts. Each element of counts receives the corresponding dimension count.

The required preselected objects/states are the current CDF and its current zVariable.

<CONFIRM_,zVAR_DIMINDICES_>

61

Confirms the current dimension indices for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:

out: \@indices
Dimension indices. Each element of indices receives the corresponding dimension index.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zVAR_DIMINTERVALS_>
Confirms the current dimension intervals for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:
out: \@intervals
Dimension intervals. Each element of intervals receives the corresponding dimension interval.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zVAR_EXISTENCE >
Confirms the existence of the named zVariable (in the current CDF). If the zVariable does not exist, an error
code will be returned. in any case the current zVariable is not affected. Required arguments are as follows:

in: $varName

The zVariable name. This may be at most CDF_ VAR NAME LEN256 characters (excluding the
NUL terminator).

The only required preselected object/state is the current CDF.
<CONFIRM_,zVAR PADVALUE >
Confirms the existence of an explicitly specified pad value for the current zVariable (in the current CDF). If An
explicit pad value has not been specified, the informational status code NO PADVALUE _SPECIFIED will be
returned.
There are no required arguments.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zZVAR RECCOUNT >
Confirms the current record count for the current zVariable in the current CDF. Required arguments are as
follows:
out: \$recCount
Record count.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zVAR RECINTERVAL >
Confirms the current record interval for the current zVariable in the current CDF. Required arguments are as
follows:

out: \$recInterval

Record interval.

62

The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zZVAR RECNUMBER >
Confirms the current record number for the current zVariable in the current CDF. Required arguments are as
follows:
out: \$recNum
Record number.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zVAR_RESERVEPERCENT >
Confirms the reserve percentage being used for the current zVariable (of the current CDF). This operation is
only applicable to compressed zVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:
out: \$percent
The reserve percentage.
The required preselected objects/states are the current CDF and its current zVariable.
<CONFIRM_,zVAR_SEQPOS_>
Confirms the current sequential value for sequential access for the current zVariable (in the current CDF). Note
that a current sequential value is maintained for each zVariable individually. Required arguments are as follows:
out: \$recNum
Record number.

out: \@indices

Dimension indices. Each element of indices receives the corresponding dimension index. For 0-
dimensional zVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current zVariable.

<CREATE ,ATTR >
A new attribute will be created in the current CDF. An attribute with the same name must not already exist in
the CDF. The created attribute implicitly becomes the current attribute (in the current CDF). Required
arguments are as follows:

in: $attrName

Name of the attribute to be created. This can be at most CDF_ ATTR NAME LEN256 characters
(excluding the NUL terminator). Attribute names are case-sensitive.

in: $scope
Scope of the new attribute. Specify one of the scopes described in Section 2.12.

out: \$attrNum

63

Number assigned to the new attribute. This number must be used in subsequent CDF function calls
when referring to this attribute. An existing attribute's number may also be determined with the
<GET_,ATTR NUMBER > operation.

The only required preselected object/state is the current CDF.

<CREATE_,CDF >
A new CDF will be created. It is illegal to create a CDF that already exists. The created CDF implicitly
becomes the current CDF. Required arguments are as follows:

in: $CDFname

File name of the CDF to be created. (Do not append an extension.) This can be at most
CDF PATHNAME LEN characters (excluding the NUL terminator). A CDF file name may contain
disk and directory specifications that conform to the conventions of the operating system being used
(including logical names on OpenVMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.
in: $numDims

Number of dimensions for the rVariables. This can be as few as zero (0) and at most
CDF _MAX DIMS. Note that this must be specified even if the CDF will contain only zVariables.

in: \@dimSizes

Dimension sizes for the rVariables. Each element of dimSizes specifies the corresponding dimension
size. Each dimension size must be greater than zero (0). For 0-dimensional rVariables this argument
is ignored (but must be present). Note that this must be specified even if the CDF will contain only
zVariables.

out: \$id
CDF identifier to be used in subsequent operations on the CDF.
A CDF is created with the default format, encoding, and variable majority as specified in the configuration file
of your CDF distribution. Consult your system manager to determine these defaults. These defaults can then be
changed with the corresponding <PUT ,CDF FORMAT >, <PUT ,CDF ENCODING >, and
<PUT ,CDF_MAIJORITY > operations if necessary.

A CDF must be closed with the <CLOSE ,CDF > operation to ensure that the CDF will be correctly written to
disk.

There are no required preselected objects/states.

<CREATE VAR >
A new rVariable will be created in the current CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF. The created rVariable implicitly becomes the current rVariable (in the
current CDF). Required arguments are as follows:

in: $varName

Name of the rVariable to be created. This can be at most CDF_ VAR NAME LEN256 characters
(excluding the NUL). Variable names are case-sensitive.

in: $dataType

64

in:

in:

in:

Data type of the new rVariable. Specify one of the data types described in Section 2.5.

$numElements
Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value of the variable. For the non-character data types this must be one (1) - multiple elements
are not allowed for non-character data types.

$recVary
Record variance. Specify one of the variances described in Section 2.9.

\@dimVarys
Dimension variances. Each element of dimVarys specifies the corresponding dimension variance. For

each dimension specify one of the variances described in Section 2.9. For 0-dimensional rVariables
this argument is ignored (but must be present).

out: \$varNum

Number assigned to the new rVariable. This number must be used in subsequent CDF function calls
when referring to this rVariable. An existing rVariable's number may also be determined with the
<GET ,rVAR NUMBER > operation.

The only required preselected object/state is the current CDF.

<CREATE ,zVAR >
A new zVariable will be created in the current CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF. The created zVariable implicitly becomes the current zVariable (in the
current CDF). Required arguments are as follows:

in:

in:

in:

$varName

Name of the zVariable to be created. This can be at most CDF_ VAR NAME LEN256 characters
(excluding the NUL terminator). Variable names are case-sensitive.

$dataType
Data type of the new zVariable. Specify one of the data types described in Section 2.5.

$numElements
Number of elements of the data type at each value. For character data types (CDF _CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value of the variable. For the non-character data types this must be one (1) - multiple elements
are not allowed for non-character data types.

$numDims

Number of dimensions for the zVariable. This may be as few as zero and at most CDF MAX DIMS.

\@dimSizes

65

The dimension sizes. Each element of dimSizes specifies the corresponding dimension size. Each
dimension size must be greater than zero (0). For a 0-dimensional zVariable this argument is ignored
(but must be present).
in: $recVary
Record variance. Specify one of the variances described in Section 2.9.
in: \@dimVarys
Dimension variances. Each element of dimVarys specifies the corresponding dimension variance. For
each dimension specify one of the variances described in Section 2.9. For a 0-dimensional zVariable
this argument is ignored (but must be present).
out: \$varNum
Number assigned to the new zVariable. This number must be used in subsequent CDF function calls
when referring to this zVariable. An existing zVariable's number may also be determined with the
<GET_,zVAR_NUMBER > operation.
The only required preselected object/state is the current CDF.
<DELETE_,ATTR >
Deletes the current attribute (in the current CDF). Note that the attribute's entries are also deleted. The attributes,
which numerically follow the attribute being deleted, are immediately renumbered. When the attribute is
deleted, there is no longer a current attribute.
There are no required arguments.
The required preselected objects/states are the current CDF and its current attribute.
<DELETE_,CDF >
Deletes the current CDF. A CDF must be opened before it can be deleted. When the CDF is deleted, there is no
longer a current CDF.
There are no required arguments.
The only required preselected object/state is the current CDF.
<DELETE ,gENTRY >
Deletes the gEntry at the current gEntry number of the current attribute (in the current CDF). Note that this does
not affect the current gEntry number.
There are no required arguments.
The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<DELETE ,rENTRY >
Deletes the rEntry at the current rEntry number of the current attribute (in the current CDF). Note that this does
not affect the current rEntry number.

There are no required arguments.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

66

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<DELETE_,rVAR >
Deletes the current rVariable (in the current CDF). Note that the rVariable's corresponding rEntries are also
deleted (from each vAttribute). The rVariables, which numerically follow the rVariable being deleted, are
immediately renumbered. The rEntries, which numerically follow the rEntries being deleted, are also
immediately renumbered. When the rVariable is deleted, there is no longer a current rVariable. NOTE: This
operation is only allowed on single-file CDFs.

There are no required arguments.
The required preselected objects/states are the current CDF and its current rVariable.
<DELETE ,rVAR RECORDS >
Deletes the specified range of records from the current rVariable (in the current CDF). If the rVariable has
sparse records a gap of missing records will be created. If the rVariable does not have sparse records, the
records following the range of deleted records are immediately renumbered beginning with the number of the
first deleted record. NOTE: This operation is only allowed on single-file CDFs.
Required arguments are as follows:
in: $firstRecord
The record number of the first record to be deleted.
in: $lastRecord
The record number of the last record to be deleted.
The required preselected objects/states are the current CDF and its current rVariable.
<DELETE ,zENTRY >
Deletes the zEntry at the current zEntry number of the current attribute (in the current CDF). Note that this does
not affect the current zEntry number.
There are no required arguments.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<DELETE_,zZVAR_>
Deletes the current zVariable (in the current CDF). Note that the zVariable's corresponding zEntries are also
deleted (from each vAttribute). The zVariables, which numerically follow the zVariable being deleted, are
immediately renumbered. The rEntries, which numerically follow the rEntries being deleted, are also
immediately renumbered. When the zVariable is deleted, there is no longer a current zVariable. NOTE: This
operation is only allowed on single-file CDFs.
There are no required arguments.
The required preselected objects/states are the current CDF and its current rVariable.
<DELETE ,zZVAR_RECORDS >

Deletes the specified range of records from the current zVariable (in the current CDF). If the zVariable has
sparse records a gap of missing records will be created. If the zVariable does not have sparse records, the

67

records following the range of deleted records are immediately renumbered beginning with the number of the
first deleted record. NOTE: This operation is only allowed on single-file CDFs. Required arguments are as
follows:
in: $firstRecord
The record number of the first record to be deleted.
in: $lastRecord
The record number of the last record to be deleted.
The required preselected objects/states are the current CDF and its current zVariable.
<GET ,ATTR_MAXgENTRY >
Inquires the maximum gEntry number used for the current attribute (in the current CDF). This does not
necessarily correspond with the number of gEntries for the attribute. Required arguments are as follows:

out: \$maxEntry

The maximum gEntry number for the attribute. If no gEntries exist, then a value of —1 will be passed
back.

The required preselected objects/states are the current CDF and its current attribute.
NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<GET ,ATTR_MAXrENTRY >
Inquires the maximum rEntry number used for the current attribute (in the current CDF). This does not
necessarily correspond with the number of rEntries for the attribute. Required arguments are as follows:

out: \$maxEntry

The maximum rEntry number for the attribute. If no rEntries exist, then a value of —1 will be passed
back.

The required preselected objects/states are the current CDF and its current attribute.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET ,ATTR_MAXzENTRY >
Inquires the maximum zEntry number used for the current attribute (in the current CDF). This does not
necessarily correspond with the number of zEntries for the attribute. Required arguments are as follows:

out: \$maxEntry

The maximum zEntry number for the attribute. If no zEntries exist, then a value of —1 will be passed
back.

The required preselected objects/states are the current CDF and its current attribute.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,ATTR_NAME >
Inquires the name of the current attribute (in the current CDF). Required arguments are as follows:

68

out: \$attrName
Attribute name.
The required preselected objects/states are the current CDF and its current attribute.
<GET ,ATTR_NUMBER >
Gets the number of the named attribute (in the current CDF). Note that this operation does not select the current
attribute. Required arguments are as follows:

in: $attrName

Attribute name. This may be at most CDF_ ATTR NAME LEN256 characters (excluding the NUL
terminator).

out: \$attrNum
The attribute number.
The only required preselected object/state is the current CDF.
<GET_,ATTR_NUMGgENTRIES >
Inquires the number of gEntries for the current attribute (in the current CDF). This does not necessarily
correspond with the maximum gEntry number used. Required arguments are as follows:
out: \$numEntries
The number of gEntries for the attribute.
The required preselected objects/states are the current CDF and its current attribute.
NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<GET_,ATTR_NUMrIENTRIES >
Inquires the number of rEntries for the current attribute (in the current CDF). This does not necessarily
correspond with the maximum rEntry number used. Required arguments are as follows:
out: \$numEntries
The number of rEntries for the attribute.
The required preselected objects/states are the current CDF and its current attribute.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET_,ATTR_NUMZzENTRIES >
Inquires the number of zEntries for the current attribute (in the current CDF). This does not necessarily
correspond with the maximum zEntry number used. Required arguments are as follows:
out: \$numEntries
The number of zEntries for the attribute.

The required preselected objects/states are the current CDF and its current attribute.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

69

<GET_,ATTR _SCOPE >
Inquires the scope of the current attribute (in the current CDF). Required arguments are as follows:

out: \$scope
Attribute scope. The scopes are described in Section 2.12.
The required preselected objects/states are the current CDF and its current attribute.

<GET_,CDF_CHECKSUM__ >
Inquires the checksum mode of the current CDF. Required arguments are as follows:

out: \$checksum

The checksum mode of the current CDF (NO_CHECKSUM or MD5 CHECKSUM). The checksum
mode is described in Section 2.19.

The required preselected objects/states is the current CDF.
<GET_,CDF_COMPRESSION >
Inquires the compression type/parameters and compression percentage of the current CDF. This refers to the
compression of the CDF - not of any compressed variables. The compression percentage is the result of the
compressed file size divided by its original, uncompressed file size.!! Required arguments are as follows:
out: \$cType
The compression type. The types of compressions are described in Section 2.10.
out: \@cParms
The compression parameters. The compression parameters are described in Section 2.10.

out: \$cPct

If compressed, the percentage of the uncompressed size of the CDF needed to store the compressed
CDF.

The only required preselected object/state is the current CDF.
<GET _,CDF_COPYRIGHT >
Reads the Copyright notice for the CDF library that created the current CDF. Required arguments are as
follows:
out: \$Copyright
CDF Copyright text.

The only required preselected object/state is the current CDF.

<GET_,CDF_ENCODING >
Inquires the data encoding of the current CDF. Required arguments are as follows:

! The compression ratio is (100 — compression percentage): the lower the compression percentage, the better the
compression ratio.

70

out: \$encoding
Data encoding. The encodings are described in Section 2.6.
The only required preselected object/state is the current CDF.

<GET _,CDF_FORMAT >
Inquires the format of the current CDF. Required arguments are as follows:

out: \$format
CDF format. The formats are described in Section 2.4.
The only required preselected object/state is the current CDF.
<GET ,CDF_INCREMENT >
Inquires the incremental number of the CDF library that created the current CDF. Required arguments are as
follows:
out: \$increment
Incremental number.
The only required preselected object/state is the current CDF.
<GET_,CDF_INFO >
Inquires the compression type/parameters of a CDF without having to open the CDF. This refers to the
compression of the CDF - not of any compressed variables. Required arguments are as follows:
in: $CDFname
File name of the CDF to be inquired. (Do not append an extension.) This can be at most
CDF PATHNAME LEN characters (excluding the NUL terminator). A CDF file name may contain
disk and directory specifications that conform to the conventions of the operating system being used
(including logical names on OpenVMS systems and environment variables on UNIX systems).
UNIX: File names are case-sensitive.
out: \$cType
The CDF compression type. The types of compressions are described in Section 2.10.
out: \@cParms
The compression parameters. The compression parameters are described in Section 2.10.
out: \$cSize
If compressed, size in bytes of the dotCDF file. If not compressed, set to zero (0).

out: \$uSize

If compressed, size in bytes of the dotCDF file when decompressed. If not compressed, size in bytes
of the dotCDF file.

There are no required preselected objects/states.

71

<GET_,CDF_LEAPSECONDLASTUPDATED >
Inquires the variable lastupdated of the current CDF. Required arguments are as follows:

out: \$lastupdated
The last entry (date) that a new leap second was added to the leap second table on which the CDF is
based upon. The value is of YYYYMMDD form. It can also be -1 (from older CDFs) or zero (0) if
the table is not used.

The only required preselected object/state is the current CDF.

<GET_,CDF_MAJORITY >
Inquires the variable majority of the current CDF. Required arguments are as follows:

out: \$majority
Variable majority. The majorities are described in Section 2.8.
The only required preselected object/state is the current CDF.

<GET_,CDF_NUMATTRS >
Inquires the number of attributes in the current CDF. Required arguments are as follows:

out: \$numAttrs
Number of attributes.
The only required preselected object/state is the current CDF.

<GET_,CDF NUMgATTRS >
Inquires the number of gAttributes in the current CDF. Required arguments are as follows:

out: \$numAttrs
Number of gAttributes.
The only required preselected object/state is the current CDF.
<GET ,CDF_NUMrVARS >
Inquires the number of rVariables in the current CDF. Required arguments are as follows:
out: \$numVars
Number of rVariables.
The only required preselected object/state is the current CDF.

<GET _,CDF_NUMVATTRS >
Inquires the number of vAttributes in the current CDF. Required arguments are as follows:

out: \$numAttrs

Number of vAttributes.

72

The only required preselected object/state is the current CDF.

<GET ,CDF_NUMzVARS >
Inquires the number of zVariables in the current CDF. Required arguments are as follows:

out: \$numVars
Number of zVariables.
The only required preselected object/state is the current CDF.

<GET ,CDF RELEASE >
Inquires the release number of the CDF library that created the current CDF. Required arguments are as follows:

out: \$release
Release number.
The only required preselected object/state is the current CDF.
<GET_,CDF_VERSION_>
Inquires the version number of the CDF library that created the current CDF. Required arguments are as
follows:
out: \$version
Version number.

The only required preselected object/state is the current CDF.

<GET_,DATATYPE_ SIZE >
Inquires the size (in bytes) of an element of the specified data type. Required arguments are as follows:

in: $dataType
Data type.
out: \$numBytes
Number of bytes per element.
There are no required preselected objects/states.
<GET_,gENTRY_ DATA_>

Reads the gEntry data value from the current attribute at the current gEntry number (in the current CDF).
Required arguments are as follows:

out: \$value

Value. This buffer must be large to hold the value. The value is read from the CDF and placed in the
variable value.

The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

73

<GET ,gENTRY DATATYPE >
Inquires the data type of the gEntry at the current gEntry number for the current attribute (in the current CDF).
Required arguments are as follows:
out: \$dataType
Data type. The data types are described in Section 2.5.
The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<GET_,gENTRY _NUMELEMS_>
Inquires the number of elements (of the data type) of the gEntry at the current gEntry number for the current
attribute (in the current CDF). Required arguments are as follows:
out: \$numElements
Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR) this
is the number of characters in the string (an array of characters). For all other data types this is the
number of elements in an array of that data type.
The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.

NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.

<GET ,LIB_COPYRIGHT >
Reads the Copyright notice of the CDF library being used. Required arguments are as follows:

out: \$Copyright
CDF library Copyright text.
There are no required preselected objects/states.

<GET_,LIB_INCREMENT >
Inquires the incremental number of the CDF library being used. Required arguments are as follows:

out: \$increment
Incremental number.
There are no required preselected objects/states.

<GET_,LIB_RELEASE >
Inquires the release number of the CDF library being used. Required arguments are as follows:

out: \$release
Release number.
There are no required preselected objects/states.

<GET_,LIB_subINCREMENT >
Inquires the subincremental character of the CDF library being used. Required arguments are as follows:

74

out: \$subincrement
Subincremental character.
There are no required preselected objects/states.

<GET _,LIB_VERSION >
Inquires the version number of the CDF library being used. Required arguments are as follows:

out: \$version
Version number.
There are no required preselected objects/states.
<GET _,tENTRY_DATA >
Reads the rEntry data value from the current attribute at the current rEntry number (in the current CDF).
Required arguments are as follows:

out: \$value

Value. This buffer must be large to hold the value. The value is read from the CDF and placed in the
variable value.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET tENTRY_DATATYPE >!2
Inquires the data type of the rEntry at the current rEntry number for the current attribute (in the current CDF).
Required arguments are as follows:
out: \$dataType
Data type. The data types are described in Section 2.5.
The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET ,tENTRY_NUMELEMS >
Inquires the number of elements (of the data type) of the rEntry at the current rEntry number for the current
attribute (in the current CDF). Required arguments are as follows:
out: \$numElements
Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR)
this is the number of characters in the string (an array of characters). For all other data types this is
the number of elements in an array of that data type.

The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

12 If the data is a string with with “\N “ symbol (3 characters), it is an array of strings. Use GET _,
rENTRY_STRINGDATA method (described in the following statement).

75

<GET_,rENTRY_NUMSTRINGS >
Inquires the number of strings (of CDF_CHAR or CDF_UCHAR data type) of the rEntry at the current rEntry
number for the current attribute (in the current CDF). Required arguments are as follows:
out: \$numStrings
Number of strings of the character data type. It is only for character data types (CDF_CHAR and
CDF_UCHAR). Strings are concatenated and stored in the CDF in a sequence of charaters, with a
pre-defined delimiter (“N), separating the strings. The number of elements for this character data
type contains the extra characters used for the delimiter. '3
The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET _,rENTRY_STRINGDATA >
Reads the strings (of CDF_CHAR or CDF_UCHAR data type) of the rEntry at the current rEntry number for the
current attribute (in the current CDF). Required arguments are as follows:

out: \@strings

An array of retrieved strings. Spaces for the strings are dynamically allocated by the library. Once
the strings are no longer needed, the application needs to free the spaces to avoid the memory leak. 4

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
<GET ,rVAR ALLOCATEDFROM >

Inquires the next allocated record at or after a given record for the current rVariable (in the current CDF).

Required arguments are as follows:

in: $startRecord

The record number at which to begin searching for the next allocated record. If this record exists, it
will be considered the next allocated record.

out: \$nextRecord
The number of the next allocated record.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_ALLOCATEDTO >
Inquires the last allocated record (before the next unallocated record) at or after a given record for the current
rVariable (in the current CDF). Required arguments are as follows:
in: $startRecord

The record number at which to begin searching for the last allocated record.

out: \$nextRecord

13 This feature is added in CDF V3.7.0. CDFs of previously versions only allow one single string.
14 The function: CDF_Free_String (long numStrings, char **strings) can be called with the returned number of strings
and pointer to the string array to free the spaces.

76

The number of the last allocated record.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR _BLOCKINGFACTOR >'*
Inquires the blocking factor for the current rVariable (in the current CDF). Blocking factors are described in the
Concepts chapter in the CDF User's Guide. Required arguments are as follows:
out: \$blockingFactor
The blocking factor. A value of zero (0) indicates that the default blocking factor is being used.
The required preselected objects/states are the current CDF and its current rVariable.
<GET ,rVAR COMPRESSION >
Inquires the compression type/parameters and the compression percentage of the current rVariable (in the
current CDF). The compression percentage is the result of the compressed size from all variable records divided
by its original, uncompressed varible size. Required arguments are as follows:
out: \$cType
The compression type. The types of compressions are described in Section 2.10.
out: \@cParms
The compression parameters. The compression parameters are described in Section 2.10.

out: \$cPct

If compressed, the percentage of the uncompressed size of the rVariable's data values needed to store
the compressed values.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,r'VAR_DATA >
Reads a value from the current rVariable (in the current CDF). The value is read at the current record number
and current dimension indices for the rVariables (in the current CDF). Required arguments are as follows:

out: \$value

Value. This buffer must be large enough to hold the value. The value is read from the CDF and
placed in the variable value.

The required preselected objects/states are the current CDF, its current rVariable, its current record number for
rVariables, and its current dimension indices for rVariables.

<GET ,rVAR DATATYPE >
Inquires the data type of the current rVariable (in the current CDF). Required arguments are as follows:

out: \$dataType
Data type. The data types are described in Section 2.5.

The required preselected objects/states are the current CDF and its current rVariable.

15 The item rVAR_BLOCKINGFACTOR was previously named rVAR_EXTENDRECS.

71

<GET_,rVAR DIMVARYS >
Inquires the dimension variances of the current rVariable (in the current CDF). For 0-dimensional rVariables
this operation is not applicable. Required arguments are as follows:

out: \@dimVarys

Dimension variances. Each element of dimVarys receives the corresponding dimension variance.
The variances are described in Section 2.9.

The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_HYPERDATA >
Reads one or more values from the current rVariable (in the current CDF). The values are read based on the
current record number, current record count, current record interval, current dimension indices, current
dimension counts, and current dimension intervals for the rVariables (in the current CDF). Required arguments
are as follows:
out: \@buffer
Values. The values are read from the CDF and placed in the variable buffer.
The required preselected objects/states are the current CDF, its current rVariable, its current record number,
record count, and record interval for rVariables, and its current dimension indices, dimension counts, and
dimension intervals for rVariables.
<GET_,rVAR MAXallocREC >
Inquires the maximum record number allocated for the current rVariable (in the current CDF). Required
arguments are as follows:
out: \$varMaxRecAlloc
Maximum record number allocated.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_MAXREC_>
Inquires the maximum record number for the current rVariable (in the current CDF). For rVariables with a
record variance of NOVARY, this will be at most zero (0). A value of negative one (-1) indicates that no
records have been written. Required arguments are as follows:
out: \$varMaxRec
Maximum record number.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR NAME >
Inquires the name of the current rVariable (in the current CDF). Required arguments are as follows:

out: \$varName
Name of the rVariable.

The required preselected objects/states are the current CDF and its current rVariable.

78

<GET_,rVAR_nINDEXENTRIES >
Inquires the number of index entries for the current rVariable (in the current CDF). This only has significance
for rVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:
out: \$numEntries
Number of index entries.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_nINDEXLEVELS >
Inquires the number of index levels for the current rVariable (in the current CDF). This only has significance for
rVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the indexing
scheme used for variable records in a single-file CDF. Required arguments are as follows:
out: \$numLevels
Number of index levels.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_nINDEXRECORDS >
Inquires the number of index records for the current rVariable (in the current CDF). This only has significance
for rVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:
out: \$numRecords
Number of index records.
The required preselected objects/states are the current CDF and its current rVariable.
<GET ,rVAR NUMallocRECS >
Inquires the number of records allocated for the current rVariable (in the current CDF). The Concepts chapter
in the CDF User's Guide describes the allocation of variable records in a single-file CDF. Required arguments
are as follows:
out: \$numRecords
Number of allocated records.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVAR_NUMBER_>
Gets the number of the named rVariable (in the current CDF). Note that this operation does not select the current
rVariable. Required arguments are as follows:

in: $varName

The rVariable name. This may be at most CDF_ VAR NAME LEN256 characters (excluding the
NUL terminator).

out: \$varNum

The rVariable number.

79

The only required preselected object/state is the current CDF.

<GET_,rVAR_NUMELEMS_>

Inquires the number of elements (of the data type) for the current rVariable (in the current CDF). Required
arguments are as follows:

out: \$numElements

Number of elements of the data type at each value. For character data types (CDF _CHAR and
CDF _UCHAR) this is the number of characters in the string. (Each value consists of the entire
string.) For all other data types this will always be one (1) — multiple elements at each value are not
allowed for non-character data types.

The required preselected objects/states are the current CDF and its current rVariable.

<GET ,rVAR NUMRECS >
Inquires the number of records written for the current rVariable (in the current CDF). This may not correspond
to the maximum record written (see <GET ,rVAR MAXREC >) if the rVariable has sparse records. Required
arguments are as follows:
out: \$numRecords
Number of records written.

The required preselected objects/states are the current CDF and its current rVariable.

<GET_,rVAR_PADVALUE >
Inquires the pad value of the current rVariable (in the current CDF). If a pad value has not been explicitly
specified for the rVariable (see <PUT ,rVAR PADVALUE >), the informational status code
NO_PADVALUE SPECIFIED will be returned and the default pad value for the rVariable's data type will be
placed in the pad value buffer provided. Required arguments are as follows:
out: \$value
Pad value. The pad value is read from the CDF and placed in the variable value.

The required preselected objects/states are the current CDF and its current rVariable.

<GET ,r'VAR RECVARY >
Inquires the record variance of the current rVariable (in the current CDF). Required arguments are as follows:

out: \$recVary
Record variance. The variances are described in Section 2.9.
The required preselected objects/states are the current CDF and its current rVariable.
<GET ,rVAR SEQDATA >
Reads one value from the current rVariable (in the current CDF) at the current sequential value for that
rVariable. After the read the current sequential value is automatically incremented to the next value (crossing a
record boundary If necessary). An error is returned if the current sequential value is past the last record for the

rVariable. Required arguments are as follows:

out: \$value

80

Value. This buffer must be large enough to hold the value. The value is read from the CDF and
placed in the variable value.

The required preselected objects/states are the current CDF, its current rVariable, and the current sequential
value for the rVariable. Note that the current sequential value for an rVariable increments automatically as
values are read.
<GET ,rVAR SPARSEARRAYS >
Inquires the sparse arrays type/parameters of the current rVariable (in the current CDF). Required arguments are
as follows:
out: \$sArraysType
The sparse arrays type. The types of sparse arrays are described in Section 2.11.2.
out: \@ArraysParms
The sparse arrays parameters. The sparse arrays parameters are described in Section 2.11.2.

out: \$sArraysPct

If sparse arrays, the percentage of the non-sparse size of the rVariable's data values needed to store
the sparse values.

The required preselected objects/states are the current CDF and its current rVariable.
<GET _,rVAR SPARSERECORDS >
Inquires the sparse records type of the current rVariable (in the current CDF). Required arguments are as
follows:
out: \$sRecordsType
The sparse records type. The types of sparse records are described in Section 2.11.1.
The required preselected objects/states are the current CDF and its current rVariable.
<GET_,rVARs_DIMSIZES >
Inquires the size of each dimension for the rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
out: \@dimSizes
Dimension sizes. Each element of dimSizes receives the corresponding dimension size.
The only required preselected object/state is the current CDF.
<GET_,rVARs MAXREC >
Inquires the maximum record number of the rVariables in the current CDF. Note that this is not the number of
records but rather the maximum record number (which is one less than the number of records). A value of
negative one (-1) indicates that the rVariables contain no records. The maximum record number for an
individual rVariable may be inquired using the <GET ,rVAR MAXREC > operation. Required arguments are
as follows:

out: \$maxRec

Maximum record number.

81

The only required preselected object/state is the current CDF.

<GET _,rVARs NUMDIMS >
Inquires the number of dimensions for the rVariables in the current CDF. Required arguments are as follows:

out: \$numDims
Number of dimensions.
The only required preselected object/state is the current CDF.

<GET ,rVARs RECDATA >
Reads full-physical records from one or more rVariables (in the current CDF). The full-physical records are
read at the current record number for rVariables. This operation does not affect the current rVariable (in the
current CDF). Required arguments are as follows:

in: $numVars
The number of rVariables from which to read. This must be at least one (1).
in: \@varNums

The rVariables from which to read. This array, whose size is determined by the value of numVars,
contains rVariable numbers. The rVariable numbers can be listed in any order.

out: \@buffer

The buffer into which the full-physical rVariable records being read are to be placed. This buffer must
be large enough to hold the full-physical records. The order of the full-physical rVariable records in
this buffer will correspond to the rVariable numbers listed in varNums, and this buffer will be
contiguous - there will be no spacing between full-physical rVariable records. Be careful in
interpreting the buffer data after the it returns from the call. For example, a read operation for a full
record for 3 rVariables, each a 2-dimensional (2 by 3), the buffer should have 18 elements after the
read. As all variables’ have the same number of data values, then the buffer should return with 18
elements (2*3 + 2*3 + 2*3), the first 6 for the first variable, the next 6 for the second variable and the
last 6 for the third variable.

The required preselected objects/states are the current CDF and its current record number for rVariables. !¢
<GET _,STATUS TEXT >
Inquires the explanation text for the current status code. Note that the current status code is NOT the status from
the last operation performed. Required arguments are as follows:
out: \$text
Text explaining the status code.

The only required preselected object/state is the current status code.

<GET_,zENTRY _DATA >

16 A Standard Interface CDFgetrVarsRecordDatabyNumbers provides the same functionality.
17 1f the data is a string with with “\N ¢ symbol (3 characters), it is an array of strings. Use GET _,
zENTRY STRINGDATA method (described in the following statement).

82

Reads the zEntry data value from the current attribute at the current zEntry number (in the current CDF).
Required arguments are as follows:

out: \$value

Value. This buffer must be large to hold the value. The value is read from the CDF and placed in the
variable value.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET_,zZENTRY_DATATYPE_ >
Inquires the data type of the zEntry at the current zEntry number for the current attribute (in the current CDF).
Required arguments are as follows:
out: \$dataType
Data type. The data types are described in Section 2.5.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET_,zENTRY_NUMELEMS_>
Inquires the number of elements (of the data type) of the zEntry at the current zEntry number for the current
attribute (in the current CDF). Required arguments are as follows:
out: \$numElements
Number of elements of the data type. For character data types (CDF_CHAR and CDF_UCHAR) this
is the number of characters in the string (an array of characters). For all other data types this is the
number of elements in an array of that data type.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<GET _,zENTRY_NUMSTRINGS >
Inquires the number of strings (of CDF_CHAR or CDF_UCHAR data type) of the zEntry at the current zEntry
number for the current attribute (in the current CDF). Required arguments are as follows:
out: \$numStrings
Number of strings of the character data type. It is only for character data types (CDF_CHAR and
CDF_UCHAR). Strings are concatenated and stored in the CDF in a sequence of charaters, with a
pre-defined delimiter (“N), separating the strings. The number of elements for this character data
type contains the extra characters used for the delimiter. '®
The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.

NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.

<GET_,zENTRY_STRINGDATA >

18 This feature is added in CDF V3.7.0. CDFs of previously versions only allow one single string.

83

Reads the strings (of CDF_CHAR or CDF _UCHAR data type) of the zEntry at the current zEntry number for
the current attribute (in the current CDF). Required arguments are as follows:

out: \@strings

An array of retrieved strings. Spaces for the strings are dynamically allocated by the library. Once
the strings are no longer needed, the application needs to free the spaces to avoid the memory leak. '’

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
<GET_,zZVAR_ALLOCATEDFROM_>

Inquires the next allocated record at or after a given record for the current zVariable (in the current CDF).

Required arguments are as follows:

in: $startRecord

The record number at which to begin searching for the next allocated record. If this record exists, it
will be considered the next allocated record.

out: \$nextRecord
The number of the next allocated record.
The required preselected objects/states are the current CDF and its current zVariable.
<GET ,zVAR ALLOCATEDTO >
Inquires the last allocated record (before the next unallocated record) at or after a given record for the current
zVariable (in the current CDF). Required arguments are as follows:
in: $startRecord
The record number at which to begin searching for the last allocated record.
out: \$nextRecord
The number of the last allocated record.
The required preselected objects/states are the current CDF and its current zVariable.
<GET _,zVAR_BLOCKINGFACTOR >
Inquires the blocking factor for the current zVariable (in the current CDF). Blocking factors are described in the
Concepts chapter in the CDF User’s Guide. Required arguments are as follows:
out: \$blockingFactor
The blocking factor. A value of zero (0) indicates that the default blocking factor is being used.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zZVAR_COMPRESSION >

19 The function: CDF_Free_String (long numStrings, char **strings) can be called with the returned number of strings
and pointer to the string array to free the spaces.
20 The item zZVAR_BLOCKINGFACTOR was previously named zZVAR_EXTENDRECS .

84

Inquires the compression type/parameters and compression percentage of the current zVariable (in the current
CDF). The compression percentage is the result of the compressed size from all variable records divided by its
original, uncompressed varible size. Required arguments are as follows:

out: \$cType

The compression type. The types of compressions are described in Section 2.10.

out: \@cParms
The compression parameters. The compression parameters are described in Section 2.10.
out: \$cPct

If compressed, the percentage of the uncompressed size of the zVariable's data values
needed to store the compressed values.

The required preselected objects/states are the current CDF and its current zVariable.
<GET_,zVAR_DATA >
Reads a value from the current zVariable (in the current CDF). The value is read at the current record number
and current dimension indices for that zVariable (in the current CDF). Required arguments are as follows:
out: \$value

Value. The value is read from the CDF and placed in the variable value.

The required preselected objects/states are the current CDF, its current zVariable, the current record number for
the zVariable, and the current dimension indices for the zVariable.

<GET_,zZVAR DATATYPE >
Inquires the data type of the current zVariable (in the current CDF). Required arguments are as follows:

out: \$dataType
Data type. The data types are described in Section 2.5.
The required preselected objects/states are the current CDF and its current zVariable.
<GET _,zVAR DIMSIZES >
Inquires the size of each dimension for the current zVariable in the current CDF. For 0-dimensional zVariables
this operation is not applicable. Required arguments are as follows:
out: \@dimSizes
Dimension sizes. Each element of dimSizes receives the corresponding dimension size.
The required preselected objects/states are the current CDF and its current zVariable.
<GET ,zVAR DIMVARYS >
Inquires the dimension variances of the current zVariable (in the current CDF). For 0-dimensional zVariables

this operation is not applicable. Required arguments are as follows:

out: \@dimVarys

85

Dimension variances. Each element of dimVarys receives the corresponding dimension variance.
The variances are described in Section 2.9.

The required preselected objects/states are the current CDF and its current zVariable.

<GET ,zVAR HYPERDATA >
Reads one or more values from the current zVariable (in the current CDF). The values are read based on the
current record number, current record count, current record interval, current dimension indices, current
dimension counts, and current dimension intervals for that zVariable (in the current CDF). Required arguments
are as follows:

out: \@buffer
Values. The values are read from the CDF and placed in the variable buffer.
The required preselected objects/states are the current CDF, its current zVariable, the current record number,
record count, and record interval for the zVariable, and the current dimension indices, dimension counts, and
dimension intervals for the zVariable.
<GET _,zVAR MAXallocREC >
Inquires the maximum record number allocated for the current zVariable (in the current CDF). Required
arguments are as follows:
out: \$varMaxRecAlloc
Maximum record number allocated.
The required preselected objects/states are the current CDF and its current zVariable.
<GET ,zVAR_MAXREC >
Inquires the maximum record number for the current zVariable (in the current CDF). For zVariables with a
record variance of NOVARY, this will be at most zero (0). A value of negative one (-1) indicates that no
records have been written. Required arguments are as follows:
out: \$varMaxRec
Maximum record number.

The required preselected objects/states are the current CDF and its current zVariable.

<GET ,zVAR NAME >
Inquires the name of the current zVariable (in the current CDF). Required arguments are as follows:

out: \$varName
Name of the zVariable.
The required preselected objects/states are the current CDF and its current zVariable.
<GET ,zVAR nINDEXENTRIES >
Inquires the number of index entries for the current zVariable (in the current CDF). This only has significance
for zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the

indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:

out: \$numEntries

86

Number of index entries.
The required preselected objects/states are the current CDF and its current zVariable.
<GET _,zVAR nINDEXLEVELS >
Inquires the number of index levels for the current zVariable (in the current CDF). This only has significance
for zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:
out: \$numLevels
Number of index levels.
The required preselected objects/states are the current CDF and its current zVariable.
<GET _,zVAR nINDEXRECORDS >
Inquires the number of index records for the current zVariable (in the current CDF). This only has significance
for zVariables that are in single-file CDFs. The Concepts chapter in the CDF User's Guide describes the
indexing scheme used for variable records in a single-file CDF. Required arguments are as follows:
out: \$numRecords
Number of index records.
The required preselected objects/states are the current CDF and its current zVariable.
<GET _,zVAR NUMallocRECS >
Inquires the number of records allocated for the current zVariable (in the current CDF). The Concepts chapter
in the CDF User's Guide describes the allocation of variable records in a single-file CDF. Required arguments
are as follows:
out: \$numRecords
Number of allocated records.
The required preselected objects/states are the current CDF and its current zVariable.
<GET ,zVAR NUMBER >
Gets the number of the named zVariable (in the current CDF). Note that this operation does not select the current
zVariable. Required arguments are as follows:

in: $varName

The zVariable name. This may be at most CDF VAR NAME LEN256 characters (excluding the
NUL terminator).

out: \$varNum
The zVariable number.
The only required preselected object/state is the current CDF.
<GET ,zVAR NUMDIMS >

Inquires the number of dimensions for the current zVariable in the current CDF. Required arguments are as
follows:

87

out: \$numDims
Number of dimensions.
The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zZVAR_NUMELEMS >

Inquires the number of elements (of the data type) for the current zVariable (in the current CDF). Required
arguments are as follows:

out: \$numFElements

Number of elements of the data type at each value. For character data types (CDF _CHAR and
CDF _UCHAR) this is the number of characters in the string. (Each value consists of the entire
string.) For all other data types this will always be one (1) — multiple elements at each value are not
allowed for non-character data types.

The required preselected objects/states are the current CDF and its current zVariable.

<GET ,zVAR NUMRECS >
Inquires the number of records written for the current zVariable (in the current CDF). This may not correspond
to the maximum record written (see <GET ,zZVAR MAXREC >) if the zVariable has sparse records. Required
arguments are as follows:

out: \$numRecords
Number of records written.
The required preselected objects/states are the current CDF and its current zVariable.
<GET _,zVAR_PADVALUE >
Inquires the pad value of the current zVariable (in the current CDF). If a pad value has not been explicitly
specified for the zVariable (see <PUT ,zZVAR PADVALUE >), the informational status code
NO PADVALUE SPECIFIED will be returned and the default pad value for the zVariable's data type will be
placed in the pad value buffer provided. Required arguments are as follows:
out: \$value
Pad value. The pad value is read from the CDF and placed in the variable value.

The required preselected objects/states are the current CDF and its current zVariable.

<GET_,zZVAR RECVARY >
Inquires the record variance of the current zVariable (in the current CDF). Required arguments are as follows:

out: \$recVary
Record variance. The variances are described in Section 2.9.
The required preselected objects/states are the current CDF and its current zVariable.
<GET _,zVAR SEQDATA >
Reads one value from the current zVariable (in the current CDF) at the current sequential value for that
zVariable. After the read the current sequential value is automatically incremented to the next value (crossing a

record boundary If necessary). An error is returned if the current sequential value is past the last record for the
zVariable. Required arguments are as follows:

88

out: \$value
Value. The value is read from the CDF and placed in the variable value.
The required preselected objects/states are the current CDF, its current zVariable, and the current sequential
value for the zVariable. Note that the current sequential value for a zVariable increments automatically as
values are read.
<GET_,zZVAR_SPARSEARRAYS >
Inquires the sparse arrays type/parameters of the current zVariable (in the current CDF). Required arguments
are as follows:
out: \$sArraysType
The sparse arrays type. The types of sparse arrays are described in Section 2.11.2.
out: \@sArraysParms
The sparse arrays parameters.

out: \$sArraysPct

If sparse arrays, the percentage of the non-sparse size of the zVariable's data values needed to store
the sparse values.

The required preselected objects/states are the current CDF and its current zVariable.

<GET _,zVAR SPARSERECORDS >
Inquires the sparse records type of the current zVariable (in the current CDF). Required arguments are as
follows:

out: \$sRecordsType
The sparse records type. The types of sparse records are described in Section 2.11.1.
The required preselected objects/states are the current CDF and its current zVariable.

<GET _,zVARs MAXREC >
Inquires the maximum record number of the zVariables in the current CDF. Note that this is not the number of
records but rather the maximum record number (which is one less than the number of records). A value of
negative one (-1) indicates that the zVariables contain no records. The maximum record number for an
individual zVariable may be inquired using the <GET ,zZVAR MAXREC > operation. Required arguments are
as follows:

out: \$maxRec
Maximum record number.
The only required preselected object/state is the current CDF.
<GET ,zVARs RECDATA >
Reads full-physical records from one or more zVariables (in the current CDF). The full-physical record for a
particular zVariable is read at the current record number for that zVariable. (The record numbers do not have to

be the same but in most cases probably will be.) This operation does not affect the current zVariable (in the
current CDF). Required arguments are as follows:

89

in:

in:

out:

$numVars
The number of zVariables from which to read. This must be at least one (1).
\@varNums

The zVariables from which to read. This array, whose size is determined by the value of numVars,
contains zVariable numbers. The zVariable numbers can be listed in any order.

\@buffer

The buffer into which the full-physical zVariable records being read are to be placed. This buffer
must be large enough to hold the full-physical records. The order of the full-physical zVariable
records in this buffer will correspond to the zVariable numbers listed in varNums, and this buffer will
be contiguous - there will be no spacing between full-physical zVariable records. Be careful in
interpreting the buffer data after the it returns from the call. For example, a read operation for a full
record for 3 zVariables, first a 2-dimensional (2 by 3), second as a 1-dimensional (3) and third a scalar,
the buffer should have 10 (2*3 + 3 + 1) elements after the read. Among them, the first 6 for the first
variable, the next 3 for the second variable and the last 1 for the third variable.

The required preselected objects/states are the current CDF and the current record number for each of the
zVariables specified. A convenience operation exists, <SELECT ,zZVARs RECNUMBER >, that allows the
current record number for each zVariable to be selected at one time (as opposed to selecting the current record
numbers one at a time using <SELECT_,zZVAR_RECNUMBER_>). %!

<NULL_>

Marks the end of the argument list that is passed to An internal interface call. No other arguments are allowed

after it.

<OPEN ,CDF_>

Opens the named CDF. The opened CDF implicitly becomes the current CDF. Required arguments are as

follows:

in:

out:

$CDFname
File name of the CDF to be opened. (Do not append an extension.) This can be at most
CDF_PATHNAME LEN characters (excluding the NUL terminator). A CDF file name may contain
disk and directory specifications that conform to the conventions of the operating system being used
(including logical names on OpenVMS systems and environment variables on UNIX systems).
UNIX: File names are case-sensitive.

\$id

CDF identifier to be used in subsequent operations on the CDF.

There are no required preselected objects/states.

<PUT ,ATTR NAME >
Renames the current attribute (in the current CDF). An attribute with the same name must not already exist in

the CDF.

in:

Required arguments are as follows:

$attrName

21 A Standard Interface CDFgetzVarsRecordDatabyNumbers provides the same functionality.

90

New attribute name. This may be at most CDF_ATTR NAME LEN256 characters (excluding the
NUL terminator).

The required preselected objects/states are the current CDF and its current attribute.

<PUT _,ATTR SCOPE >
Respecifies the scope for the current attribute (in the current CDF). Required arguments are as follows:

in: $scope
New attribute scope. Specify one of the scopes described in Section 2.12.
The required preselected objects/states are the current CDF and its current attribute.

<PUT ,CDF_CHECKSUM >
Respecifies the checksum mode of the current CDF. Required arguments are as follows:

in: $checksum

The checksum mode to be used (NO_CHECKSUM or MD5 CHECKSUM). The checksum mode is
described in Section 2.19.

The required preselected objects/states is the current CDF.
<PUT _,CDF_COMPRESSION >
Specifies the compression type/parameters for the current CDF. This refers to the compression of the CDF - not
of any variables. Required arguments are as follows:
in: $cType
The compression type. The types of compressions are described in Section 2.10.
in: \@cParms
The compression parameters. The compression parameters are described in Section 2.10.
The only required preselected object/state is the current CDF.
<PUT_,CDF_ENCODING >
Respecifies the data encoding of the current CDF. A CDF's data encoding may not be changed after any variable
values (including the pad value) or attribute entries have been written. Required arguments are as follows:
in: $encoding
New data encoding. Specify one of the encodings described in Section 2.6.
The only required preselected object/state is the current CDF.
<PUT _,CDF_FORMAT >
Respecifies the format of the current CDF. A CDEF’s format may not be changed after any variables have been
created. Required arguments are as follows:

in: $format

New CDF format. Specify one of the formats described in Section 2.4.

91

The only required preselected object/state is the current CDF.
<PUT _,CDF_LEAPSECONDLASTUPDATED >
Respecifies the variable lastupdated of the current CDF. A CDF's lastupdated, the leap second last updated date,
may not be set in the older CDFs. The last uppdated date must be a valid entry in the currently used leap second
table, oe zero (0). When 0, the CDF was made without using the table. Required arguments are as follows:
in: $lastupdated
The value has to be in YYYYMMDD form.
The only required preselected object/state is the current CDF.
<PUT ,CDF_MAIJORITY >
Respecifies the variable majority of the current CDF. A CDF's variable majority may not be changed after any
variable values have been written. Required arguments are as follows:
in: $majority
New variable majority. Specify one of the majorities described in Section 2.8.
The only required preselected object/state is the current CDF.
<PUT_,gENTRY DATA >
Writes a gEntry to the current attribute at the current gEntry number (in the current CDF). An existing gEntry
may be overwritten with a new gEntry having the same data specification (data type and number of elements) or
a different data specification. Required arguments are as follows:
in: $dataType
Data type of the gEntry. Specify one of the data types described in Section 2.5.
in: $numElements
Number of elements of the data type. This may be greater than one (1) for any of the supported data
types. For character data types (CDF_CHAR and CDF UCHAR) this is the number of characters in
the string (an array of characters). For all other data types this is the number of elements in an array of
that data type.
in: \$value
Value(s). The entry value is written to the CDF from memory address value.
The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<PUT ,gENTRY_ DATASPEC >
Modifies the data specification (data type and number of elements) of the gEntry at the current gEntry number of
the current attribute (in the current CDF). The new and old data types must be equivalent, and the number of
elements must not be changed. Equivalent data types are described in the Concepts chapter in the CDF User’s

Guide. Required arguments are as follows:

in: $dataType

92

New data type of the gEntry. Specify one of the data types described in Section 2.5.
in: $numElements
Number of elements of the data type.
The required preselected objects/states are the current CDF, its current attribute, and its current gEntry number.
NOTE: Only use this operation on gAttributes. An error will occur if used on a vAttribute.
<PUT _,rENTRY_DATA >
Writes an rEntry to the current attribute at the current rEntry number (in the current CDF). An existing rEntry
may be overwritten with a new rEntry having the same data specification (data type and number of elements) or
a different data specification. Required arguments are as follows:
in: $dataType
Data type of the rEntry. Specify one of the data types described in Section 2.5.
in: $numElements
Number of elements of the data type. This may be greater than one (1) for any of the supported data
types. For character data types (CDF_CHAR and CDF UCHAR) this is the number of characters in
the string (an array of characters). For all other data types this is the number of elements in an array of
that data type.
in: \$value
Value(s). The entry value is written to the CDF from memory address value.
The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<PUT_,rENTRY_DATASPEC >
Modifies the data specification (data type and number of elements) of the rEntry at the current rEntry number of
the current attribute (in the current CDF). The new and old data types must be equivalent, and the number of
elements must not be changed. Equivalent data types are described in the Concepts chapter in the CDF User’s
Guide. Required arguments are as follows:
in: $dataType
New data type of the rEntry. Specify one of the data types described in Section 2.5.
in: $numElements
Number of elements of the data type.
The required preselected objects/states are the current CDF, its current attribute, and its current rEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<PUT _,rENTRY_STRINGDATA >

Write an array of strings (of CDF_CHAR or CDF_UCHAR data type) of the rEntry at the current rEntry number
for the current attribute (in the current CDF). Required arguments are as follows:

93

in: \@strings
An array of strings.

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

<PUT ,rVAR ALLOCATEBLOCK >
Specifies a range of records to allocate for the current rVariable (in the current CDF). This operation is only

applicable to uncompressed rVariables in single-file CDFs. The Concepts chapter in the CDF User's Guide
describes the allocation of variable records. Required arguments are as follows:

in: $firstRecord

The first record number to allocate.
in: $lastRecord

The last record number to allocate.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_ALLOCATERECS >
Specifies the number of records to allocate for the current rVariable (in the current CDF). The records are

allocated beginning at record number 0 (zero). This operation is only applicable to uncompressed rVariables in
single-file CDFs. The Concepts chapter in the CDF User's Guide describes the allocation of variable records.

Required arguments are as follows:
in: $nRecords
Number of records to allocate.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT_,rVAR_BLOCKINGFACTOR_>2
Specifies the blocking factor for the current rVariable (in the current CDF). The Concepts chapter in the CDF
User's Guide describes a variable's blocking factor. NOTE: The blocking factor has no effect for NRV

variables or multi-file CDFs. Required arguments are as follows:

in: $blockingFactor

The blocking factor. A value of zero (0) indicates that the default blocking factor should be used.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT_,rVAR_COMPRESSION >

Specifies the compression type/parameters for the current rVariable (in current CDF). Required arguments are
as follows:

in: $cType

The compression type. The types of compressions are described in Section 2.10.

in: \@cParms

22 The item r'VAR_BLOCKINGFACTOR was previously named rtVAR_EXTENDRECS .

94

The compression parameters. The compression parameters are described in Section 2.10.
The required preselected objects/states are the current CDF and its current rVariable.

<PUT ,rVAR DATA >
Writes one value to the current rVariable (in the current CDF). The value is written at the current record number
and current dimension indices for the rVariables (in the current CDF). Required arguments are as follows:

in: \$value
Value. The value is written to the CDF from memory address value.

The required preselected objects/states are the current CDF, its current rVariable, its current record number for
rVariables, and its current dimension indices for rVariables.

<PUT ,rVAR DATASPEC >
Respecifies the data specification (data type and number of elements) of the current rVariable (in the current
CDF). An rVariable's data specification may not be changed If the new data specification is not equivalent to
the old data specification and any values (including the pad value) have been written. Data specifications are
considered equivalent If the data types are equivalent (see the Concepts chapter in the CDF User's Guide) and
the number of elements are the same. Required arguments are as follows:

in: $dataType
New data type. Specify one of the data types described in Section 2.5.
in: $numElements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value. For the non-character data types this must be one (1) - arrays of values are not allowed
for non-character data types.

The required preselected objects/states are the current CDF and its current rVariable.

<PUT ,rVAR DIMVARYS >
Respecifies the dimension variances of the current rVariable (in the current CDF). An rVariable's dimension
variances may not be changed if any values have been written (except for an explicit pad value - it may have
been written). For 0-dimensional rVariables this operation is not applicable. Required arguments are as follows:

in: \@dimVarys

New dimension variances. Each element of dimVarys specifies the corresponding dimension
variance. For each dimension specify one of the variances described in Section 2.9.

The required preselected objects/states are the current CDF and its current rVariable.
<PUT_,rVAR_HYPERDATA >

Writes one or more values to the current rVariable (in the current CDF). The values are written based on the

current record number, current record count, current record interval, current dimension indices, current

dimension counts, and current dimension intervals for the rVariables (in the current CDF). Required arguments

are as follows:

in: \@buffer

Values. The values in the variable buffer are written to the CDF.

95

The required preselected objects/states are the current CDF, its current rVariable, its current record number,
record count, and record interval for rVariables, and its current dimension indices, dimension counts, and
dimension intervals for rVariables.

<PUT ,rVAR INITIALRECS >
Specifies the number of records to initially write to the current rVariable (in the current CDF). The records are
written beginning at record number 0 (zero). This may be specified only once per rVariable and before any
other records have been written to that rVariable. If a pad value has not yet been specified, the default is used
(see the Concepts chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is
written to the records. The Concepts chapter in the CDF User's Guide describes initial records. Required
arguments are as follows:

in: $nRecords
Number of records to write.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT _,rVAR NAME >
Renames the current rVariable (in the current CDF). A variable (rVariable or zVariable) with the same name
must not already exist in the CDF. Required arguments are as follows:

in: $varName

New name of the rVariable. This may consist of at most CDF_ VAR NAME LEN256 characters
(excluding the NUL terminator).

The required preselected objects/states are the current CDF and its current rVariable.

<PUT ,rVAR PADVALUE >
Specifies the pad value for the current rVariable (in the current CDF). An rVariable's pad value may be
specified (or respecified) at any time without affecting already written values (including where pad values were
used). The Concepts chapter in the CDF User's Guide describes variable pad values. Required arguments are as
follows:

in: \$value
Pad value. The pad value is written to the CDF from memory address value.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT_,r'VAR_RECVARY >
Respecifies the record variance of the current rVariable (in the current CDF). An rVariable's record variance
may not be changed if any values have been written (except for an explicit pad value - it may have been written).
Required arguments are as follows:
in: $recVary
New record variance. Specify one of the variances described in Section 2.9.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT _,rVAR SEQDATA >

Writes one value to the current rVariable (in the current CDF) at the current sequential value for that rVariable.
After the write the current sequential value is automatically incremented to the next value (crossing a record

96

boundary if necessary). If the current sequential value is past the last record for the rVariable, the rVariable is
extended as necessary. Required arguments are as follows:

in: \$value
Value. The value is written to the CDF from the variable value.
The required preselected objects/states are the current CDF, its current rVariable, and the current sequential
value for the rVariable. Note that the current sequential value for an rVariable increments automatically as
values are written.
<PUT_,r'VAR_SPARSEARRAYS >
Specifies the sparse arrays type/parameters for the current rVariable (in the current CDF). Required arguments
are as follows:
in: $sArraysType
The sparse arrays type. The types of sparse arrays are described in Section 2.11.2.
in: \@sArraysParms
The sparse arrays parameters. The sparse arrays parameters are described in Section 2.11.2.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT _,rVAR _SPARSERECORDS >
Specifies the sparse records type for the current rVariable (in the current CDF). Required arguments are as
follows:
in: $sRecordsType
The sparse records type. The types of sparse records are described in Section 2.11.1.
The required preselected objects/states are the current CDF and its current rVariable.
<PUT_,rVARs RECDATA >
Writes full-physical records to one or more rVariables (in the current CDF). The full-physical records are
written at the current record number for rVariables. This operation does not affect the current rVariable (in the
current CDF). Required arguments are as follows:
in: $numVars
The number of rVariables to which to write. This must be at least one (1).

in: \@varNums

The rVariables to which to write. This array, whose size is determined by the value of numVars,
contains rVariable numbers. The rVariable numbers can be listed in any order.

in: \@buffer

The buffer of full-physical rVariable records to be written. The order of the full-physical rVariable
records in this buffer must agree with the rVariable numbers listed in varNums, and this buffer must
be contiguous - there can be no spacing between full-physical rVariable records. Be careful in setting
up the buffer. Make sure that the buffer contains the same number of data values from all variables
involved. For examples, if the variables are all 2-dimensional (2 by 3) array, then the buffer should

97

have 18 elements (2*3 + 2*3 + 2*3) for handling a process of three variables. Among them, the first 6
is from the first variable, the next 6 from the second variable and the last 6 from the third variable.

The required preselected objects/states are the current CDF and its current record number for rVariables. 23
<PUT _,zZENTRY_DATA >
Writes a zEntry to the current attribute at the current zEntry number (in the current CDF). An existing zEntry
may be overwritten with a new zEntry having the same data specification (data type and number of elements) or
a different data specification. Required arguments are as follows:
in: dataType
Data type of the zEntry. Specify one of the data types described in Section 2.5.
in: $numElements
Number of elements of the data type. This may be greater than one (1) for any of the supported data
types. For character data types (CDF_CHAR and CDF_UCHAR) this is the number of characters in
the string (an array of characters). For all other data types this is the number of elements in an array of
that data type.
in: \$value
Value(s). The entry value is written to the CDF from the variable value.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<PUT ,zZENTRY_ DATASPEC >
Modifies the data specification (data type and number of elements) of the zEntry at the current zEntry number of
the current attribute (in the current CDF). The new and old data types must be equivalent, and the number of
elements must not be changed. Equivalent data types are described in the Concepts chapter in the CDF User’s
Guide. Required arguments are as follows:
in: $dataType
New data type of the zEntry. Specify one of the data types described in Section 2.5.
in: $numElements
Number of elements of the data type.
The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.
NOTE: Only use this operation on vAttributes. An error will occur if used on a gAttribute.
<PUT_,zZENTRY_STRINGDATA >
Write an array of strings (of CDF_CHAR or CDF_UCHAR data type) of the zEntry at the current zEntry
number for the current attribute (in the current CDF). Required arguments are as follows:

in: \@strings

An array of strings.

23 A Standard Interface CDFputrVarsRecordDatabyNumbers provides the same functionality.

98

The required preselected objects/states are the current CDF, its current attribute, and its current zEntry number.

<PUT _,zVAR_ALLOCATEBLOCK >
Specifies a range of records to allocate for the current zVariable (in the current CDF). This operation is only

applicable to uncompressed zVariables in single-file CDFs. The Concepts chapter in the CDF User's Guide
describes the allocation of variable records. Required arguments are as follows:

in: $firstRecord

The first record number to allocate.
in: $lastRecord

The last record number to allocate.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT _,zVAR_ALLOCATERECS >
Specifies the number of records to allocate for the current zVariable (in the current CDF). The records are

allocated beginning at record number 0 (zero). This operation is only applicable to uncompressed zVariables in
single-file CDFs. The Concepts chapter in the CDF User's Guide describes the allocation of variable records.

Required arguments are as follows:
in: $nRecords
Number of records to allocate.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT _,zVAR_BLOCKINGFACTOR >2
Specifies the blocking factor for the current zVariable (in the current CDF). The Concepts chapter in the CDF
User's Guide describes a variable's blocking factor. NOTE: The blocking factor has no effect for NRV

variables or multi-file CDFs. Required arguments are as follows:
in: $blockingFactor
The blocking factor. A value of zero (0) indicates that the default blocking factor should be used.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zZVAR_COMPRESSION_ >
Specifies the compression type/parameters for the current zVariable (in current CDF). Required arguments are

as follows:
in: $cType
The compression type. The types of compressions are described in Section 2.10.
in: \@cParms

The compression parameters. The compression parameters are described in Section 2.10.

The required preselected objects/states are the current CDF and its current zVariable.

24 The item zZVAR_BLOCKINGFACTOR was previously named zZVAR_EXTENDRECS .

99

<PUT _,zVAR DATA >
Writes one value to the current zVariable (in the current CDF). The value is written at the current record number
and current dimension indices for that zVariable (in the current CDF). Required arguments are as follows:

in: \$value
Value. The value is written to the CDF from the variable value.

The required preselected objects/states are the current CDF, its current zVariable, the current record number for
the zVariable, and the current dimension indices for the zVariable.

<PUT _,zVAR DATASPEC >
Respecifies the data specification (data type and number of elements) of the current zVariable (in the current
CDF). A zVariable's data specification may not be changed If the new data specification is not equivalent to the
old data specification and any values (including the pad value) have been written. Data specifications are
considered equivalent If the data types are equivalent (see the Concepts chapter in the CDF User's Guide) and
the number of elements are the same. Required arguments are as follows:

in: $dataType
New data type. Specify one of the data types described in Section 2.5.
in: $numElements

Number of elements of the data type at each value. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in each string (an array of characters). A string exists
at each value. For the non-character data types this must be one (1) - arrays of values are not allowed
for non-character data types.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT_,zZVAR_DIMVARYS >
Respecifies the dimension variances of the current zVariable (in the current CDF). A zVariable's dimension
variances may not be changed if any values have been written (except for an explicit pad value - it may have
been written). For 0-dimensional zVariables this operation is not applicable. Required arguments are as
follows:

in: \@dimVarys

New dimension variances. Each element of dimVarys specifies the corresponding dimension
variance. For each dimension specify one of the variances described in Section 2.9.

The required preselected objects/states are the current CDF and its current zVariable.

<PUT ,zVAR INITIALRECS >
Specifies the number of records to initially write to the current zVariable (in the current CDF). The records are
written beginning at record number 0 (zero). This may be specified only once per zVariable and before any
other records have been written to that zVariable. If a pad value has not yet been specified, the default is used
(see the Concepts chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is
written to the records. The Concepts chapter in the CDF User's Guide describes initial records. Required
arguments are as follows:

in: $nRecords

Number of records to write.

100

The required preselected objects/states are the current CDF and its current zVariable.

<PUT ,zVAR _HYPERDATA >
Writes one or more values to the current zVariable (in the current CDF). The values are written based on the
current record number, current record count, current record interval, current dimension indices, current
dimension counts, and current dimension intervals for that zVariable (in the current CDF). Required arguments
are as follows:

in: \@buffer
Values. The values at the variable buffer are written to the CDF.

The required preselected objects/states are the current CDF, its current zVariable, the current record number,
record count, and record interval for the zVariable, and the current dimension indices, dimension counts, and
dimension intervals for the zVariable.

<PUT _,zZVAR NAME >
Renames the current zVariable (in the current CDF). A variable (rVariable or zVariable) with the same name
must not already exist in the CDF. Required arguments are as follows:

in: $varName

New name of the zVariable. This may consist of at most CDF VAR NAME LEN256 characters
(excluding the NUL terminator).

The required preselected objects/states are the current CDF and its current zVariable.

<PUT ,zVAR _PADVALUE >
Specifies the pad value for the current zVariable (in the current CDF). A zVariable's pad value may be specified
(or respecified) at any time without affecting already written values (including where pad values were used).
The Concepts chapter in the CDF User's Guide describes variable pad values. Required arguments are as
follows:

in: \$value
Pad value. The pad value is written to the CDF from the variable value.
The required preselected objects/states are the current CDF and its current zVariable.
<PUT ,zZVAR_RECVARY >
Respecifies the record variance of the current zVariable (in the current CDF). A zVariable's record variance may
not be changed if any values have been written (except for an explicit pad value - it may have been written).
Required arguments are as follows:
in: $recVary
New record variance. Specify one of the variances described in Section 2.9.
The required preselected objects/states are the current CDF and its current zVariable.
<PUT ,zVAR SEQDATA >
Writes one value to the current zVariable (in the current CDF) at the current sequential value for that zVariable.
After the write the current sequential value is automatically incremented to the next value (crossing a record

boundary if necessary). If the current sequential value is past the last record for the zVariable, the zVariable is
extended as necessary. Required arguments are as follows:

101

in: \$value
Value. The value is written to the CDF from the variable value.
The required preselected objects/states are the current CDF, its current zVariable, and the current sequential
value for the zVariable. Note that the current sequential value for a zVariable increments automatically as
values are written.
<PUT_,zVAR_SPARSEARRAYS >
Specifies the sparse arrays type/parameters for the current zVariable (in the current CDF). Required arguments
are as follows:
in: $sArraysType
The sparse arrays type. The types of sparse arrays are described in Section 2.11.2.
in: \@sArraysParms
The sparse arrays parameters. The sparse arrays parameters are described in Section 2.11.2.
The required preselected objects/states are the current CDF and its current zVariable.
<PUT_,zVAR_SPARSERECORDS >
Specifies the sparse records type for the current zVariable (in the current CDF). Required arguments are as
follows:
in: $sRecordsType
The sparse records type. The types of sparse records are described in Section 2.11.1.
The required preselected objects/states are the current CDF and its current zVariable.
<PUT_,zVARs_RECDATA >
Writes full-physical records to one or more zVariables (in the current CDF). The full-physical record for a
particular zVariable is written at the current record number for that zVariable. (The record numbers do not have
to be the same but in most cases probably will be.) This operation does not affect the current zVariable (in the
current CDF). Required arguments are as follows:
in: $numVars
The number of zVariables to which to write. This must be at least one (1).

in: \@varNums

The zVariables to which to write. This array, whose size is determined by the value of numVars,
contains zVariable numbers. The zVariable numbers can be listed in any order.

in: \@buffer

The buffer of full-physical zVariable records to be written. The order of the full-physical zVariable
records in this buffer must agree with the zVariable numbers listed in varNums, and this buffer must
be contiguous - there can be no spacing between full-physical zVariable records. Be careful in setting
up the buffer. Make sure that the buffer contains the same number of data values from all variables
involved. For examples, if the first variable is a 2-dimensional (2 by 3) array and the second variable is
a 1-dimensional (5 elements) and the third variable is a scalar, then the buffer should have 12 elements

102

(2*3 + 5 + 1), the first 6 from the first variable, the next 5 from the second variable and the last one
from the third variable, while passing into the CDFlib.

The required preselected objects/states are the current CDF and the current record number for each of the
zVariables specified. A convenience operation exists, <SELECT ,zZVARs RECNUMBER >, that allows the

current record number for each zVariable to be selected at one time (as opposed to selecting the current record
numbers one at a time using <SELECT ,zZVAR_RECNUMBER_>). %

<SELECT ,ATTR >
Explicitly selects the current attribute (in the current CDF) by number. Required arguments are as follows:

in: $attrNum
Attribute number.
The only required preselected object/state is the current CDF.
<SELECT ,ATTR NAME >

Explicitly selects the current attribute (in the current CDF) by name. NOTE: Selecting the current attribute by
number (see <SELECT ,ATTR >) is more efficient. Required arguments are as follows:

in: $attrName

Attribute name. This may be at most CDF ATTR NAME LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<SELECT ,CDF >
Explicitly selects the current CDF. Required arguments are as follows:

in: $id

Identifier of the CDF. This identifier must have been initialized by a successful <CREATE ,CDF >
or <OPEN ,CDF > operation.

There are no required preselected objects/states.
<SELECT ,CDF_CACHESIZE >
Selects the number of cache buffers to be used for the dotCDF file (for the current CDF). The Concepts chapter

in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are as
follows:

in: $numBuffers
The number of cache buffers to be used.
The only required preselected object/state is the current CDF.

<SELECT ,CDF _DECODING >
Selects a decoding (for the current CDF). Required arguments are as follows:

in: $decoding

25 A Standard Interface CDFputzVarsRecordDatabyNumbers provides the same functionality.

103

The decoding. Specify one of the decodings described in Section 2.7.
The only required preselected object/state is the current CDF.

<SELECT ,CDF_NEGtoPOS{p0_ MODE >
Selects a -0.0 to 0.0 mode (for the current CDF). Required arguments are as follows:

in: $mode
The -0.0 to 0.0 mode. Specify one of the -0.0 to 0.0 modes described in Section 2.15.
The only required preselected object/state is the current CDF.

<SELECT ,CDF_READONLY_ MODE >
Selects a read-only mode (for the current CDF). Required arguments are as follows:

in: $mode
The read-only mode. Specify one of the read-only modes described in Section 2.13.
The only required preselected object/state is the current CDF.
<SELECT ,CDF_SCRATCHDIR >

Selects a directory to be used for scratch files (by the CDF library) for the current CDF. The Concepts chapter
in the CDF User’s Guide describes how the CDF library uses scratch files. This scratch directory will override
the directory specified by the CDF$TMP logical name (on OpenVMS systems) or CDF TMP environment
variable (on UNIX and MS-DOS systems). Required arguments are as follows:

in: $scratchDir

The directory to be used for scratch files. The length of this directory specification is limited only by
the operating system being used.

The only required preselected object/state is the current CDF.

<SELECT_,CDF_STATUS_>
Selects the current status code. Required arguments are as follows:

in: $status
CDF status code.
There are no required preselected objects/states.

<SELECT_,CDF_zMODE_>
Selects a zMode (for the current CDF). Required arguments are as follows:

in: $mode
The zMode. Specify one of the zModes described in Section 2.14.
The only required preselected object/state is the current CDF.

<SELECT ,COMPRESS_CACHESIZE >

104

Selects the number of cache buffers to be used for the compression scratch file (for the current CDF). The
Concepts chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required
arguments are as follows:
in: $numBuffers
The number of cache buffers to be used.

The only required preselected object/state is the current CDF.

<SELECT ,gENTRY >
Selects the current gEntry number for all gAttributes in the current CDF. Required arguments are as follows:

in: $entryNum
gEntry number.
The only required preselected object/state is the current CDF.

<SELECT ,rENTRY >
Selects the current rEntry number for all vAttributes in the current CDF. Required arguments are as follows:

in: $entryNum
rEntry number.
The only required preselected object/state is the current CDF.
<SELECT ,rENTRY NAME >

Selects the current rEntry number for all vAttributes (in the current CDF) by rVariable name. The number of the
named rVariable becomes the current rEntry number. (The current rVariable is not changed.) NOTE: Selecting
the current rEntry by number (see <SELECT ,rENTRY >) is more efficient. Required arguments are as
follows:

in: $varName

rVariable name. This may be at most CDF VAR NAME LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<SELECT ,rVAR >
Explicitly selects the current rVariable (in the current CDF) by number. Required arguments are as follows:

in: $varNum
rVariable number.
The only required preselected object/state is the current CDF.
<SELECT ,rVAR CACHESIZE >
Selects the number of cache buffers to be used for the current rVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the

caching scheme used by the CDF library. Required arguments are as follows:

in: $numBuffers

105

The number of cache buffers to be used.
The required preselected objects/states are the current CDF and its current rVariable.
<SELECT ,rVAR NAME >
Explicitly selects the current rVariable (in the current CDF) by name. NOTE: Selecting the current rVariable
by number (see <SELECT ,rVAR >) is more efficient. Required arguments are as follows:

in: $varName

rVariable name. This may be at most CDF VAR NAME LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.
<SELECT ,rVAR RESERVEPERCENT >
Selects the reserve percentage to be used for the current rVariable (in the current CDF). This operation is only
applicable to compressed rVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:
in: $percent
The reserve percentage.
The required preselected objects/states are the current CDF and its current rVariable.
<SELECT ,rVAR SEQPOS >
Selects the current sequential value for sequential access for the current rVariable (in the current CDF). Note that
a current sequential value is maintained for each rVariable individually. Required arguments are as follows:
in: $recNum
Record number.
in: \@indices

Dimension indices. Each element of indices specifies the corresponding dimension index. For O-
dimensional rVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current rVariable.
<SELECT ,rVARs_CACHESIZE >
Selects the number of cache buffers to be used for all of the rVariable files (of the current CDF). This operation
is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching
scheme used by the CDF library. Required arguments are as follows:
in: $numBuffers
The number of cache buffers to be used.
The only required preselected object/state is the current CDF.
<SELECT ,rVARs DIMCOUNTS >

Selects the current dimension counts for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:

106

in: \@counts
Dimension counts. Each element of counts specifies the corresponding dimension count.
The only required preselected object/state is the current CDF.
<SELECT ,rVARs DIMINDICES >
Selects the current dimension indices for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
in: \@indices
Dimension indices. Each element of indices specifies the corresponding dimension index.
The only required preselected object/state is the current CDF.
<SELECT ,rVARs DIMINTERVALS >
Selects the current dimension intervals for all rVariables in the current CDF. For 0-dimensional rVariables this
operation is not applicable. Required arguments are as follows:
in: \@intervals
Dimension intervals. Each element of intervals specifies the corresponding dimension interval.

The only required preselected object/state is the current CDF.

<SELECT ,rVARs RECCOUNT >
Selects the current record count for all rVariables in the current CDF. Required arguments are as follows:

in: $recCount
Record count.
The only required preselected object/state is the current CDF.

<SELECT ,rVARs RECINTERVAL >
Selects the current record interval for all rVariables in the current CDF. Required arguments are as follows:

in: $reclnterval
Record interval.
The only required preselected object/state is the current CDF.

<SELECT ,rVARs RECNUMBER >
Selects the current record number for all rVariables in the current CDF. Required arguments are as follows:

in: $recNum
Record number.
The only required preselected object/state is the current CDF.

<SELECT ,STAGE CACHESIZE >

107

Selects the number of cache buffers to be used for the staging scratch file (for the current CDF). The Concepts
chapter in the CDF User's Guide describes the caching scheme used by the CDF library. Required arguments are
as follows:
in: $numBuffers
The number of cache buffers to be used.

The only required preselected object/state is the current CDF.

<SELECT ,zZENTRY >
Selects the current zEntry number for all vAttributes in the current CDF. Required arguments are as follows:

in: $entryNum
zEntry number.
The only required preselected object/state is the current CDF.
<SELECT ,zENTRY NAME >
Selects the current zEntry number for all vAttributes (in the current CDF) by zVariable name. The number of
the named zVariable becomes the current zEntry number. (The current zVariable is not changed.) NOTE:
Selecting the current zEntry by number (see <SELECT ,zZENTRY >) is more efficient. Required arguments are
as follows:

in: $varName

zVariable name. This may be at most CDF_ VAR NAME LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.

<SELECT ,zVAR >
Explicitly selects the current zVariable (in the current CDF) by number. Required arguments are as follows:

in: $varNum
zVariable number.
The only required preselected object/state is the current CDF.
<SELECT ,zVAR CACHESIZE >
Selects the number of cache buffers to be used for the current zVariable's file (of the current CDF). This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the
caching scheme used by the CDF library. Required arguments are as follows:
in: $numBuffers
The number of cache buffers to be used.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT ,zZVAR DIMCOUNTS >

Selects the current dimension counts for the current zVariable in the current CDF. For 0-dimensional zVariables
this operation is not applicable. Required arguments are as follows:

108

in: \@counts
Dimension counts. Each element of counts specifies the corresponding dimension count.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT ,zVAR DIMINDICES >
Selects the current dimension indices for the current zVariable in the current CDF. For 0-dimensional
zVariables this operation is not applicable. Required arguments are as follows:
in: \@indices
Dimension indices. Each element of indices specifies the corresponding dimension index.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT ,zVAR DIMINTERVALS >
Selects the current dimension intervals for the current zVariable in the current CDF. For 0-dimensional zVariables this
operation is not applicable. Required arguments are as follows:
in: \@intervals
Dimension intervals. Each element of intervals specifies the corresponding dimension interval.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT ,zZVAR NAME >
Explicitly selects the current zVariable (in the current CDF) by name. NOTE: Selecting the current zVariable
by number (see <SELECT ,zVAR >) is more efficient. Required arguments are as follows:

in: $varName

zVariable name. This may be at most CDF_ VAR NAME LEN256 characters (excluding the NUL
terminator).

The only required preselected object/state is the current CDF.
<SELECT ,zVAR RECCOUNT >
Selects the current record count for the current zVariable in the current CDF. Required arguments are as
follows:
in: $recCount
Record count.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT _,zZVAR_RECINTERVAL >
Selects the current record interval for the current zVariable in the current CDF. Required arguments are as
follows:
in: $recInterval

Record interval.

The required preselected objects/states are the current CDF and its current zVariable.

109

<SELECT_,zZVAR_RECNUMBER_>
Selects the current record number for the current zVariable in the current CDF. Required arguments are as
follows:
in: $recNum
Record number.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT_,zZVAR_RESERVEPERCENT >
Selects the reserve percentage to be used for the current zVariable (in the current CDF). This operation is only
applicable to compressed zVariables. The Concepts chapter in the CDF User's Guide describes the reserve
percentage scheme used by the CDF library. Required arguments are as follows:
in: $percent
The reserve percentage.
The required preselected objects/states are the current CDF and its current zVariable.
<SELECT_,zZVAR_SEQPOS_>
Selects the current sequential value for sequential access for the current zVariable (in the current CDF). Note
that a current sequential value is maintained for each zVariable individually. Required arguments are as follows:
in: $recNum
Record number.

in: \@indices

Dimension indices. Each element of indices specifies the corresponding dimension index. For 0-
dimensional zVariables this argument is ignored (but must be present).

The required preselected objects/states are the current CDF and its current zVariable.
<SELECT ,zVARs CACHESIZE >
Selects the number of cache buffers to be used for all of the zVariable files (of the current CDF). This operation
is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching
scheme used by the CDF library. Required arguments are as follows:
in: $numBuffers
The number of cache buffers to be used.
The only required preselected object/state is the current CDF.
<SELECT ,zVARs RECNUMBER >
Selects the current record number for each zVariable in the current CDF. This operation is provided to simplify
the selection of the current record numbers for the zVariables involved in a multiple variable access operation
(see the Concepts chapter in the CDF User’s Guide). Required arguments are as follows:

in: $recNum

Record number.

110

The only required preselected object/state is the current CDF.

4.7 More Examples

Several more examples of the use of CDFlib follow. in each example it is assumed that the current CDF has already
been selected (either implicitly by creating/opening the CDF or explicitly with <SELECT ,CDF >).

4.7.1 rVariable Creation

In this example an rVariable will be created with a pad value being specified; initial records will be written; and the
rVariable's blocking factor will be specified. Note that the pad value was specified before the initial records. This
results in the specified pad value being written. Had the pad value not been specified first, the initial records would
have been written with the default pad value. It is assumed that the current CDF has already been selected.

my $status; # Status returned from CDF library.
my @dimVarys; # Dimension variances.

my $varNum; # rVariable number.

my $padValue = -999.9; # Pad value.

$dimVarys[0] = VARY;
$dimVarys[1] = VARY;
$status = CDF::CDFlib (CREATE , rVAR , "HUMIDITY", CDF_REAL4, 1, VARY, \@dimVarys, \$varNum,
PUT , rVAR PADVALUE , \$padValue,
rVAR_INITIALRECS , 500,
rVAR BLOCKINGFACTOR , 50,
NULL_);
if ($status = CDF_OK) UserStatusHandler ($status);

4.7.2 zVariable Creation (Character Data Type)

In this example a zVariable with a character data type will be created with a pad value being specified. It is assumed
that the current CDF has already been selected.

my $status; # Status returned from CDF library.
my @dimVarys; # Dimension variances.

my $varNum; # zVariable number.

my $numDims = 1; # Number of dimensions.

111

my @dimSizes = { 20 }; # Dimension sizes.
my $numElems = 10; # Number of elements (characters in this case).
my SpadValue = "*¥¥iksksskiskn, # Pad value.

$dimVarys[0] = VARY;
$status = CDF::CDFlib (CREATE , zVAR_, "Station", CDF_CHAR, $numElems, $numDims,
\@dimSizes, NOVARY, \@dimVarys, \$varNum,
PUT , zVAR PADVALUE , \$padValue,
NULL_);
if ($status = CDF_OK) UserStatusHandler ($status);

4.7.3 Hyper Read with Subsampling

In this example an rVariable will be subsampled in a CDF whose rVariables are 2-dimensional and have dimension
sizes [100,200]. The CDF is row major, and the data type of the rVariable is CDF _UINT2. It is assumed that the
current CDF has already been selected.

my $status; # Status returned from CDF library.

my @values; # Buffer to receive values.

my $recCount = 1; # Record count, one record per hyper get.

my $recinterval = 1; # Record interval, set to one to indicate contiguous records
(really meaningless since record count is one).

my @indices = (0,0); # Dimension indices, start each read at 0,0 of the array.

my @counts = (50,100); # Dimension counts, half of the values along
each dimension will be read.

my @intervals = (2,2); # Dimension intervals, every other value along
each dimension will be read.

my $recNum; # Record number.

my $maxRec; # Maximum rVariable record number in the CDF - This was
#

determined with a call to CDFinquire.

$status = CDF::CDFlib (SELECT , rVAR_NAME_, "BRIGHTNESS",
rVARs RECCOUNT , $recCount,
rVARs RECINTERVAL , S$reclnterval,
rVARs DIMINDICES , \@indices,
rVARs DIMCOUNTS , \@counts,
rVARs DIMINTERVALS , \@intervals,

NULL);
if ($status != CDF_OK) UserStatusHandler ($status);

for ($recNum = 0; $recNum <= $maxRec; $recNum++) {
$status = CDF::CDFlib (SELECT , rVARs RECNUMBER , $recNum,
GET_, rVAR_HYPERDATA_, \@values,
NULL);
if ($status != CDF_OK) UserStatusHandler ($status);

112

process values

4.7.4

Attribute Renaming

In this example the attribute named Tmp will be renamed to TMP. It is assumed that the current CDF has already been

selected.

my

$status;

#

Status returned from CDF library.

$status = CDF::CDFlib (SELECT , ATTR NAME , "Tmp",
PUT_, ATTR NAME, "TMP",

NULL);

if ($status != CDF_OK) UserStatusHandler ($status);

4.7.5

Sequential Access

In this example the values for a zVariable will be averaged. The values will be read using the sequential access method
(see the Concepts chapter in the CDF User's Guide). Each value in each record will be read and averaged. It is
assumed that the data type of the zVariable has been determined to be CDF_REAL4. It is assumed that the current

CDF has already been selected.

my
my
my
my
my
my
my
my

$status;
$varNum,;
$recNum =
@indices =
$value;
$sum = 0.0;
$count= 0;
Save;

0;
(0,0);

FHoH H H HHHFH®

Status returned from CDF library.
zVariable number.

Record number, start at first record.
Dimension indices.

Value read.

Sum of all values.

Number of values.

Average value.

$status = CDF::CDFlib (GET , zZVAR NUMBER , "FLUX", \$varNum,

NULL);

if (status = CDF_OK) UserStatusHandler ($status);
$status = CDF::CDFlib (SELECT , zVAR , $varNum,

zVAR_SEQPOS _, $recNum, \@indices,

113

GET , zZVAR _SEQDATA , \$value,
NULL);

while ($status _>= CDF_OK) {
$sum += $value;
$count++;
$status = CDF::CDFlib (GET_, zVAR_SEQDATA , \$value,
NULL);

}
if ($status = END_OF_VAR) UserStatusHandler ($status);

$ave = $sum / Scount;

4.7.6 Attribute rEntry Writes

In this example a set of attribute rEntries for a particular rVariable will be written.

has already been selected.

my $status; # Status returned from CDF library.
my @scale = (-90.0,90.0); # Scale, minimum/maximum.

$status = CDF::CDFlib (SELECT , tENTRY NAME , "LATITUDE",
ATTR NAME , "FIELDNAM",
PUT , rENTRY DATA , CDF CHAR, 20, "Latitude
SELECT , ATTR NAME , "SCALE",
PUT , rENTRY DATA , CDF REAL, 4,2, \@scale,
SELECT , ATTR_NAME , "UNITS",

PUT_ , tENTRY DATA , CDF CHAR, 20, "Degrees north

NULL);
if ($status != CDF_OK) UserStatusHandler ($status);

4.7.7 Multiple zVariable Write

It is assumed that the current CDF

In this example full-physical records will be written to the zVariables in a CDF. Note the ordering of the zVariables
(see the Concepts chapter in the CDF User's Guide). It is assumed that the current CDF has already been selected.

my $status; # Status returned from CDF library.
my $time; # “Time' (short) value.
my $vectorA; # ‘vectorA' (characters of 3) values.

114

my @vectorB; # ‘vectorB' (5 doubles) values.

my $recNumber; # Record number.
my @bulffer; # Buffer of full-physical records.
my @varNumbers; # Variable numbers.

$status = CDF::CDFlib (GET_, zZVAR NUMBER , "vectorB", \$varNumbers[0],
zVAR_NUMBER , "time", \$varNumbers[1],
zVAR_NUMBER , "vectorA", \$varNumbers[2],
NULL);
if ($status = CDF_OK) UserStatusHandler ($status);

my $ii;
for ($recNumber = 0; $recNumber < 100; $recNumber++) {

read values from input file

for ($ii = 0; $ii < 5; Sii++) {
$buffer[$ii] = $vectorB[$ii];
§

$buffer[5] = $time;

$buffer[6] = $vectorA,;

$status = CDF::CDFlib (SELECT , zVARs RECNUMBER , $recNumber,
PUT_, zVARs RECDATA , 3, \@varNumbers, \@buffer,
NULL);

if ($status != CDF_OK) UserStatusHandler ($status);

Note that it would be more efficient to read the values directly into buffer. The method shown here was used to
illustrate how to create the buffer of full-physical records.

4.8 A Potential Mistake We Don't Want You to Make

The following example illustrates one of the most common mistakes made when using the Internal Interface in a Perl
application. Please don't do something like the following:

my $id; # CDF identifier (handle).
my $status; # Status returned from CDF library.
my $varNum; # zVariable number.

$status = CDF::CDFlib (SELECT , CDF_, $id,
GET , zZVAR NUMBER , "EPOCH", \$varNum,
SELECT_, zVAR_, $varNum, # ERROR!
NULL);

115

if ($status = CDF_OK) UserStatusHandler ($status);

It looks like the current zVariable will be selected based on the zVariable number determined by using the
<GET_,zZVAR NUMBER > operation. = What actually happens is that the zVariable number passed to the
<SELECT ,zVAR_> operation is undefined. This is because the varNum is passed by value rather than reference.?
Since the argument list passed to CDFlib is created before CDFlib is called, varNum does not yet have a value. Only
after the <GET ,zZVAR NUMBER > operation is performed does varNum have a valid value. But at that point it's too
late since the argument list has already been created. In this type of situation you would have to make two calls to
CDFlib. The first would inquire the zVariable number and the second would select the current zVariable.

26 Fortran programmers can get away with doing something like this because everything is passed by reference.

116

Chapter 5

S Quick Interface

The Quick Interface functions described in this chapter represent a set of easy to use functions that are based on
Internal Interface to acquire information from the CDF library, a CDF file, its variable and variable data. Normally, a
few basic calls to Internal Interface calls are needed to accomplish a function. These functions perform the basics for
users so the data can be returned easily. Any function in this Interface that deals with a variable, either its data or
attribute, applies only to zVariable.

5.1 CDFgetLIBInfo

($status, %info) = CDF::CDFgetLIBInfo();
CDFgetLIBInfo returns the currrent library version, release and increment information, along with the leap second
table information. The latest leap second added to the leap second table is returned. Both fields are presented in a Perl

Hash object.

No arguments to CDFgetLIBInfo are needed.

5.1.1 Example(s)

The following example shows what the current CDF library and the leap second table are used.

my S$status; # Returned status code.
my %info; # Returned hash.

($status, %info) = CDF::CDFgetLIBInfo();
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
print Dumper(\%info);

$VARI = {
'LATEST_LEAPSECOND_IN_TABLE'=>20170101,

117

'LIB_ VERSION' => '3.8.0'
};

5.2 CDFgetCDFInfo

($status, %info) = CDF::CDFgetCDFInfo($cdf);

CDFgetCDFInfo returns the information about a specified CDF. The information includes the name (if available), its
format, majority, encoding, file version, the number of global and variable attributes, the number of rVariables and
zVariables. It also has the time tag about the leap second table that this file is based on (only applicable if the CDF has
TT2000 epoch data type variables). All fields are presented in a Perl Hash object.

The argument to CDFgetCDFInfo is defined as follow:

cdf The cdf name or identifier. The identifier is from a CDF open or created process. If the
argument is a CDF name, the file is open and then closed after the information is acquired.
For an identifier, the file will not be closed after the information is returned.

5.2.1 Example(s)

The following example shows the information for a given CDF.

my S$status; # Returned status code.
my %info; # Returned hash.

($status, %info) = CDF::CDFgetCDFInfo(“testfile”);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
print Dumper(\%info);

$VARI = {
'FORMAT' => 'SINGLE/,
'NAME' => 'testfile',
'BASED LEAPSECOND_LAST UPDATED'=>20170101,
'NUMgATTRS' => 5,
'MAJORITY' =>"'ROW',
'NUMrVARS'=> (),
'ENCODING' =>'IBMPC',
'CDF_VERSION'=>"3.8.0/,
'NUMzVARS'=> 22,
'NUMVATTRS'=> 7,

I

118

5.3 CDFgetGlobalMetaData

($status, %info) = CDF::CDFgetGlobalMetaData($cdf [, \@globalids] [, $metaEncoding]);

CDFgetGlobalMetaData returns all or a list of selected global attributes from the spcified CDF. All fields are presented
in a Perl Hash object. All data of epoch data types will be encoded accordingly.

The arguments to CDFgetGlobalMetaData is defined as follows:
cdf The cdf name or identifier. If the CDF name is specified, the CDF will be open and then

closed after the information is acquired. The identifier is from an open or created CDF
process. The file will not be closed when the information is returned.

Optionally,
globalids A list of selected global attribute names or identifiers to be read. For reading all attributes,
passing in a reference to an empty array. If the followinging attribute: metatEncoding is
specified, the this argument is required.
Optionally,
metaEncoding Whether to encode the CDF epoch data into date/time string form. With a value of 1, the

default, the epoch data is encoded. With a value of 0 or this argument not provided, the data
will return as is.

5.3.1 Example(s)

The following example first shows all of the global attributes from a given CDF, testfile. The second example reads
only 2 global variables: “Globall” and “Global3”.

my S$status; # Returned status code.
my %info; # Returned hash.

($status, %info) = CDF::CDFgetGlobalMetaData(“testfile”);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
print Dumper(\%info);

$VARI = {
'epTestDate' => {
'0' =>"2004-05-13T15:08:11.022033044055'

}’
'Test' => {
"11'=> 4294967295,
7= 1’
= 15'5v’
'0'=>'5.3432/,
'16'=> 255,
'13'=> 65535,
'6' =>-32768,
13 => 15'5v’

119

'9'=>4,
12" => 4294967295,
'14'=> 65535,
'15'=> 255,
'8'=>3,
'4'=>1,
'10' => 'This is a string',
'5'=>1
’s
'"Project' => {
'0' => "Using the CDFJava API'
}s
'PI' => {
'3'=>"Ernie Els'
’s
'"TestDate' => {
'1'=>"2002-04-25T00:00:00.000',
'2'=>"2008-02-04T06:08:10.012014016'
}

my $id;

$status = CDF::CDFlib(&OPEN _, &CDF _, “tesfile”, \$id, &NULL);
my @globals = (“Globall”, “Global2”);

($status, %info) = CDF::CDFgetGlobalMetaData($id, \@globals);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

5.4 CDFgetVarlnfo

($status, %info) = CDF::CDFgetVarInfo($cdf, [$varName | $varid]);

CDFgetVarlnfo returns specification about a given variable from the spcified CDF. The information includes its name,
data type, number of elements, number of dimensions, dimensional sizes and variances if its dimension > 0, record
variance, and last written record number (as MaxRec). All fields are presented in a Perl Hash object. All data of epoch
data types will be encoded accordingly. zMODEon2 will be selected to present the dimensionality of rVariables, which
eliminates all non-varying dimensions. As the CDF is selected as zMODE2, where all varaibles are handled as
zVariables, the zVariable numbers need to be properly set if the CDF has both rVariables and zVariables. For example,
a CDF with 3 rVariables, the first zVariable number should be 3 (as 0 + 3), the second zVariable shule be 4 (as 1 + 3).

The arguments to CDFgetVarInfo are defined as follows:

cdf The CDF file name or an identifier of an open/created CDF. If a file name is specified, the
file will be closed after the information is returned.

varName The variable name, the preferred form.

Or,
varid The identifier of a zVariable.

120

5.4.1 Example(s)

The following example shows the information from variable: “Latitude” in a CDF: “testfile”.

my $id; # CDF identifier
my $status; # Returned status code.
my %info; # Returned hash.

$status = CDF::CDFlib(&OPEN _, &CDF _, “testfile”, \$id, &NULL);
($status, %info) = CDF::CDFgetVarInfo($id, “Latitude™);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

print Dumper(\%info);

$VARI = {
'VarName' => 'Latitude’',
'NumElems' => 1,
'RecVary' => 'False/,
'NumDims' => 1,
'DimVarys' => {
'0'=> True'
’s
'DataType' =>'CDF_INT1',
'DimSizes' => {
'0'=>3
’s
'MaxRec' => 0
35

5.5 CDFgetVarAllData

($status, @data) = CDF::CDFgetVarAllData($id, [$varName | $varid] [,$dataEncoding][,$matrix]);

CDFgetVarAllData returns all data for a given variable from the spcified CDF in an array object. The variable can be
entered as a name or number. As the CDF is selected as zZMODE?2, where all varaibles are handled as zVariables, the
zVariable numbers need to be properly set if the CDF has both rVariables and zVariables. For example, a CDF with 3
rVariables, the first zVariable number should be 3 (as 0 + 3), the second zVariable shule be 4 (as 1 + 3).

The arguments to CDFgetVarAllData are defined as follows:
cdf The CDF file name or an identifier of an open/created CDF. If a file name is specified, the
file will be closed after the information is returned.
varName The variable name, the preferred form.

Or,
varid The identifier of a zVariable.

121

Optionally,

dataEncoding

matrix

Whether to encode the CDF epoch data into date/time string. With a value of 1, the epoch
data is encoded. With a value of 0 or this argument not provided, the data will return as is. If

the following argument, matrix, is provided, then this argument needs to be provided as
well.

With this option, the returned data is presented in a matrixized form reflecting the variable’s
dimensions if a value is 1. If the variable has multiple data records, then an extra dimension
as the first element is added. For a value of 0, the default, or without this argument, a simple
vector of data is returned.

5.5.1 Example(s)

The following example reads all variable data, a total of 3 records, from variable: “Latitudel”, a 1-D dimension of 3
elements with type: CDF_INT2, in a CDF: “testfile”.

my $id;
my S$status;
my (@data;

CDF identifier
Returned status code.
Returned data.

$status = CDF::CDFlib(&OPEN _, &CDF _, “testfile”, \$id, &NULL);

($status, @data) = CDF::CDFgetVarAllData($id, “Latitude”);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

print Dumper(\@data);

$VARI =
254,
254,
5,
15,
25,
35,
100,
128,
255
I

($status, @data) = CDF::CDFgetVarAllData($id, “Latitude”, 0, 1);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);

print Dumper(\@data);

$VARI =
[
254,
254,
5
1,
[

122

5.6 CDFgetVarMetaData

($status, %info) = CDF::CDFgetVarMetaData($id, [$varName | $varid] [,$metaEncoding]);

CDFgetVarMetaData returns all the variable attribute information for a given variable from the spcified CDF. All fields
are presented in a Perl Hash object. All data of epoch type type will be encoded accordingly. As the CDF is selected as
zZzMODE?2, where all varaibles are handled as zVariables, the zVariable numbers need to be properly set if the CDF has
both rVariables and zVariables. For example, a CDF with 3 rVariables, the first zVariable number should be 3 (as 0 +
3), the second zVariable shule be 4 (as 1 + 3).

The arguments to CDFgetVarMetaData are defined as follows:

id The CDF file name or an identifier of an open/created CDF. If a file name is specified, the
file will be closed after the information is returned.

varName The variable name, the preferred form.
o varid The identifier of a zVariable.
Optionally,
metaEncoding Whether to encode the CDF epoch data into date/time string form. With a value of 1, the
epgch data is encoded. With a value of 0 or this argument not provided, the data will return
as is.

5.6.1 Example(s)

The following example shows the variable attributes from variable: “Latitude” in a given CDF.

my $id; # CDF identifier
my S$status; # Returned status code.
my %info; # Returned hash.

123

($status, %info) = CDF::CDFgetVarMetaData($id, “Latitude”);
UserStatusHandler (“1.0”. $status) if ($status < CDF_OK);
print Dumper(\%info);

$VARI = {
'FILLVAL' => 111,
'validmin' => 20,
"'VALIDMAX' => 90
b

124

6 Interpreting CDF Status Codes

Most CDF functions return a status code. The symbolic names for these codes are defined in cdf.h and should be used
in your applications rather than using the true numeric values. Appendix A explains each status code. When the status
code returned from a CDF function is tested, the following rules apply.

status > CDF_OK Indicates successful completion but some additional information is
provided. These are informational codes.

status = CDF_OK Indicates successful completion.

CDF_WARN < status < CDF_OK Indicates that the function completed but probably not as expected.
These are warning codes.

status < CDF_WARN Indicates that the function did not complete. These are error
codes.

The following example shows how you could check the status code returned from CDF functions.

my S$status;

$status = CDF::CDFfunction (...); # any CDF function returning status
if ($status = CDF_OK) {
UserStatusHandler (“1.0”, $status);

}
In your own status handler you can take whatever action is appropriate to the application. An example status handler
follows. Note that no action is taken in the status handler if the status is CDF_OK.

sub UserStatusHandler {
my ($where, $status)=@,_;

print "Aborting at $where ...\n";
if ($status < CDF_OK) {
my $text;
CDF::CDFlib (SELECT _, CDF_STATUS , $status,
GET , STATUS_TEXT , \Stext,
NULL);
print $text;
}
CDF::CDFlib (CLOSE , CDF _,
NULL);
print "...test aborted.\n";

125

exit;

}#endsub QuitCDF

Explanations for all CDF status codes are available to your applications through the function CDFerror. CDFerror
encodes in a text string an explanation of a given status code.

126

Chapter 6

7 EPOCH Utility Routines

Several functions exist that compute, decompose, parse, and encode CDF_EPOCH and CDF_EPOCH]16 values. These
functions may be called by applications using the CDF_EPOCH and CDF _EPOCH16 data types and are included in
the CDF library. Function prototypes for these functions may be found in the include file cdf.h. The Concepts chapter
in the CDF User's Guide describes EPOCH values. The date/time components for CDF_ EPOCH and CDF_EPOCH16
are UTC-based, without leap seconds.

The CDF_EPOCH and CDF _EPOCH16 data types are used to store time values referenced from a particular epoch.
For CDF that epoch values for CDF _EPOCH and CDF_EPOCH16 are 01-Jan-0000 00:00:00.000 and 01-Jan-0000
00:00:00.000.000.000.000, respectively.

7.1 computeEPOCH

computeEPOCH calculates a single CDF_EPOCH value, given the individual components, or an array of values, given
an array of individual components . If an illegal component is detected, the wvalue returned will be
ILLEGAL EPOCH_VALUE.

CDF::computeEPOCH(# out -- CDF_EPOCH value returned.

my S$year, # in -- Year (AD, e.g., 1994).

my $month, # in -- Month (1-12).

my $day, # in -- Day (1-31).

my S$hour, # in -- Hour (0-23).

my S$minute, # in -- Minute (0-59).

my $second, # in -- Second (0-59).

my $msec); # in -- Millisecond (0-999).
CDF::computeEPOCH(# out -- an array of CDF_EPOCH values returned.

my \@year, # in -- Years (AD, e.g., 1994).

my \@month, # in -- Months (1-12).

my \@day, # in -- Days (1-31).

my \@hour, # in -- Hours (0-23).

my \@minute, # in -- Minutes (0-59).

my \@second, # in -- Seconds (0-59).

my \@msec); # in -- Milliseconds (0-999).

127

NOTE: There are two variations on how computeEPOCH may be used. If the month argument is 0 (zero), then the
day argument is assumed to be the day of the year (DOY) having a range of 1 through 366. Also, if the hour, minute,
and second arguments are all 0 (zero), then the msec argument is assumed to be the millisecond of the day having a
range of 0 through 86400000.

7.2 EPOCHbreakdown

EPOCHbreakdown decomposes a single CDF_EPOCH value or an array of CDF_EPOCH values into the individual
components.

CDF::EPOCHbreakdown(

my $epoch, # in -- The CDF_EPOCH value.

my $year, # out -- Year (AD, e.g., 1994).

my $month, # out -- Month (1-12).

my $day, # out -- Day (1-31).

my $hour, # out -- Hour (0-23).

my $minute, # out -- Minute (0-59).

my $second, # out -- Second (0-59).

my $msec); # out -- Millisecond (0-999).
CDF::EPOCHbreakdown(

my \@epoch, # in -- Array of CDF _EPOCH values.

my \@year, # out -- Years (AD, e.g., 1994).

my \@month, # out -- Months (1-12).

my \@day, # out -- Days (1-31).

my \@hour, # out -- Hours (0-23).

my \@minute, # out -- Minutes (0-59).

my \@second, # out -- Seconds (0-59).

my \@msec); # out -- Milliseconds (0-999).

7.3 toEncodeEPOCH

toEncodeEPOCH encodes a single CDF_EPOCH value or an array of CDF_EPOCH values into one of the defined
date/time character string(s), based on the passed style. The style is one of the following values:

-0: dd-mmm-yyyy hh:mm:ss.ccc where dd is the day of the month (1-31), mmm is the month (Jan, Feb, Mar,
Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is the minute (0-59), ss is
the second (0-59), and ccc is the millisecond (0-999).

-1: yyyymmdd.ttttttt where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31), ttttttt is
a fraction of day.

-2: yyyymmddhhmnss where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31), hh is
the hour (0-23), mn is the minute (0-59), ss is the second (0-59).

-3: yyyy-mm-ddThh:mn:ss.cccZ where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-
31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), and ccc is the millisecond (0-999).

-4: yyyy-mm-ddThh:mn:ss.ccc where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-
31), hh is the hour (0-23), mn is the minute (0-59), ss is the second (0-59), and ccc is the millisecond (0-999).

128

Each epString has the length of EPOCH

CDF::toEncodeEPOCH(
my $epoch;
my $style;
my $epString);

CDF::toEncodeEPOCH(
my \@epoch;
my $style;
my \@epString);

H oH H

#
#
#

in -- The CDF_EPOCH value.
in -- The encoded style.
out -- The standard date/time character string.

in -- Array of CDF_EPOCH values.
in -- The encoded style.
out -- The standard date/time character string array.

STRING_LEN, EPOCH1_STRING LEN, EPOCH2_ STRING LEN,

EPOCH3 STRING LEN or EPOCH4 STRING LEN, defined in Perl-CDF package. Passing style 0 is similar to
calling encodeEPOCH. Passing style 1 is similar to calling encodeEPOCHI. Passing style 2 is similar to calling
encodeEPOCH2. Passing style 3 is similar to calling encodeEPOCH3. Passing style 4 is similar to calling
encodeEPOCH4. Style 4 calling is the currently most used, as it is comforming to ISO 8601 format.

7.4

encodeEPOCH

encodeEPOCH encodes a single CDF_EPOCH value or an array of CDF_EPOCH values into the standard date/time
character string(s). The format of the string is dd-mmm-yyyy hh:mm:ss.ccc where dd is the day of the month (1-31),
mmm is the month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-
23), mm is the minute (0-59), ss is the second (0-59), and ccc is the millisecond (0-999).

CDF::encodeEPOCH(
my $epoch;
my $epString);

CDF::encodeEPOCH(
my \@epoch;
my \@epString);

#
#

in -- The CDF_EPOCH value.
out -- The standard date/time character string.

in -- Array of CDF_EPOCH values.
out -- The standard date/time character string array.

Each epString has the length of EPOCH_STRING LEN, defined in Perl-CDF package.

7.5

encodeEPOCH1

encodeEPOCHI1 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyymmdad.ttttttt, where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31), and ttttttt is the
fraction of the day (e.g., 5000000 is 12 o'clock noon).

CDF::encodeEPOCH1(
my $epoch;
my $epString);

in -- The CDF_EPOCH value.
out -- The alternate date/time character string.

epString has a length of EPOCH1_STRING LEN.

129

7.6 encodeEPOCH2

encodeEPOCH2 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyymoddhhmmss where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is the hour (0-
23), mm is the minute (0-59), and ss is the second (0-59).

CDF::encodeEPOCH2(
my $epoch; # in -- The CDF_EPOCH value.
my $epString); # out -- The alternate date/time character string.

spString has a length of EPOCH2_ STRING LEN.

7.7 encodeEPOCH3

encodeEPOCH3 encodes a CDF_EPOCH value into an alternate date/time character string. The format of the string is
yyyy-mo-ddThh:mm:ss.cccZ where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is
the hour (0-23), mm is the minute (0-59), ss is the second (0-59), and ccc is the millisecond (0-999).

CDF::encodeEPOCH3(
my $epoch; # in -- The CDF_EPOCH value.

my \$epString); # out -- The alternate date/time character string.

epString has a length of EPOCH3 STRING LEN.

7.8 encodeEPOCH4

EncodeEPOCH4 encodes a CDF_EPOCH value into an alternate. ISO 8601 date/time character string. The format of
the string is yyyy-mo-ddThh:mm:ss.ccc where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-
31), hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59), and ccc is the millisecond (0-999).

CDF::encodeEPOCH4(
my $epoch; # in -- The CDF_EPOCH value.
my $epString); # out -- The ISO 8601 date/time character string.

epString has a length of EPOCH4 STRING LEN.

7.9 encodeEPOCHXx

encodeEPOCHXx encodes a CDF_EPOCH value into a custom date/time character string. The format of the encoded
string is specified by a format string.

CDF::encodeEPOCHXx(
my $epoch; # in -- The CDF_EPOCH value.

130

my $format; # in ---The format string.
my $encoded); # out -- The custom date/time character string.

The encoded string has a length up to EPOCHx_STRING MAX. The format string consists of EPOCH components,
which are encoded, and text that is simply copied to the encoded custom string. Components are enclosed in angle
brackets and consist of a component token and an optional width. The syntax of a component is: <token[.width]>. If
the optional width contains a leading zero, then the component will be encoded with leading zeroes (rather than leading
blanks).

The supported component tokens and their default widths are as follows. . .

Token Meaning Default
dom Day of month (1-31) <dom.0>
doy Day of year (001-366) <doy.03>
month Month ("Jan',"Feb',...,"Dec") <month>
mm Month (1,2,...,12) <mm.0>
year Year (4-digit) <year.04>
yr Year (2-digit) <yr.02>
hour Hour (00-23) <hour.02>
min Minute (00-59) <min.02>
sec Second (00-59) <sec.02>
fos Fraction of second. <fos.3>
fod Fraction of day. <fod.8>

Note that a width of zero indicates that as many digits as necessary should be used to encoded the component. The
<month> component is always encoded with three characters. The <fos> and <fod> components are always encoded
with leading zeroes.

If a left angle bracket is desired in the encoded string, then simply specify two left angle brackets (<<) in the format
string (character stuffing).

For example, the format string used to encode the standard EPOCH date/time character string (see Section 7.3) would
be. ..

<dom.02>-<month>-<year> <hour>:<min>:<sec>.<fos>

EPOCHx FORMAT LEN and EPOCHx STRING MAX are defined in cdf.h.

710 toParseEPOCH

toParseEPOCH parses a single or an array of encoded date/time string(s). The date/time string must conform to one of
the encode styles (through the time encoding function for CDF_EPOCH value). This generalized function can be
replaced all parsing functions for CDF_EPOCH type.

$epoch = CDF::toParse EPOCH(# out -- CDF_EPOCH value returned.
my $epString); # in -- The standard date/time character string.
@epochs = CDF::toParseEPOCH(# out -- Anarray of CDF_EPOCH values returned.
my \@epString); # in -- The standard date/time character strings.

131

711 parseEPOCH

parseEPOCH parses a single, standard date/time character string or array of strings and returns a CDF EPOCH
value(s). The format of the string is that produced by the encodeEPOCH function described in Section 7.3. If an
illegal field is detected in the string the value returned will be ILLEGAL EPOCH_VALUE.

$epoch = CDF::parseEPOCH(# out -- CDF_EPOCH value returned.
my $epString); # in -- The standard date/time character string.
@epochs = CDF::parseEPOCH(# out -- Anarray of CDF_EPOCH values returned.
my \@epString); # in -- The standard date/time character strings.

7.12 parseEPOCHI1

parseEPOCHI parses an alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encodeEPOCH1 function described in Section 7.4. If an illegal field is detected in the
string the value returned will be ILLEGAL EPOCH_VALUE.

$epoch = CDF::parseEPOCH 1(# out -- CDF_EPOCH value returned.
my $epString); # in -- The alternate date/time character string.

7.13 parseEPOCH2

parseEPOCH?2 parses an alternate date/time character string and returns a CDF_EPOCH value. The format of the
string is that produced by the encodeEPOCH?2 function described in Section 7.6. If an illegal field is detected in the
string the value returned will be ILLEGAL EPOCH_VALUE.

$epoch = CDF::parseEPOCH2(# out -- CDF_EPOCH value returned.
my $epString); # in -- The alternate date/time character string.

7.14 parseEPOCH3

parseEPOCH3 parses an alternate, ISO8601 date/time character string and returns a CDF_EPOCH value. The format
of the string is that produced by the encodeEPOCH3 function described in Section 7.7. If an illegal field is detected in
the string the value returned will be ILLEGAL EPOCH_VALUE.

$epoch = CDF::parseEPOCH3(# out -- CDF_EPOCH value returned.
my $epString); # in -- The ISO8601 date/time character string.

7.15 parseEPOCH4

132

ParseEPOCH4 parses an alternate, ISO8601 date/time character string and returns a CDF_EPOCH value. The format
of the string is that produced by the encodeEPOCH4 function described in Section 7.8. If an illegal field is detected in
the string the value returned will be ILLEGAL EPOCH_VALUE.

$epoch = CDF::parseEPOCH4(# out -- CDF_EPOCH value returned.
my $epString); # in -- The ISO8601 date/time character string.

716 computeEPOCH16

computeEPOCH16 calculates a CDF_EPOCH16 value, a two-double array, given the individual components. If an
illegal component is detected, the value returned will be ILLEGAL EPOCH_VALUE.

$dummy = CDF::computeEPOCH16(# out -- status code returned.
my $year, # in -- Year (AD, e.g., 1994).
my $month, # in -- Month (1-12).
my $day, # in -- Day (1-31).
my $hour, # in -- Hour (0-23).
my $minute, # in -- Minute (0-59).
my $second, # in -- Second (0-59).
my $msec, # in -- Millisecond (0-999).
my $microsec, # in -- Microsecond (0-999).
my $nanosec, # in -- Nanosecond (0-999).
my $picosec, # in -- Picosecond (0-999).
my \@epoch16); # out-- CDF_EPOCHI6 value returned

epochl6, an array with two-double elements, contains the epoch time in picoseconds.

7.17 EPOCHI16breakdown

EPOCH]16breakdown decomposes a CDF_EPOCH16 value into the individual components.

CDF::EPOCH16breakdown(

my \@epochl6, # in -- The CDF _EPOCHI16 value.
my $year, # out -- Year (AD, e.g., 1994).
my $month, # out -- Month (1-12).

my $day, # out -- Day (1-31).

my $hour, # out -- Hour (0-23).

my $minute, # out -- Minute (0-59).

my $second, # out -- Second (0-39).

my $msec, # out -- Millisecond (0-999).
my $microsec, # out -- Microsecond (0-999).
my $nanosec, # out -- Nanosecond (0-999).
my $picosec); # out -- Picosecond (0-999).

7.18 toEncodeEPOCH16

133

toEncodeEPOCH16 encodes a single CDF_EPOCH16 value or an array of CDF_EPOCHI16 values into one of tge
defined date/time character string(s), based on the passed style. The style is one of the following values:

-0: dd-mmm-yyyy hh:mm:ss.ccc.uuu.nnn.ppp where dd is the day of the month (1-31), mmm is the month
(Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is the
minute (0-59), ss is the second (0-59), ccc is the millisecond (0-999), uuu is the microsecond (0-999), nnn is
nanosecond (0-999), and ppp is picosecond (0-999).

-1: yyyymmdd.ttttttttttttttt where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31),
ttttttttttttttt is a fraction of day.

-2: yyyymmddhhmnss where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31), hh is
the hour (0-23), mn is the minute (0-59), ss is the second (0-59).

-3: yyyy-mm-ddThh:mn:ss.ccc.uuu.nnn.pppZ where yyyy is the year, mm is the month (1-12), dd is the day of
the month (1-31), hh is the hour (0-23), mn is the minute (0-59), ss is the second (0-59), ccc is the millisecond (0-999),
uuu is the microsecond (0-999), nnn is nanosecond (0-999), and ppp is picosecond (0-999).

-4: yyyy-mm-ddThh:mn:ss.cccuuunnnppp where yyyy is the year, mm is the month (1-12), dd is the day of the
month (1-31), hh is the hour (0-23), mn is the minute (0-59), ss is the second (0-59), ccc is the millisecond (0-999), uuu
is the microsecond (0-999), nnn is nanosecond (0-999), and ppp is picosecond (0-999).

Passing style 0 is the same as calling encodeEPOCH16. Passing style 1 is the same as calling encodeEPOCH16 1.
Passing style 2 is the same as calling encodeEPOCH16 2. Passing style 3 is the same as calling encodeEPOCH16 3.
Passing style 4 is the same as calling encodeEPOCH16 4.

CDF::toEncodeEPOCH16(

my \@epochl6; # in -- The CDF_EPOCHI16 value.
my $style; # in -- The encoded style.
my $epString); # out -- The date/time character string.

epString has a length of EPOCH16 STRING LEN, EPOCHI16 1 STRING LEN, EPOCH16 2 STRING LEN,
EPOCH16 3 STRING LEN, or EPOCH16 4 STRING LEN. Passing style 0 is similar to calling encodeEPOCH16.
Passing style 1 is similar to calling encodeEPOCH16 1. Passing style 2 is similar to calling encodeEPOCH16 2.
Passing style 3 is similar to calling encodeEPOCH16 3. Passing style 4 is similar to calling encodeEPOCH16 4. Style
4 calling is the currently most used, as it is comforming to ISO 8601 format.

7.19 encodeEPOCHI16

encodeEPOCH16 encodes a CDF_EPOCHI16 value into the standard date/time character string. The format of the
string is dd-mmm-yyyy hh:mm:ss.ccc:uuu:nnn:ppp where dd is the day of the month (1-31), mmm is the month
(Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is the
minute (0-59), ss is the second (0-59), ccc is the millisecond (0-999), uuu is the microsecond (0-999), nnn is the
nanosecond (0-999), and ppp is the picosecond (0-999).

CDF::encodeEPOCH16(
my \@epochl6; # in -- The CDF_EPOCHI16 value.
my $epString); # out -- The date/time character string.

epString has a length of EPOCH16_STRING LEN.

7.20 encodeEPOCHI16 1

134

encodeEPOCH16 1 encodes a CDF_EPOCHI16 value into an alternate date/time character string. The format of the
string is yyyymmdd.ttttttttttttttt, where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31), and
ttetteetttttttt is the fraction of the day (e.g., 500000000000000 is 12 o'clock noon).

CDF::encodeEPOCH16_1(
my \@epochl6; # in -- The CDF_EPOCHI16 value.
my $epString); # out -- The date/time character string.

epString has a length of EPOCH16 1 STRING LEN.

7.21 encodeEPOCHI16 2

encodeEPOCH16 2 encodes a CDF_EPOCHI16 value into an alternate date/time character string. The format of the
string is yyyymoddhhmmss where yyyy is the year, mo is the month (1-12), dd is the day of the month (1-31), hh is the
hour (0-23), mm is the minute (0-59), and ss is the second (0-59).

CDF::encodeEPOCH16_2(
my \@epochl6; # in -- The CDF_EPOCHI16 value.
my $epString); # out -- The date/time character string.

epString has a length of EPOCH16 2 STRING LEN.

7.22 encodeEPOCHI16 3

encodeEPOCHI16 3 encodes a CDF_EPOCHI16 value into an alternate date/time character string. The format of the
string is yyyy-mo-ddThh:mn:ss.ccc:uuu:nnn:pppZ where yyyy is the year, mo is the month (1-12), dd is the day of the
month (1-31), hh is the hour (0-23), mn is the minute (0-59), ss is the second (0-59), ccc is the millisecond (0-999), uuu
is the microsecond (0-999), nnn is the nanosecond (0-999), and ppp is the picosecond (0-999).

CDF::encodeEPOCH16_3(
my \@epochl6; # in -- The CDF_EPOCHI16 value.
my $epString); # out -- The alternate date/time character string.

epString has a length of EPOCH16 3 STRING LEN.

7.23 encodeEPOCHI16 4

encodeEPOCHI16 4 encodes a CDF_EPOCHI16 value into an alternate, ISO 8601 date/time character string. The
format of the string is yyyy-mo-ddThh:mn:ss.cccuuunnnppp where yyyy is the year, mo is the month (1-12), dd is the
day of the month (1-31), hh is the hour (0-23), mn is the minute (0-59), ss is the second (0-59), ccc is the millisecond
(0-999), uuu is the microsecond (0-999), nnn is the nanosecond (0-999), and ppp is the picosecond (0-999).

CDF::encodeEPOCH16_4(
my \@epochl6; # in -- The CDF_EPOCHI16 value.

135

my $epString); # out -- The alternate date/time character string.

epString has a length of EPOCH16 4 STRING_ LEN.

7.24 encodeEPOCHI16 x

encodeEPOCH16_x encodes a CDF_EPOCH16 value into a custom date/time character string. The format of the
encoded string is specified by a format string.

CDF::encodeEPOCH16_x(
mt \@epoch16; # in -- The CDF_EPOCHI16 value.
my $format; # in ---The format string.
my $encoded); # out -- The date/time character string.

While the format string has a length up to EPOCHx FORMAT LEN, the encoded string has a length up to
EPOCHx STRING MAX. The format string consists of EPOCH components, which are encoded, and text that is
simply copied to the encoded custom string. Components are enclosed in angle brackets and consist of a component
token and an optional width. The syntax of a component is: <token[.width]>. If the optional width contains a leading
zero, then the component will be encoded with leading zeroes (rather than leading blanks).

The supported component tokens and their default widths are as follows. . .

Token Meaning Default
dom Day of month (1-31) <dom.0>
doy Day of year (001-366) <doy.03>
month Month (*Jan',"Feb',...,"Dec") <month>
mm Month (1,2,...,12) <mm.0>
year Year (4-digit) <year.04>
yr Year (2-digit) <yr.02>
hour Hour (00-23) <hour.02>
min Minute (00-59) <min.02>
sec Second (00-59) <sec.02>
msc Millisecond (000-999) <msc.3>
usc Microsecond (000-999) <usc.3>
nsc Nanosecond (000-999) <nsc.3>
psc Picosecond (000-999) <psc.3>
fos Fraction of second. <fos.12>
fod Fraction of day. <fod.8>

Note that a width of zero indicates that as many digits as necessary should be used to encoded the component. The
<month> component is always encoded with three characters. The <fos> and <fod> components are always encoded
with leading zeroes.

If a left angle bracket is desired in the encoded string, then simply specify two left angle brackets (<<) in the format
string (character stuffing).

For example, the format string used to encode the standard EPOCH date/time character string would be. . .

<dom.02>-<month>-<year> <hour>:<min>:<sec>.<msc>.<usc>.<nsc>.<psc>.<fos>

136

7.25 toParseEPOCH16

toParseEPOCH16 parses a single or an array of encoded date/time string(s). The date/time string must conform to one
of the encode styles (through the time encoding function for CDF_EPOCH16 data). This generalized function can be
replaced all parsing functions for CDF_ EPOCH16 type.

CDF::toParseEPOCH16(# out -- The status code returned.
my $epString; # in -- The standard date/time character string.
my \@epoch16); # out -- CDF_EPOCHI16 value returned.

7.26 parseEPOCHI16

parseEPOCH16 parses a standard date/time character string and returns a CDF_EPOCH16 value. The format of the
string is that produced by the encodeEPOCH16 function. If an illegal field is detected in the string the value returned
will be ILLEGAL EPOCH_VALUE.

CDF::parseEPOCH16(# out -- The status code returned.
my $epString, # in -- The date/time character string.
my \@epoch16); # out -- The CDF_EPOCH]16 value returned

epString has a length of EPOCH16_STRING LEN . epoch is an array of two elements.

7.27 parseEPOCHI16 1

parseEPOCH16 _1 parses An alternate date/time character string and returns a CDF_EPOCH16 value. The format of
the string is that produced by the encodeEPOCH16 1 function. If an illegal field is detected in the string the value
returned will be ILLEGAL EPOCH_VALUE.

CDF::parseEPOCH16_1(# out -- The status code returned.
my $epString, # in -- The date/time character string.
my \@epoch16); # out -- The CDF_EPOCH]16 value returned

epString has a length of EPOCH16_1 STRING LEN . epoch is an array of two elements.

7.28 parseEPOCHI16 2

parseEPOCH16_2 parses an alternate date/time character string and returns a CDF_EPOCH]16 value. The format of
the string is that produced by the encodeEPOCH16 2 function. If an illegal field is detected in the string the value
returned will be ILLEGAL EPOCH_VALUE.

CDF::parseEPOCH16 2(# out -- The status code returned.
my $epString, # in -- The date/time character string.
my \@epoch16); # out -- The CDF_EPOCH]16 value returned

epString has a length of EPOCH16 2 STRING LEN . epoch is an array of two elements

137

7.29 parseEPOCHI16 3

parseEPOCH16_3 parses an alternate date/time character string and returns a CDF_EPOCH]16 value. The format of
the string is that produced by the encodeEPOCH16 3 function. If an illegal field is detected in the string the value
returned will be ILLEGAL EPOCH_VALUE.

CDF::parseEPOCH16 3(# out -- The status code returned.
my SepString, # in -- The date/time character string.
my \@epoch16); # out -- The CDF_EPOCH]16 value returned

epString has a length of EPOCH16 3 STRING_LEN . epoch is an array of two elements

7.30 parseEPOCH16 4

parseEPOCH16_4 parses an alternate, ISO 8601 date/time character string and returns a CDF_EPOCH16 value. The
format of the string is that produced by the encodeEPOCH16_4 function. If an illegal field is detected in the string the
value returned will be ILLEGAL _EPOCH_VALUE.

CDF::parseEPOCH16 3(# out -- The status code returned.
my $epString, # in -- The ISO 8601 date/time character string.
my \@epoch16); # out -- The CDF_EPOCH]16 value returned

epString has a length of EPOCH16 4 STRING_LEN . epoch is an array of two elements

7.31 EPOCHtoUnixTime

EPOCHtoUnixTime converts an epoch time(s) of CDF _EPOCH type into a Unix time(s). A CDF_EPOCH epoch, a
double, is milliseconds from 0000-01-01T00:00:00.000 while Unix time, also a double, is seconds from 1970-01-
01T00:00:00.000. The Unix time can have sub-second, with a time resolution of microseconds, in its fractional part.

CDF::EPOCHtoUnixTime (
my S$epoch, # in -- CDF_EPOCH epoch time.
my $unixTime); # out -- Unix time.

CDF::EPOCHtoUnixTime (

my \@epochs, # in -- CDF_EPOCH epoch times.
my \@unixTimes); # out -- Unix times.

138

7.32 UnixTimetoEPOCH

UnixTimetoEPOCH converts a Unix time(s) into an epoch time(s) of CDF_EPOCH type. A Unix time, a double, is
seconds from 1970-01-01T00:00:00.000 while a CDF_EPOCH epoch, also a double, is milliseconds from 0000-01-
01T00:00:00.000. The Unix time can have sub-second, with a time resolution of microseconds, in its fractional part.
Converting the Unix time to EPOCH will only keep the resolution to milliseconds.

CDF::UnixTimetoEPOCH (

my $unixTime, # in -- Unix time.

my $epoch); # out -- CDF_EPOCH epoch time.
CDF::UnixTimetoEPOCH (

my \@unixTimes, # in -- Unix times.

my \@epochs); #out -- CDF _EPOCH epoch times.

7.33 EPOCH16toUnixTime

EPOCH16toUnixTime converts an epoch time of CDF_EPOCH16 type into a Unix time. A CDF_EPOCH]16 epoch, a
two-double, is picoseconds from 0000-01-01T00:00:00.000.000.000.000 while Unix time, a double, is seconds from
1970-01-01T00:00:00.000. The Unix time can have sub-second, with a time resolution of microseconds, in its
fractional part. Note: As CDF_EPOCH16 has much higher time resolution, sub-microseconds portion of its time might
get lost during the conversion.

CDF::EPOCHI16toUnixTime (
my \@epochs, # in -- CDF_EPOCHI16 epoch time.
my \$unixTimes); # out -- Unix time.

7.34 UnixTimetoEPOCH16

UnixTimetoEPOCH16 converts a Unix time into an epoch time of CDF_EPOCHI16 type. A Unix time, a double, is
seconds from 1970-01-01T00:00:00.000 while a CDF_EPOCH16 epoch, a two-double, is picoseconds from 0000-01-
01T00:00:00.000.000.000.000. The Unix time can have sub-second, with a time resolution of microseconds, in its
fractional part. Sub-microseconds will be filled with 0’s when converting from Unix time to EPOCH]16.

CDF::UnixTimetoEPOCH16 (
my $unixTime, # in -- Unix time.
my \@epochs); # out -- CDF_EPOCHI16 epoch times.

139

141

8§ TT2000 Utility Routines

Several functions exist that compute, decompose, parse, and encode CDF_TIME TT2000 values. These functions may
be called by applications using the CDF _TIME TT2000 data type and are included in the CDF library. The Concepts
chapter in the CDF User's Guide describes CDF TIME TT2000 values. The date/time components for
CDF _TIME TT2000 are UTC-based, with leap seconds.

The CDF_TIME TT2000 data type is used to store time values referenced from J2000 (2000-01-
01T12:00:00.000000000). For CDF, values in CDF_TIME_TT2000 are nanoseconds from J2000 with leap seconds
included. TT2000 data can cover years between 1707 and 2292.

8.1 computeTT2000

computeTT2000 calculates a single CDF TIME TT2000 value, given the individual UTC-based date/time
components, or array of date/time components. If an illegal component is detected, e.g., the year is outside of the valid
range for TT2000 data, the value returned will be ILLEGAL TT2000 VALUE.

$tt2000 = CDF::compute TT2000(# out -- CDF_TIME TT2000 value returned.
my S$year, # in -- Year (AD, e.g., 1994).
my $month, # in -- Month (1-12).
my $day, # in -- Day (1-31).
my S$hour, # in -- Hour (0-23).
my $minute, # in -- Minute (0-59).
my $second, # in -- Second (0-59 or 0-60 if leap second).
my $msec; # in -- Millisecond (0-999).
my S$usec, # in -- Microsecond (0-999).
my $nsec); # in -- Nanosecond (0-999).

@tt2000 = CDF::computeTT2000(# out -- An array of CDF TIME TT2000 values returned.
my \@year, # in -- Years (AD, e.g., 1994).
my \@month, # in -- Months (1-12).
my \@day, # in -- Days (1-31).
my \@hour, # in -- Hours (0-23).
my \@minute, # in -- Minutes (0-59).
my \@second, # in -- Seconds (0-59 or 0-60 if leap second).
my \@msec; # in -- Milliseconds (0-999).
my \@usec, # in -- Microseconds (0-999).
my \@nsec); # in -- Nanoseconds (0-999).

NOTE: There are two variations on how computeEPOCH may be used. If the month argument is 0 (zero), then the
day argument is assumed to be the day of the year (DOY) having a range of 1 through 366. Also, if the hour, minute,
and second arguments are all 0 (zero), then the msec argument is assumed to be the millisecond of the day having a
range of 0 through 86400000. Similar arrangements are for micro and nano-second. The day componment can be

143

presented as day of the month or day of the yead (DOY). If DOY form is used, the month componment must have a
value(s) of one (1).

8.2 TT2000breakdown

TT2000breakdown decomposes a single or an array of CDF IME TT2000 value(s) into the individual UTC-based
Date/time components.

CDF::EPOCHbreakdown(

my $epoch, # in -- The CDF_TIME TT2000 value.

my $year, # out -- Year (AD, e.g., 1994).

my $month, # out -- Month (1-12).

my $day, # out -- Day (1-31).

my $hour, # out -- Hour (0-23).

my $minute, # out -- Minute (0-59).

my $second, # out -- Second (0-59 or 0-60 if leap second).
my $msec; # out -- Millisecond (0-999).

my $usec, # out -- Microsecond (0-999).

my $nsec); # out -- Nanosecond (0-999).

CDF::EPOCHbreakdown(

my \@epoch, in -- An array of the CDF_TIME TT2000 values.
my \@year, out -- Years (AD, e.g., 1994).

my \@month, out -- Months (1-12).

my \@day, out -- Days (1-31).

my \@hour, out -- Hours (0-23).

my \@minute, out -- Minutes (0-59).

my \@second,
my \@msec;
my \@usec,
my \@nsec);

out -- Seconds (0-59 or 0-60 if leap second).
out -- Milliseconds (0-999).
out -- Microseconds (0-999).
out -- Nanoseconds (0-999).

FHoH o H O HH HH R

8.3 toEncodeTT2000

toEncodeTT2000 encodes a single or an array of CDF_TT2000 value(s) into one of the defined date/time character
string(s), based on the passed style. The style is one of the following values:

-0: dd-mmm-yyyy hh:mm:ss.ccc.uuu.nnn where dd is the day of the month (1-31), mmm is the month (Jan,
Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), yyyy is the year, hh is the hour (0-23), mm is the minute (0-
59), ss is the second (0-59|60), ccc is the millisecond (0-999), uuu is the microsecond (0-999), and nnn is nanosecond
(0-999).

-1: yyyymmdd.ttttttttttttttt where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31),
tteeteetttttttt is a fraction of day.

-2: yyyymmddhhmnss where yyyy is the year, mm is the month (1-12), dd is the day of the month (1-31), hh is
the hour (0-23), mn is the minute (0-59), ss is the second (0-59|60).

-3: yyyy-mm-ddThh:mn:ss.cccuuunnn where yyyy is the year, mm is the month (1-12), dd is the day of the
month (1-31), hh is the hour (0-23), mn is the minute (0-59), ss is the second (0-59]60), ccc is the millisecond (0-999),
uuu is the microsecond (0-999), and nnn is nanosecond (0-999).

144

-4: yyyy-mm-ddThh:mn:ss.cccuuunnnZ where yyyy is the year, mm is the month (1-12), dd is the day of the
month (1-31), hh is the hour (0-23), mn is the minute (0-59), ss is the second (0-59|60), ccc is the millisecond (0-999),
uuu is the microsecond (0-999), and nnn is nanosecond (0-999).

CDF::toEncodeEPOCH(

my $epoch; # in -- The CDF_TIME TT2000 value.
my $style; # in -- The encoded style.
my $epString); # out -- The standard date/time character string.

CDF::toEncodeEPOCH(
my \@epoch; # in -- Anarray of CDF_TIME TT2000 values.
my $style; # in -- The encoded style.
my \@epString); # out -- The standard date/time character strings.

Passing style 3 is similar to call encodeTT2000.

8.4 encodeTT2000

encodeTT2000 encodes a single or an array of CDF_TT2000 value(s) into the standard UTC-based date/time character
string(s). The default format of the string is in ISO 8601 format: yyyy-mm-ddT hh:mn:ss.cccuuunnn where yyyy is
the year (1707-2292), mm is the month (01-12), dd is the day of the month (1-31), hh is the hour (0-23), mn is the
minute (0-59), ss is the second (0-59 or 0-60 if leap second), ccc is the millisecond (0-999), uuu is the microsecond (0-
999) and nnn is the nanosecond (0-999).

CDF::encodeEPOCH(
my $epoch; # in -- The CDF_TIME TT2000 value.
my $epString); # out -- The standard date/time character string.

CDF::encodeEPOCH(
my \@epoch;
my \@epString);

in -- An array of CDF_TIME TT2000 values.
out -- The standard date/time character strings.

H H

This module accepts an extra, optional argument field of integer for format. If the format is not passed in, a format of
value 3 is assumed and the default encoded UTC string is returned. The fomat has a valid value from 0 to 3.

For a format of value 0, the encoded UTC string is DD-Mon-YYYY hh:mm:ss.cccuuunnn, where DD is the day of
the month (1-31), Mon is the month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec), YYYY is the
year, hh is the hour (0-23), mm is the minute (0-59), ss is the second (0-59 or 0-60 if leap second), ccc is the
millisecond (0-999), uuu is the microsecond (0-999), and nnn is the nanosecond (0-999).

For a format of value 1, the encoded UTC string is YYYYMMDD.ttttttttt, where YYYY is the year, MM is the
month (1-12) DD is the day of the month (1-31), and ttttttttt is sub-day.(0-999999999).

For a format of value 2, the encoded UTC string is YYYYMMDDhhmmss, where YYYY is the year, MM is the
month (1-12) DD is the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59),and ss is the second (0-
59 or 0-60 if leap second).

For a format of value 3, the encoded UTC string is YYYY-MM-DDThh:mm:ss.cccuuunnn, where YYYY is the
year, MM is the month (1-12), DD is the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is
the second (0-59 or 0-60 if leap second), ccc is the millisecond (0-999), uuu is the microsecond (0-999), and nnn is the
nanosecond (0-999).

145

For a format of value 4, the encoded UTC string is YYYY-MM-DDThh:mm:ss.cccuuunnnZ, where YYYY is the
year, MM is the month (1-12), DD is the day of the month (1-31), hh is the hour (0-23), mm is the minute (0-59), ss is
the second (0-59 or 0-60 if leap second), ccc is the millisecond (0-999), uuu is the microsecond (0-999), and nnn is the
nanosecond (0-999).

8.5 toParseTT2000

toParseTT2000 parses a single or an array of encoded date/time string(s). The date/time string must conform to one of
the encode styles (through the time encoding function for CDF_TIME TT2000 value).

$tt2000 = CDF::toParseTT2000(# out -- CDF_TIME TT2000 value returned.
my $epString); # in -- The standard date/time character string.

@tt2000 = CDF::toParseTT2000(# out -- Anarray of CDF_TIME TT2000 values returned.
my \@epString); # in -- The standard date/time character strings.

8.6 parseTT2000

parseTT2000 parses a signle or an array of standard UTC-based date/time character strings and returns a
CDF_TIME TT2000 value(s). The format of the string is that produced by the encodeTT2000 function described in
Section 7.3. If an illegal field is detected in the string the value returned will be ILLEGAL EPOCH_VALUE.

$tt2000 = CDF::parse EPOCH(# out -- CDF TIME TT2000 value returned.
my $epString); # in -- The standard date/time character string.

@tt2000 = CDF::parseEPOCH(# out -- Anarray of CDF_TIME TT2000 values returned.
my \@epString); # in -- The standard date/time character strings.

8.7 TT2000toUnixTime

TT2000toUnixTime converts an epoch time(s) of CDF TIME TT2000 (TT2000) type into a Unix time(s). A
CDF _TIME TT2000 epoch, a 8-byte integer, is nanoseconds from J2000 with leap seconds while Unix time, a double,
is seconds from 1970-01-01T00:00:00.000. Note: As CDF_TIME TT2000 has much higher time resolution, sub-
milcroseconds portion of its time might get lost during the conversion. Also, TT2000’s leap seconds will get lost after
the conversion.

CDF::TT2000toUnixTime (
my S$epoch, # in -- CDF_TIME TT2000 epoch time.
my $unixTime); # out -- Unix time.

CDF::TT2000toUnixTime (

my \@epochs, # in -- CDF_TIME TT2000 epoch times.
my \@unixTimes); # out -- Unix times.

146

8.8 UnixTimetoTT2000

UnixTimetoTT2000 converts a Unix time(s) into an epoch time(s) of CDF _TIME TT2000 (TT2000) type. A Unix
time, a double, is seconds from 1970-01-01T00:00:00.000 while a CDF_TIME_TT2000 epoch, a 8-byte integer, is
nanoseconds from J2000 with lepa seconds. The Unix time can have sub-second, with a time resolution of
microseconds, in its fractional part. Sub-microseconds will be filled with 0’s when converting from Unix time to
TT2000.

CDF::UnixTimetoTT2000 (

my $unixTime, # in -- Unix time.

my $epoch); # out -- CDF_TIME TT2000 epoch time.
CDF::UnixTimetoTT2000 (

my \@unixTimes, # in -- Unix times.

my \@epochs); #out -- CDF _TIME TT2000 epoch times.

8.9 leapsecondsinfo

leapsecondinfo shows how the leap seconds table is accessed and when the last leap second was added. The table can
be accessed externally or internally by the CDF library. Refer to User’s Guide for leap seconds.

CDF::leapsecondinfo();

Optionally, a n integer value of 0 (zero) or non-zero can be passed to the module. If a non-zero value is passed in, the
contents of the leap seconds table is dumped. No value or 0 is passed in, the table is not shown.

147

Appendix A

A.1 Introduction

A status code is returned from most CDF functions. The cdf.h include file, distributed with the Perl-CDF package,
contains the numerical values (constants) for each of the status codes (and for any other constants referred to in the
explanations). The CDF library Standard Interface functions CDFerror can be used within a program to inquire the
explanation text for a given status code. The Internal Interface can also be used to inquire explanation text.

There are three classes of status codes: informational, warning, and error. The purpose of each is as follows:

Informational Indicates success but provides some additional information that may be of interest to an
application.

Warning Indicates that the function completed but possibly not as expected.

Error Indicates that a fatal error occurred and the function aborted.

Status codes fall into classes as follows:
Error codes < CDF_WARN < Warning codes < CDF OK < Informational codes

CDF_OK indicates an unqualified success (it should be the most commonly returned status code). CDF_WARN is
simply used to distinguish between warning and error status codes.

A.2 Status Codes and Messages

The following list contains an explanation for each possible status code. Whether a particular status code is considered
informational, a warning, or an error is also indicated.

ATTR_EXISTS Named attribute already exists - cannot create or rename. Each
attribute in a CDF must have a unique name. Note that trailing
blanks are ignored by the CDF library when comparing attribute
names. [Error]

ATTR NAME TRUNC Attribute name truncated to CDF ATTR NAME LEN256
characters. The attribute was created but with a truncated name.
[Warning]

BAD ALLOCATE RECS An illegal number of records to allocate for a variable was

specified. For RV variables the number must be one or greater.
For NRV variables the number must be exactly one. [Error]

BAD ARGUMENT An illegal/undefined argument was passed. Check that all
arguments are properly declared and initialized. [Error]

149

BAD _ATTR_NAME

BAD ATTR_NUM

BAD BLOCKING FACTORY

BAD CACHESIZE

BAD_CDF_EXTENSION

BAD_CDF_ID

BAD_CDF_NAME

BAD_CDFSTATUS

BAD_CHECKSUM

BAD_COMPRESSION _PARM

BAD DATA_TYPE

BAD_DECODING

BAD_DIM_COUNT

BAD_DIM_INDEX

BAD_DIM_INTERVAL

Illegal attribute name specified. Attribute names must contain at
least one character, and each character must be printable. [Error]

Illegal attribute number specified. Attribute numbers must be
zero (0) or greater for C applications and one (1) or greater for
Fortran applications. [Error]

An illegal blocking factor was specified. Blocking factors must
be at least zero (0). [Error]

An illegal number of cache buffers was specified. The value
must be at least zero (0). [Error]

An illegal file extension was specified for a CDF. In general, do
not specify an extension except possibly for a single-file CDF
that has been renamed with a different file extension or no file
extension. [Error]

CDF identifier is unknown or invalid. The CDF identifier
specified is not for a currently open CDF. [Error]

Illegal CDF name specified. CDF names must contain at least
one character, and each character must be printable. Trailing
blanks are allowed but will be ignored. [Error]

Unknown CDF status code received. The status code specified is
not used by the CDF library. [Error]

An illegal checksum mode received. It is invlid or currently not
supported. [Error]

An illegal compression parameter was specified. [Error]

An unknown data type was specified or encountered. The CDF
data types are defined in cdf.h for C applications and in cdf.inc
for Fortran applications. [Error]

An unknown decoding was specified. The CDF decodings are
defined in cdf.h for C applications and in cdf.iinc for Fortran
applications. [Error]

Illegal dimension count specified. A dimension count must be at
least one (1) and not greater than the size of the dimension.
[Error]

One or more dimension index is out of range. A valid value must
be specified regardless of the dimension variance. Note also that
the combination of dimension index, count, and interval must not
specify an element beyond the end of the dimension. [Error]

Illegal dimension interval specified. Dimension intervals must be
at least one (1). [Error]

%7 The status code BAD_BLOCKING_FACTOR was previously named BAD_EXTEND_RECS.

150

BAD _DIM_SIZE

BAD_ENCODING

BAD_ENTRY NUM

BAD _FNC_OR_ITEM

BAD_FORMAT

BAD_INITIAL_RECS

BAD MAJORITY

BAD_MALLOC

BAD_NEGtoPOSfp0 MODE

BAD _NUM_DIMS

BAD NUM_ELEMS

BAD NUM_VARS

BAD READONLY_ MODE

BAD REC_COUNT

BAD REC_INTERVAL

Illegal dimension size specified. A dimension size must be at
least one (1). [Error]

Unknown data encoding specified. The CDF encodings are
defined in cdf.h for C applications and in cdf.iinc for Fortran
applications. [Error]

Illegal attribute entry number specified. Entry numbers must be
at least zero (0) for C applications and at least one (1) for Fortran
applications. [Error]

The specified function or item is illegal. Check that the proper
number of arguments are specified for each operation being
performed. Also make sure that NULL is specified as the last
operation. [Error]

Unknown format specified. The CDF formats are defined in
cdf.h for C applications and in cdf.inc for Fortran applications.
[Error]

An illegal number of records to initially write has been specified.
The number of initial records must be at least one (1). [Error]

Unknown variable majority specified. = The CDF variable
majorities are defined in cdf.h for C applications and in cdf.inc
for Fortran applications. [Error]

Unable to allocate dynamic memory - system limit reached.
Contact CDF User Support if this error occurs. [Error]

An illegal -0.0 to 0.0 mode was specified. The -0.0 to 0.0 modes
are defined in cdf.h for C applications and in cdf.inc for Fortran
applications. [Error]

The number of dimensions specified is out of the allowed range.
Zero (0) through CDF_ MAX DIMS dimensions are allowed. If
more are needed, contact CDF User Support. [Error]

The number of elements of the data type is illegal. The number
of elements must be at least one (1). For variables with a non-
character data type, the number of elements must always be one
(1). [Error]

Illegal number of variables in a record access operation. [Error]
Illegal read-only mode specified. The CDF read-only modes are
defined in cdf.h for C applications and in cdf.inc for Fortran

applications. [Error]

Illegal record count specified. A record count must be at least
one (1). [Error]

Illegal record interval specified. A record interval must be at
least one (1). [Error]

151

BAD_REC_NUM

BAD_SCOPE

BAD_SCRATCH_DIR

BAD_SPARSEARRAYS PARM

BAD VAR NAME

BAD VAR _NUM

BAD_zMODE

CANNOT_ALLOCATE_RECORDS

CANNOT_CHANGE

Record number is out of range. Record numbers must be at least
zero (0) for C applications and at least one (1) for Fortran
applications. Note that a valid value must be specified regardless
of the record variance. [Error]

Unknown attribute scope specified. The attribute scopes are
defined in cdf.h for C applications and in cdf.iinc for Fortran
applications. [Error]

An illegal scratch directory was specified. The scratch directory
must be writeable and accessible (if a relative path was specified)
from the directory in which the application has been executed.
[Error]

An illegal sparse arrays parameter was specified. [Error]

Illegal variable name specified. Variable names must contain at
least one character and each character must be printable. [Error]

Illegal variable number specified. Variable numbers must be
zero (0) or greater for C applications and one (1) or greater for
Fortran applications. [Error]

Illegal zMode specified. The CDF zModes are defined in cdf.h
for C applications and in cdf.inc for Fortran applications. [Error]

Records cannot be allocated for the given type of variable (e.g., a
compressed variable). [Error]

Because of dependencies on the value, it cannot be changed.
Some possible causes of this error follow:

1. Changing a CDF's data encoding after a variable value
(including a pad value) or an attribute entry has been
written.

[\

. Changing a CDF's format after a variable has been created
or if a compressed single-file CDF.

w

. Changing a CDF's variable majority after a variable value
(excluding a pad value) has been written.

4. Changing a variable's data specification after a value
(including the pad value) has been written to that variable
or after records have been allocated for that variable.

5. Changing a variable's record variance after a value
(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

6. Changing a variable's dimension variances after a value

(excluding the pad value) has been written to that variable
or after records have been allocated for that variable.

152

CANNOT_COMPRESS

CANNOT_SPARSEARRAYS

CANNOT_SPARSERECORDS

CDF_CLOSE_ERROR

CDF_CREATE_ERROR

CDF_DELETE_ERROR

CDF_EXISTS

CDF_INTERNAL ERROR

CDF_NAME_TRUNC

CDF_OK

CDF OPEN_ERROR

7. Writing “initial” records to a variable after a value
(excluding the pad value) has already been written to that
variable.

8. Changing a variable's blocking factor when a compressed
variable and a value (excluding the pad value) has been
written or when a variable with sparse records and a
value has been accessed.

9. Changing an attribute entry's data specification where the
new specification is not equivalent to the old
specification.

The CDF or variable cannot be compressed. For CDFs, this
occurs if the CDF has the multi-file format. For variables, this
occurs if the variable is in a multi-file CDF, values have been
written to the variable, or if sparse arrays have already been
specified for the variable. [Error]

Sparse arrays cannot be specified for the variable. This occurs if
the variable is in a multi-file CDF, values have been written to
the variable, records have been allocated for the variable, or if
compression has already been specified for the variable. [Error]

Sparse records cannot be specified for the variable. This occurs
if the variable is in a multi-file CDF, values have been written to
the variable, or records have been allocated for the variable.
[Error]

Error detected while trying to close CDF. Check that sufficient
disk space exists for the dotCDF file and that it has not been
corrupted. [Error]

Cannot create the CDF specified - error from file system. Make
sure that sufficient privilege exists to create the dotCDF file in
the disk/directory location specified and that an open file quota
has not already been reached. [Error]

Cannot delete the CDF specified - error from file system.
Insufficient privileges exist the delete the CDF file(s). [Error]

The CDF named already exists - cannot create it. The CDF
library will not overwrite an existing CDF. [Error]

An unexpected condition has occurred in the CDF library. Report
this error to CDFsupport. [Error]

CDF file name truncated to CDF PATHNAME LEN characters.
The CDF was created but with a truncated name. [Warning]

Function completed successfully.
Cannot open the CDF specified - error from file system. Check
that the dotCDF file is not corrupted and that sufficient privilege

exists to open it. Also check that an open file quota has not
already been reached. [Error]

153

CDF_READ_ERROR

CDF_WRITE_ERROR

CHECKSUM_ERROR

CHECKSUM_NOT_ALLOWED

COMPRESSION_ERROR

CORRUPTED_V2_CDF

DECOMPRESSION_ERROR

DID NOT _COMPRESS

EMPTY_COMPRESSED_CDF

END OF VAR

FORCED PARAMETER

IBM_PC_OVERFLOW

ILLEGAL EPOCH VALUE

ILLEGAL_FOR_SCOPE

ILLEGAL IN_zMODE

Failed to read the CDF file - error from file system. Check that
the dotCDF file is not corrupted. [Error]

Failed to write the CDF file - error from file system. Check that
the dotCDF file is not corrupted. [Error]

Data integrity verification through the checksum failed. [Error]
The checksum is not allowed for old versioned files. [Error]

An error occurred while compressing a CDF or block of variable
records. This is an internal error in the CDF library. Contact
CDF User Support. [Error]

This Version 2 CDF is corrupted. An error has been detected in
the CDF's control information. If the CDF file(s) are known to
be valid, please contact CDF User Support. [Error]

An error occurred while decompressing a CDF or block of
variable records. The most likely cause is a corrupted dotCDF
file. [Error]

For a compressed variable, a block of records did not compress to
smaller than their uncompressed size. They have been stored
uncompressed. This can result If the blocking factor is set too
low or if the characteristics of the data are such that the
compression algorithm chosen is unsuitable. [Informational]

The compressed CDF being opened is empty. This will result if a
program, which was creating/modifying, the CDF abnormally
terminated. [Error]

The sequential access current value is at the end of the variable.
Reading beyond the end of the last physical value for a variable is
not allowed (when performing sequential access). [Error]

A specified parameter was forced to an acceptable value (rather
than an error being returned). [Warning]

An operation involving a buffer greater than 64k bytes in size has
been specified for PCs running 16-bit DOS/Windows 3.*.
[Error]

Illegal component is detected in computing an epoch value or an
illegal epoch value is provided in decomposing an epoch value.
[Error]

The operation is illegal for the attribute's scope. For example,
only gEntries may be written for gAttributes - not rEntries or
zEntries. [Error]

The attempted operation is illegal while in zMode. Most

operations involving rVariables or rEntries will be illegal.
[Error]

154

ILLEGAL_ON_V1_CDF

MULTI_FILE FORMAT

NA_FOR_VARIABLE

NEGATIVE_FP_ZERO

NO_ATTR_SELECTED

NO_CDF_SELECTED

NO_DELETE_ACCESS

NO_ENTRY_SELECTED

NO_MORE_ACCESS

NO PADVALUE SPECIFIED

NO_STATUS SELECTED

NO_SUCH_ATTR

NO_SUCH_CDF

NO_SUCH_ENTRY
NO_SUCH_RECORD

NO_SUCH_VAR

NO_VAR_SELECTED

NO_VARS_IN_CDF

The specified operation (i.e., opening) is not allowed on Version
1 CDFs. [Error]

The specified operation is not applicable to CDFs with the multi-
file format. For example, it does not make sense to inquire
indexing statistics for a variable in a multi-file CDF (indexing is
only used in single-file CDFs). [Informational]

The attempted operation is not applicable to the given variable.
[Warning]

One or more of the values read/written are -0.0 (An illegal value
on VAXes and DEC Alphas running OpenVMS). [Warning]

An attribute has not yet been selected. First select the attribute on
which to perform the operation. [Error]

A CDF has not yet been selected. First select the CDF on which
to perform the operation. [Error]

Deleting is not allowed (read-only access). Make sure that
delete access is allowed on the CDF file(s). [Error]

An attribute entry has not yet been selected. First select the entry
number on which to perform the operation. [Error]

Further access to the CDF is not allowed because of a severe
error. If the CDF was being modified, an attempt was made to
save the changes made prior to the severe error. in any event, the
CDF should still be closed. [Error]

A pad value has not yet been specified. The default pad value is
currently being used for the variable. The default pad value was

returned. [Informational]

A CDF status code has not yet been selected. First select the
status code on which to perform the operation. [Error]

The named attribute was not found. Note that attribute names are
case-sensitive. [Error]

The specified CDF does not exist. Check that the file name
specified is correct. [Error]

No such entry for specified attribute. [Error]
The specified record does not exist for the given variable. [Error]

The named variable was not found. Note that variable names are
case-sensitive. [Error]

A variable has not yet been selected. First select the variable on
which to perform the operation. [Error]

This CDF contains no rVariables. The operation performed is
not applicable to a CDF with no rVariables. [Informational]

155

NO_WRITE_ACCESS

NOT_A_CDF

NOT A CDF OR NOT SUPPORTED

PRECEEDING_RECORDS_ALLOCATED

READ ONLY_DISTRIBUTION

READ ONLY_MODE

SCRATCH_CREATE ERROR

SCRATCH_DELETE ERROR

SCRATCH_READ ERROR

SCRATCH_WRITE_ERROR

SINGLE_FILE_FORMAT

SOME_ALREADY_ ALLOCATED

TOO_MANY_PARMS

TOO_MANY_VARS

UNKNOWN_COMPRESSION

UNKNOWN_SPARSENESS

Write access is not allowed on the CDF file(s). Make sure that
the CDF file(s) have the proper file system privileges and
ownership. [Error]

Named CDF is corrupted or not actually a CDF. Contact CDF
User Support if you are sure that the specified file is a CDF that
should be readable by the CDF distribution being used. [Error]

This can occur if an older CDF distribution is being used to read
a CDF created by a more recent CDF distribution. Contact CDF
User Support if you are sure that the specified file is a CDF that
should be readable by the CDF distribution being used. CDF is
backward compatible but not forward compatible. [Error]

Because of the type of variable, records preceding the range of
records being allocated were automatically allocated as well.
[Informational]

Your CDF distribution has been built to allow only read access to
CDFs. Check with your system manager if you require write
access. [Error]

The CDF is in read-only mode - modifications are not allowed.
[Error]

Cannot create a scratch file - error from file system. If a scratch
directory has been specified, ensure that it is writeable. [Error]

Cannot delete a scratch file - error from file system. [Error]
Cannot read from a scratch file - error from file system. [Error]
Cannot write to a scratch file - error from file system. [Error]

The specified operation is not applicable to CDFs with the single-
file format. For example, it does not make sense to close a

variable in a single-file CDF. [Informational]

Some of the records being allocated were already allocated.
[Informational]

A type of sparse arrays or compression was encountered having
too many parameters. This could be causes by a corrupted CDF
or if the CDF was created/modified by a CDF distribution more
recent than the one being used. [Error]

A multi-file CDF on a PC may contain only a limited number of
variables because of the 8.3 file naming convention of MS-DOS.
This consists of 100 rVariables and 100 zVariables. [Error]

An unknown type of compression was specified or encountered.
[Error]

An unknown type of sparseness was specified or encountered.
[Error]

156

UNSUPPORTED_OPERATION
VAR _ALREADY_ CLOSED

VAR_CLOSE_ERROR

VAR _CREATE_ERROR

VAR _DELETE_ERROR

VAR_EXISTS

VAR _NAME_TRUNC

VAR_OPEN_ERROR

VAR _READ_ERROR

VAR WRITE ERROR

VIRTUAL_RECORD DATA

The attempted operation is not supported at this time. [Error]
The specified variable is already closed. [Informational]

Error detected while trying to close variable file. Check that
sufficient disk space exists for the variable file and that it has not
been corrupted. [Error]

An error occurred while creating a variable file in a multi-file
CDF. Check that a file quota has not been reached. [Error]

An error occurred while deleting a variable file in a multi-file
CDF. Check that sufficient privilege exist to delete the CDF
files. [Error]

Named variable already exists - cannot create or rename. Each
variable in a CDF must have a unique name (rVariables and
zVariables can not share names). Note that trailing blanks are
ignored by the CDF library when comparing variable names.
[Error]

Variable name truncated to CDF VAR NAME LEN256
characters. The variable was created but with a truncated name.
[Warning]

An error occurred while opening variable file. Check that
sufficient privilege exists to open the variable file. Also make
sure that the associated variable file exists. [Error]

Failed to read variable as requested - error from file system.
Check that the associated file is not corrupted. [Error]

Failed to write variable as requested - error from file system.
Check that the associated file is not corrupted. [Error]

One or more of the records are virtual (never actually written to
the CDF). Virtual records do not physically exist in the CDF
file(s) but are part of the conceptual view of the data provided by
the CDF library. Virtual records are described in the Concepts
chapter in the CDF User's Guide. [Informational]

157

Appendix B

B.1 Standard Interface

$status = CDF::CDFattrCreate ($id, $attrName, $attrScope, \$attrNum)

my $id; # in
my $attrName; # in
my $attrScope; # in
my \$attrNum; # out

$status = CDF::CDFattrEntrylnquire ($id, $attrNum, $entryNum, \$dataType, \$numElements)

my $id; # in
my $attrNum; # in
my $entryNum,; # in
my \$dataType; # out
my \$numElements; # out
$status = CDF::CDFattrGet ($id, $attrNum, $entryNum, \$value)

my $id; # in
my $attrNum; # in
my $entryNum,; # in
my \$value; # out
$status = CDF::CDFattrinquire ($id, $attrNum, \$attrName, \$attrScope, \$maxEntry)

my $id; # in
my $attrNum; # in
my \$attrName; # out
my \$attrScope; # out
my \$maxEntry; # out
$varNum = CDF::CDFattrNum ($id, $attrName)

my $id; # in
my $attrName; # in

$status = CDF::CDFattrPut ($id, $attrNum, $entryNum, $dataType, $numElements, \$value)

my $id; # in
my $attrNum; # in
my $entryNum,; # in
my $dataType; # in
my $numElements; # in
my \$value; # in
$status = CDF::CDFattrRename ($id, $attrNum, $attrName)

my $id; # in
my $attrNum; # in

159

my $attrName; # in

$status = CDF::CDFclose ($id)
my $id; # in

$status = CDF::CDFcreate ($CDFname, $numDims, \@dimSizes, $encoding, $majority, \$id)

my $CDFname; # in
my $numDims; # in
my \@dimSizes; # in
my $encoding; # in
my $majority; # in
my \$id; # out
$status = CDF::CDFdelete ($id)

my $id; # in
$status = CDF::CDFdoc ($id, \$version, \$release, \$text)

my $id; # in
my \$version; # out
my \$release; # out
my \$text; # out
$status = CDF:: CDFerror ($status, \$message)

my $status; # in
my \$message; # out
$status = CDF::CDFgetChecksum ($id, \$checksum)

my $id; # in
my \$checksum; # out
$flag = CDF::CDFgetFileBackward ()

my $flag # out
$flag = CDF::CDFgetValidate ()

my $flag # out

$status = CDF::CDFinquire ($id, \$numDims, \@dimSizes, \$encoding, \$majority, \$maxRec,
\$numVars, \$numAttrs)

my $id; # in
my \$numDims; # out
my \@dimSizes; # out
my \$encoding; # out
my \$majority; # out
my \$maxRec; # out
my \$numVars; # out
my \$numaAdttrs; # out
$status = CDF:: CDFopen ($CDFname, $id)

my $CDFname; # in
my \$id; # out
$status = CDF::CDFsetChecksum ($id, $checksum)

my $id; # in
my $checksum; # in

CDF::CDFsetFileBackward ($cdf27BackwardCompatibleFlag)

160

my $cdf27BackwardCompatibleFlag; # in

$ CDF::CDFsetValidate ($validationFlag)
my $validationFlag; # in

status = CDF::CDFvarClose ($id, $varNum)
my $id; # in
my $varNum; # in

$status = CDF::CDFvarCreate ($id, $varName, $dataType, $numElements, $recVariances,
\@dimVariances, \$varNum)

my $id; # in
my $varName; # in
my $dataType; # in
my $numElements; # in
my $recVariance; # in
my \@dimVariances; # in
my \$varNum; # out
$status = CDF::CDFvarGet ($id, $varNum, $recNum, \@indices, \$value)
my $id; # in
my $varNum; # in
my $recNum; # in
my \@indices; # in
my \$value; # out
$status = CDF::CDFvHpGet ($id, $varNum, S$recStart, $recCount, $recinterval,

\@indices, \@counts, \@intervals, \@buffer)
my $id; # in
my $varNum; # in
my $recStart; # in
my $recCount; # in
my $reclnterval; # in
my \@indices; # in
my \@counts; # in
my \@intervals; # in
my \@buffer; # out
$status = CDF::CDFvHpPut ($id, $varNum, S$recStart, $recCount, $recInterval,

\@indices, \@counts, \@intervals, \@buffer)
my $id; # in
my $varNum; # in
my $recStart; # in
my $recCount; # in
my $reclnterval; # in
my \@indices; # in
my \@counts; # in
my \@intervals; # in
my \@buffer; # in
$status = CDF::CDFvarlnquire ($id, $varNum, \$varName, \$dataType, \$numElements,

\$recVariance, \@dimVariances)

my $id; # in
my $varNum; # in
my \$varName; # out
my \$dataType; # out

161

my \$numElements; # out

my \$recVariance; # out
my \@dimVariances; # out
$varNum = CDF::CDFvarNum ($id, $varName) # out
my $id; # in
my $varName; # in
$status = CDF::CDFvarPut ($id, $varNum, $recNum, \@indices, \$value)

my $id; # in
my $varNum; # in
my $recNum; # in
my \@indices; # in
my \$value; # in
$status = CDF::CDFvarRename ($id, $varNum, $varName)

my $id; # in
my $varNum; # in
my $varName; # in

162

B.2 Internal Interface

$status = CDF::CDFlib (op, ...)

ZVAR_PADVALUE_

163

op; # in

CLOSE _
CDF_
VAR
ZVAR_

CONFIRM _
ATTR \$attrNum # out
ATTR_EXISTENCE $attrName # in
CDF _ \$id # out
CDF_ACCESS_
CDF_CACHESIZE \$numBuffers # out
CDF_DECODING _ \$decoding # out
CDF_NAME _ \$CDFname # out
CDF_NEGtoPOSfp0_MODE _ \$mode # out
CDF READONLY MODE_ \$mode # out
CDF_STATUS \$status # out
CDF_zMODE _ \$mode # out
COMPRESS CACHESIZE \$numBuffers # out
CUREENTRY_EXISTENCE _
CURTENTRY_EXISTENCE _
CURzENTRY_EXISTENCE
gENTRY _ \$entryNum # out
gENTRY EXISTENCE SentryNum # in
rENTRY _ \$entryNum # out
rENTRY_ EXISTENCE $entryNum # in
VAR _ \$varNum # out
rVAR_CACHESIZE \$numBuffers # out
rVAR_EXISTENCE _ $varName # in
rVAR_PADVALUE_
rVAR RESERVEPERCENT \$percent # out
rVAR_SEQPOS \$recNum # out

\@indices # out

rVARs DIMCOUNTS \@counts # out
rVARs DIMINDICES \@indices # out
rVARs DIMINTERVALS \@intervals # out
rVARs RECCOUNT _ \$recCount # out
rVARs RECINTERVAL \$recInterval # out
rVARs RECNUMBER _ \$recNum # out
STAGE_CACHESIZE _ \$numBuffers # out
zENTRY _ \$entryNum # out
ZENTRY_EXISTENCE _ $entryNum # in
ZVAR _ \$varNum # out
zVAR CACHESIZE \$numBuffers # out
zVAR DIMCOUNTS \@counts # out
zVAR DIMINDICES \@indices # out
zVAR DIMINTERVALS \@intervals # out
zVAR_EXISTENCE _ $varName # in

ZVAR_RECCOUNT _
ZVAR_RECINTERVAL
ZVAR_RECNUMBER _
ZVAR_RESERVEPERCENT
ZVAR_SEQPOS_

CREATE_

ATTR

CDF

VAR

ZVAR _

DELETE_

GET

ATTR
CDF_

gENTRY
rENTRY _

VAR
rVAR_RECORDS_

\$recCount
\$recInterval
\$recNum
\$percent
\$recNum
\@indices

$attrName
$scope
\$attrNum

$CDFname
$numDims
\@dimSizes
\$id

$varName
$dataType

$numElements

$recVary
\@dimVarys
\$varNum

$varName
$dataType

$numElements

$numDims
\@dimSizes
$recVary
\@dimVarys
\$varNum

$firstRecord
$lastRecord

rVAR RECORDS RENUMBER _$firstRecord

zENTRY _
ZVAR _
zVAR_RECORDS _

$lastRecord

$firstRecord
$lastRecord

zVAR RECORDS RENUMBER $firstRecord

ATTR_MAXgENTRY _
ATTR_MAXrENTRY _
ATTR_MAXzENTRY _
ATTR_NAME _
ATTR_NUMBER _

$lastRecord

\$maxEntry
\$maxEntry
\$maxEntry
\$attrName
$attrName

164

o H H H H

H FHF

H oH H H

H o H H O H

H o H H H H HH

H H FH H T H H*

H o H H H

out
out
out
out
out
out

in
in
out

in
in
in
out

in
in
in
in
in
out

in
in
in
in
in
in
in
out

in
in

in

in
in
in
in

out
out
out
out
in

ATTR_NUMgENTRIES
ATTR_NUMENTRIES
ATTR_NUMZzENTRIES
ATTR_SCOPE_
CDF_CHECKSUM _
CDF_COMPRESSION _

CDF_COPYRIGHT _
CDF_ENCODING _
CDF_FORMAT _
CDF_INCREMENT _
CDF_INFO_

CDF_LEAPSECONDLASTUPDATED _

CDF_MAIJORITY _
CDF_NUMATTRS_
CDF_NUMgATTRS_
CDF_NUMrVARS_
CDF_NUMVATTRS
CDF_NUMZzVARS_
CDF_RELEASE_
CDF_VERSION_
DATATYPE_SIZE

gENTRY DATA
gENTRY DATATYPE_
gENTRY_NUMELEMS_
LIB_COPYRIGHT _
LIB_INCREMENT _
LIB_RELEASE_
LIB_subINCREMENT _
LIB_VERSION _

rENTRY DATA _
rENTRY DATATYPE
rENTRY NUMELEMS_
rENTRY NUMSTRINGS
rENTRY_ STRINGDATA _
rVAR_ALLOCATEDFROM _

rVAR_ALLOCATEDTO

rVAR BLOCKINGFACTOR
rVAR COMPRESSION

rVAR DATA

rVAR _DATATYPE
rVAR_DIMVARYS
rVAR_HYPERDATA _
rVAR MAXallocREC
rVAR MAXREC

\$attrNum
\$numEntries
\$numEntries
\$numEntries
\$scope
\$checksum
\$cType
\@cParms
\$cPct
\$Copyright
\$encoding
\$format
\$increment
$name
\$cType
\@cParms
\$cSize
\$uSize

\$majority
\$numA ttrs
\$numA ttrs
\$numVars
\$numA ttrs
\$numVars
\$release
\$version
$dataType
\$numBytes
\$value
\$dataType
\$numFElements
\$Copyright
\$increment
\$release
\$subincrement
\$version
\$value
\$dataType
\$numElements
\$numStrings
\$@strings
$startRecord
\$nextRecord
$startRecord
\$lastRecord
\$blockingFactor
\$cType
\@cParms
\$cPct

\$value
\$dataType
\@dimVarys
\@buffer
\$maxRec
\$maxRec

165

\$lastUpdated

FHoF H O O F o H o H O H O H O H H H o H O H H H o H H O H O H R R H H o H H R o H R H R H O HH

out
out
out
out
out
out
out
out
out
out
out
out
out
in

out
out
out
out
out
out
out
out
out
out
out
out
out
in

out
out
out
out
out
out
out
out
out
out
out
out
out
out
in

out
in

out
out
out
out
out
out
out
out
out
out
out

rVAR NAME

rVAR nINDEXENTRIES
rVAR nINDEXLEVELS
rVAR_nINDEXRECORDS
rVAR _NUMallocRECS
rVAR_NUMBER

rVAR_NUMELEMS _
rVAR_NUMRECS _
rVAR_PADVALUE _
rVAR_RECVARY _
rVAR_SEQDATA _
rVAR_SPARSEARRAYS_

rVAR_SPARSERECORDS_
rVARs_DIMSIZES

rVARs MAXREC

rVARs NUMDIMS _
rVARs RECDATA _

STATUS_TEXT_
ZENTRY DATA_

ZENTRY _DATATYPE_
ZENTRY_NUMELEMS_
ZENTRY_NUMSTRINGS_
ZENTRY_STRINGDATA _
ZVAR_ALLOCATEDFROM _

ZVAR_ALLOCATEDTO_

zVAR BLOCKINGFACTOR
zVAR _COMPRESSION

zVAR DATA
zVAR_DATATYPE
zVAR _DIMSIZES
zVAR_DIMVARYS
zVAR_HYPERDATA _
zVAR MAXallocREC
zVAR MAXREC

zVAR NAME

zVAR nINDEXENTRIES
zVAR nINDEXLEVELS
zVAR nINDEXRECORDS
zVAR NUMallocRECS
zVAR_NUMBER

ZVAR_NUMDIMS_
ZVAR_NUMELEMS _
ZVAR_NUMRECS_
ZVAR_PADVALUE_
ZVAR_RECVARY _
ZVAR_SEQDATA_

\$varName
\$numEntries
\$numLevels
\$numRecords
\$numRecords
$varName
\$varNum
\$numElements
\$numRecords
\$value
\$recVary
\$value
\$sArraysType
\@sArraysParms
\$sArraysPct
\$sRecordsType
\@dimSizes
\$maxRec
\$numDims
$numVars
\@varNums
\@buffer

\$text

\$value
\$dataType
\$numElements
\$numStrings
\$@strings
$startRecord
\$nextRecord
$startRecord
\$lastRecord
\$blockingFactor
\$cType
\@cParms
\$cPct

\$value
\$dataType
\@dimSizes
\@dimVarys
\@buffer
\$maxRec
\$maxRec
\$varName
\$numEntries
\$numLevels
\$numRecords
\$numRecords
$varName
\$varNum
\$numDims
\$numElements
\$numRecords
\$value
\$recVary
\$value

166

FHoF FH O F O FH H O H O H O H O H O H O H R H O H O M H O H H O H O H G HHEHHHHHEHHHHHHHEHH

out
out
out
out
out
in

out
out
out
out
out
out
out
out
out
out
out
out
out
in

in

out
out
out
out
out
out
out
in

out
in

out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
out
in

out
out
out
out
out
out
out

NULL_

OPEN_

PUT

ZVAR_SPARSEARRAYS

ZVAR_SPARSERECORDS_
ZVARs MAXREC
ZVARs RECDATA_

CDF

ATTR_NAME_
ATTR_SCOPE_
CDF_CHECKSUM _
CDF_COMPRESSION _

CDF_ENCODING _
CDF_FORMAT _

CDF_LEAPSECONDLASTUPDATED

CDF_MAJORITY _
gENTRY DATA

gENTRY DATASPEC

rENTRY DATA _

rENTRY DATASPEC_

rENTRY_STRINGDATA _
rVAR_ALLOCATEBLOCK _

rVAR_ALLOCATERECS_
rVAR_BLOCKINGFACTOR _
rVAR_COMPRESSION _

rVAR_DATA _
rVAR_DATASPEC_

rVAR_DIMVARYS_
rVAR_HYPERDATA _
rVAR_INITIALRECS
rVAR_NAME _
rVAR_PADVALUE _
rVAR_RECVARY _
rVAR_SEQDATA _
rVAR_SPARSEARRAYS

rVAR_SPARSERECORDS_
rVARs RECDATA _

\$sArraysType
\@sArraysParms
\$sArraysPct
\$sRecordsType
\$maxRec
$numVars
\@varNums
\@buffer

$CDFname
\$id

$attrName
$scope
$checksum
$cType
\@cParms
$encoding
$format

$majority
$dataType
$numElements
\$value
$dataType
$numElements
$dataType
$numElements
\$value
$dataType
$numElements
\@strings
$firstRecord
$lastRecord
$numRecords
$blockingFactor
$cType
\@cParms
\$value
$dataType
$numElements
\@dimVarys
\@buffer
$nRecords
$varName
\$value
$recVary
\$value
$sArraysType
\@sArraysParms
$sRecordsType
$numVars
\@varNums
\$buffer

167

$lastUpdated

FH o H O H H H H

H*H H*

HoF H O FH O FH H R H O H O H O H O HH HH H H O H O H O H G H O HHHH R

out
out
out
out
out
in

in

out

in
out

in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in

ZENTRY DATA_

ZENTRY _DATASPEC

ZENTRY_STRINGDATA _
ZVAR_ALLOCATEBLOCK

ZVAR_ALLOCATERECS
ZVAR_BLOCKINGFACTOR _
ZVAR_COMPRESSION _

ZVAR_DATA_
ZVAR_DATASPEC_

ZVAR_DIMVARYS_
ZVAR_INITIALRECS
ZVAR_HYPERDATA _
ZVAR_NAME _
ZVAR_PADVALUE_
ZVAR_RECVARY _
ZVAR_SEQDATA_
ZVAR_SPARSEARRAYS_

ZVAR_SPARSERECORDS_
ZVARs RECDATA _

SELECT

ATTR

ATTR NAME

CDF_

CDF_CACHESIZE _
CDF_DECODING_
CDF_NEGtoPOS{p0_MODE _
CDF_READONLY_MODE _
CDF_SCRATCHDIR

CDF _STATUS

CDF _zMODE

COMPRESS CACHESIZE
gENTRY

rENTRY _

rENTRY NAME

rVAR

rVAR_CACHESIZE
rVAR_NAME
rVAR_RESERVEPERCENT _
rVAR_SEQPOS_

rVARs_CACHESIZE
rVARs_DIMCOUNTS
rVARs_DIMINDICES
rVARs_DIMINTERVALS
rVARs RECCOUNT _
rVARs_RECINTERVAL
rVARs RECNUMBER _

long dataType
$numElements
\$value
$dataType
$numElements
\@strings
$firstRecord
$lastRecord
$numRecords
$blockingFactor
$cType
\@$cParms
\$value
$dataType
$numElements
\@dimVarys
$nRecords
\@buffer
$varName
\$value
$recVary
\$value
$sArraysType
\@sArraysParms
$sRecordsType
$numVars
\@varNums
\@buffer

$attrNum
$attrName
$id
$numBuffers
$decoding
$mode
$mode
$dirPath
$status
$mode
$numBuffers
$entryNum
$entryNum
$varName
$varNum
$numBuffers
$varName
$percent
$recNum
\@indices
$numBuffers
\@counts
\@indices
\@intervals
$recCount
$reclnterval
$recNum

168

FoHE H o H H O H o FH H HE HH H H H H O HH HH O H R HH

o H H H O FH O H H H H H H H H H O H O H O HHH R

in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in

in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in

STAGE_CACHESIZE_
ZENTRY _

ZENTRY_NAME _

ZVAR_

ZVAR_CACHESIZE
ZVAR_DIMCOUNTS_
ZVAR_DIMINDICES_
ZVAR_DIMINTERVALS
ZVAR_NAME _
ZVAR_RECCOUNT _
ZVAR_RECINTERVAL
ZVAR_RECNUMBER _
ZVAR_RESERVEPERCENT
ZVAR_SEQPOS_

ZVARs_CACHESIZE_
ZVARs RECNUMBER _

$numBuffers
$entryNum
$varName
$varNum
$numBuffers
\@counts
\@indices
\@intervals
$varName
$recCount
$reclnterval
$recNum
$percent
$recNum
\@indices
$numBuffers
$recNum

169

o oH H H H H H H O H O H O HHH

in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in

B.3 Quick Interface

($status, %info) = CDF::CDFgetLIBInfo ()

($status, %info) = CDF::CDFgetCDFInfo ([cdfid | cdfName])

($status, %info) = CDF::CDFgetVarlnfo ([cdfid | cdfName], [varName | varid])

($status, %ometa) = CDF::CDFgetGlobalMetaData ([cdfid | cdfName] [, globalNames | globalids] [, metaEncoding])
($status, %ometa) = CDF::CDFgetVarMetaData ([cdfid | cdfName], [varName | varid] [, metaEncoding])

($status, @data) = CDF::CDFgetVarAllData ([cdfid | cdfname], [varName | varid] [, dataEncoding] [, matrix])

171

B.4 EPOCH Utility Routines

$epoch = CDF::computeEPOCH ($year, $month, $day, $hour, $minute, $second, $msec)
my $year;

my $month;

my $day;

my S$hour;

my $minute;

my $second;

my $msec;

in
in
in
in
in
in
in

o H H O H H

@epoch = CDF::computeEPOCH (\@year, \@month, \@day, \@hour, \@minute, \@second, \@msec)

my \@year; # in
my \@month; # in
my \@day; # in
my \@hour; # in
my \@minute; # in
my \@second; # in
my \@msec; # in
CDF::EPOCHbreakdown ($epoch, $year, $month, $day, $hour, $minute, $second, $msec)

my $epoch; # in
my S$year; # out
my $month; # out
my $day; # out
my $hour; # out
my $minute; # out
my $second; # out
my $msec; # out

CDF::EPOCHbreakdown (\@epoch, \@year, \@month, \@day, \@hour, \@minute, \@second, \@msec)

my \@epoch; # in
my \@year; # out
my \@month; # out
my \@day; # out
my \@hour; # out
my \@minute; # out
my \@second, # out
my \@msec; # out
CDF::toEncodeEPOCH ($epoch, $style, $epString)

my \@epoch; # in
my $style; # in
my $epString; # out
CDF::toEncodeEPOCH (\@epoch, $style, \@epString)

my \@epoch; # in
my $style; # in
my \@epString; # out
CDF::encodeEPOCH ($epoch, $epString)

my $epoch; # in
my $epString; # out

172

CDF::encodeEPOCH (\@epoch, \@epString)

my \@epoch; # in
my \@epString; # out
CDF::encodeEPOCHI1 ($epoch, $epString)

my $epoch; # in
my $epString; # out
CDF::encodeEPOCH2 ($epoch, $epString)

my $epoch; # in
my $epString; # out
CDF::encodeEPOCH3 ($epoch, $epString)

my $epoch; # in
my $epString; # out
CDF::encodeEPOCH4 ($epoch, $epString)

my S$epoch; # in
my S$epString; # out
CDF::encodeEPOCHx ($epoch, $format, $epString)

my $epoch; # in
my $format; # in
my $epString; # out
$epoch = CDF::toParseEPOCH ($epString) # out
my $epString; # in
@epoch = CDF::toParseEPOCH (\@epString) # out
my \@epString; # in
$epoch = CDF::parseEPOCH ($epString) # out
my S$epString; # in
@epoch = CDF::parseEPOCH (\@epString) # out
my \@epString; # in
$epoch = CDF::parseEPOCH1 ($epString) # out
my $epString # in
$epoch = CDF::parseEPOCH2 ($epString) # out
my S$epString; # in
$epoch = CDF::parseEPOCH3 ($epString) # out
my S$epString; # in
$epoch = CDF::parseEPOCH4 ($epString) # out
my S$epString; # in

$status = CDF:: computeEPOCH16 ($year, $month, $day, Shour, $minute, $second, $msec, $microsec,
$nanosec, $picosec. \@epoch) out

in

in

in

in

my S$year;
my $month;
my $day;
my Shour;

H o H H H

173

my $minute;
my $second;
my $msec;
my $microsec;
my $nanosec;
my $picosec;
my \@epoch;

CDF::EPOCHI16breakdown (\@epoch, $year, $month, $day, $hour, $minute, $second, $msec,

$microsec, $nanosec, $picosec)
my \@epoch;
my $year;
my $month;
my $day;
my S$hour;
my $minute;
my $second;
my $msec;
my $microsec;
my $nanosec;
my $picosec;

CDF::toEncodeEPOCH16 (\@epoch, style, epString)
my \@epoch;

my $style;

my $epString;

CDF::encodeEPOCH16 (\@epoch, epString)
my \@epoch;
my $epString;

CDF::encodeEPOCH16 1 (\@epoch, epString)
my \@epoch;
my \$epString;

CDF::encodeEPOCH16 2 (\@epoch, epString)
my \@epoch;
my \$epString;

CDF::encodeEPOCH16 3 (\@epoch, epString)
my \@epoch;
my \$epString;

CDF::encodeEPOCH16 4 (\@epoch, epString)
my \@epoch;
my \$epString;

CDF::encodeEPOCH16_x (\@epoch, format, epString)
my \@epoch;

my $format;

my $epString;

CDF:: toParseEPOCH16 ($epString, \@epoch)

my $epString;
my \@epoch;

174

o H H H H O H H HH H o H H o H H®

I+

H FH

H H H

in
in
in
in
in
in
out

in

out
out
out
out
out
out
out
out
out
out

in
in
out

in
out

in
out

in
out

in
out

in
out

in
in
out

in
out

CDF:: parseEPOCH16 ($epString, \@epoch)
my S$epString;
my \@epoch;

$status = CDF::parseEPOCH16_1 ($epString, \@epoch)
my $epString;
my \@epoch;

$status = CDF::parseEPOCH16 2 ($epString, \@epoch)
my S$epString;
my \@epoch;

$status = CDF::parseEPOCH16 3 ($epString, \@epoch)
my S$epString;
my \@epoch;

$status = CDF::parseEPOCH16_4 ($epString, \@epoch)
my $epString;
my \@epoch;

CDF::EPOCHtoUnixTime ($epoch, $unixTime)
my $epoch;
my $unixTime;

CDF::EPOCHtoUnixTime (\@epoch, \@unixTime)
my \@epoch;
my \@unixTime;

CDF::EPOCHI16toUnixTime (\@epoch, \$unixTime)
my \@epoch;
my \$unixTime;

CDF::EPOCH16toUnixTime (\@epoch, \@unixTime)
my \@epoch;
my \@unixTime;

CDF::UnixTimetoEPOCH ($unixTime, $epoch)
my $unixTime;
my $epoch;

CDF:: UnixTimetoEPOCH (\@unixTime, \@epoch)
my \@unixTime;
my \@epoch;

CDF:: UnixTimetoEPOCH16 ($unixTime, \@epoch)
my \$unixTime;
my \@epoch;

CDF:: UnixTimetoEPOCH16 (\@unixTime, \@epoch)

my \@unixTime;
my \@epoch;

175

H HF FH

H FHF FH*

H* FH H FH

H* H*

in
out

out
in
out

out
in
out

out
in
out
out
in
out

in
out

in
out

in
out

in
out

in
out

in
out

in
out

in
out

B.5 TT2000 Utility Routines

$tt2000 = CDF::computeTT2000 ($year, $month, $day, $hour, $minute, $second, $msec, $usec, $nansec)
my S$year; # in
my $month; # in
my $day; in
my S$hour; in
my $minute; in
my $second; in
my $msec; in
my S$usec; in
my $nsec; in

o H H O H

@tt2000 = CDF::computeTT2000 (\@year, \@month, \@day, \@hour, \@minute, \@second, \@msec, \@usec,

\@nansec)

my \@year; # in
my \@month; # in
my \@day; # in
my \@hour; # in
my \@minute; # in
my \@second; # in
my \@msec; # in
my \@usec; # in
my \@nsec; # in
CDF::TT2000breakdown ($tt2000, $year, $month, $day, $Shour, $minute, $second, $msec, $usec, $nsec)
my $tt2000; # in
my S$year; # out
my $month; # out
my $day; # out
my S$hour; # out
my $minute; # out
my $second; # out
my $msec; # out
my S$usec; # out
my $nsec; # out

CDF::TT2000breakdown (\@tt2000, \@year, \@month, \@day, \@hour, \@minute, \@second, \@msec, \@usec,

\@nsec)

my \@tt2000; # in
my \@year; # out
my \@month; # out
my \@day; # out
my \@hour; # out
my \@minute; # out
my \@second, # out
my \@msec; # out
my \@usec; # out
my \@nsec; # out
CDF::toEncodeTT2000 ($tt2000, $style, $SepString)

my $tt2000; # in
my $style; # in
my $epString; # out

177

CDF::toEncodeTT2000 (\@tt2000, $style, \@epString)
my \@tt2000;

my $style;

my \@epString;

CDF::encodeTT2000 ($tt2000, $epString, $format?®)
my $tt2000;

my $epString;

my $format;

CDF::encodeTT2000 (\@tt2000, \@epString, $format?)
my \@tt2000;

my \@epString;
my format;

$epoch = CDF::toParseTT2000 ($epString)
my $epString;

@epoch = CDF::toParseTT2000 (\@epString)
my \@epString;

$epoch = CDF::parseTT2000 ($epString)
my S$epString;

@epoch = CDF::parseTT2000 (\@epString)
my \@epString;

CDF::TT2000toUnixTime ($epoch, $unixTime)
my $epoch;
my $unixTime;

CDF::TT2000toUnixTime (\@epoch, \@unixTime)
my \@epoch;
my \@unixTime;

CDF::UnixTimetoTT2000 (SunixTime, $epoch)
my $unixTime;
my S$epoch;

CDF::UnixTimetoTT2000 (\@unixTime, \@epoch)
my \@unixTime;
my \@epoch;

CDF::leapsecondsinfo ($dump3?)
my $dump;

28 An optional field.
2 An optional field.
30 An optional field.

178

H H H

H*H FHF FH*

H

H* H*

in
in
out

in
out
in

in
out
in
out
in
out
in
out

in

out
in

in
out

in
out

in
out

in
out

in

Index

ALPHAOSF1_DECODING, 7 inquiring, 72
ALPHAOSF1_ENCODING, 5 numbering
ALPHAVMSd DECODING, 7 inquiring, 69
ALPHAVMSd ENCODING, 5 scopes
ALPHAVMSg DECODING, 7 changing, 91
ALPHAVMSg ENCODING, 5 constants, 10
ALPHAVMSi DECODING, 7 GLOBAL_SCOPE, 10
ALPHAVMSi_ENCODING, 5 VARIABLE_SCOPE, 10
Argument passing, 3 inquiring, 21, 70
ARM _BIG DECODING, 7 Backward file
ARM BIG_ENCODING, 6 setting, 35
ARM LITTLE DECODING, 7 CDF
ARM LITTLE_ENCODING, 6 backward file, 12
attribute Backward file
inquiring, 21 inquiring, 31
number backward file flag
inquiring, 22 getting, 12
renaming, 25 setting, 12
attributes Big Integer, 15
creating, 17,63, 117, 118, 119, 120, 121, 123 Checksum, 13
current, 50 Checksum mode
confirming, 55 getting, 14
selecting setting, 14
by name, 103 closing, 25
by number, 103 creating, 26
deleting, 66 decoding
entries constants
current, 50 SGi_ DECODING, 7
confirming, 57, 58, 61 deleting, 28
selecting opening, 33
by name, 105, 108 Validation, 14
by number, 105, 108 CDF library
data specification copy right notice
changing, 93, 98 max length, 11
data type reading, 74
inquiring, 74, 75, 83 internal interface, 47
number of elements modes
inquiring, 74, 75, 76, 83, 93, 98 -0.0t0 0.0
deleting, 66, 67 confirming, 56
existence, determining, 57, 58, 61 constants
inquiring, 18 NEGtoPOSfpOoff, 11
maximum NEGtoPOSfpOon, 11
inquiring, 68 selecting, 104
number of decoding
inquiring, 69 confirming, 56
reading, 20, 73, 75, 82 selecting, 103
writing, 23, 92, 93, 98 read-only
existence, determining, 55 confirming, 56
naming, 11, 18 constants
inquiring, 21, 68 READONLYoff, 10
renaming, 90 READONLYon, 10
number of selecting, 10, 104

179

zMode CDFs

confirming, 56 accessing, 55

constants browsing, 10
zMODEoff, 10 cache buffers
zMODEonl, 11 confirming, 55, 57, 58, 60, 61
zMODEon2, 11 selecting, 103, 104, 105, 106, 107, 108, 110

selecting, 10, 104 checksum

standard interface, 17, 117 inquiring, 30

version resetting, 34
inquiring, 75 specifying, 91
CDF s closing, 54
decoding compression

constants
HOST DECODING, 6
NETWORK_DECODING, 7
CDF_ATTR_NAME_LEN, 11

inquiring, 70, 77, 84
specifying, 91
compression types/parameters, 8
copy right notice

CDF_BYTE, 4 max length, 11

CDF _CHAR, 4 reading, 28, 70
CDF_COPYRIGHT_LEN, 11 corrupted, 26

CDF _DOUBLE, 5 creating, 64

CDF_EPOCH, 5 current, 49

CDF_EPOCHI6, 5 confirming, 55

CDF FLOAT,S selecting, 103

CDF_INT1, 4 decoding

CDF _INT2, 4 constants

CDF_INT4, 4 ALPHAOSF1_DECODING, 7
CDF_INTS, 5 ALPHAVMSd_DECODING, 7

CDF_MAX_DIMS, 11
CDF_MAX_PARMS, 11

ALPHAVMSg DECODING, 7
ALPHAVMSi_DECODING, 7

CDF _OK, 4 ARM_BIG _DECODING, 7
CDF_PATHNAME LEN, 11 ARM_LITTLE_DECODING, 7
CDF_REAL4, 5 DECSTATION_DECODING, 7
CDF_REALS, 5 HP_DECODING, 7

CDF_STATUSTEXT_LEN, 11
CDF_TIME TT2000, 5

1A64VMSd_DECODING, 7
IA64VMSg_DECODING, 7

CDF_UCHAR, 4 IA64VMSi_DECODING, 7
CDF_UINTI, 4 IBMPC_DECODING, 7
CDF_UINT2, 4 IBMRS_DECODING, 7
CDF_UINT4, 5 MAC_DECODING, 7
CDF_VAR NAME LEN, 11 NeXT DECODING, 7
CDF_WARN, 4 SUN_DECODING, 7

CDFattrCreate, 17, 117, 118, 119, 120, 121, 123
CDFattrEntryInquire, 18
CDFattrGet, 20
CDFattrInquire, 21
CDFattrNum, 22
CDFattrPut, 23
CDFattrRename, 25
CDFclose, 25
CDFcreate, 26
CDFdelete, 28

CDFdoc, 28

CDFerror, 29
CDFgetCkecksum, 30
CDFgetFileBackward, 31
CDFgetValidate, 31
CDFinquire, 32

VAX_ DECODING, 7
deleting, 66
encoding
changing, 91
constants, 5
ALPHAOSF1_ENCODING, 5
ALPHAVMSd_ENCODING, 5
ALPHAVMSg ENCODING, 5
ALPHAVMSi_ENCODING, 5
ARM_BIG_ENCODING, 6
ARM_LITTLE_ENCODING, 6
DECSTATION_ENCODING, 6
HOST_ENCODING, 5
HP_ENCODING, 6
IA64VMSd_ENCODING, 6
IA64VMSg_ENCODING, 6
CDFlib, 47 IA64VMSi_ENCODING, 6
CDFopen, 33 IBMPC_ENCODING, 6
cdfs IBMRS_ENCODING, 6
checksum MAC_ENCODING, 6
inquiring, 70 NETWORK_ENCODING, 5

180

NeXT_ENCODING, 6
SGi_ENCODING, 6
SUN_ENCODING, 6
VAX ENCODING, 5
default, 5
inquiring, 32, 70
format
changing, 91
constants
MULTI _FILE, 4
SINGLE FILE, 4
default, 4
inquiring, 71
naming, 11,27, 34
nulling, 90
opening, 90
overwriting, 26
scratch directory
specifying, 104
validation
inquiring, 31
resetting, 36
version
inquiring, 28, 71, 73
CDFsetChecksum, 34
CDFsetFileBackward, 35
CDFsetValidate, 36
CDFvarClose, 36
CDFvarCreate, 37
CDFvarGet, 39
CDFvarlnquire, 42
CDFvarNum, 43
CDFvarPut, 44
CDFvarRename, 45
CDFvHpGet, 40
CDFvHpPut, 41
checksum
CDF
specifying, 91
Checksum, 34
Ckecksum, 30
COLUMN_MAJOR, 8
Compiling, 1
compression
CDF
inquiring, 70, 71
specifying, 91
types/parameters, 8
variables
inquiring, 77, 84
reserve percentage
confirming, 59, 63
selecting, 106, 110
specifying, 94, 99
computeEPOCH, 127
computeEPOCH16, 133
computeTT2000, 143
data types
constants, 4
CDF _BYTE, 4
CDF_CHAR, 4
CDF _DOUBLE, 5

181

CDF_EPOCH, 5
CDF_EPOCHI16, 5
CDF_FLOAT,>5
CDF_INTI1, 4
CDF_INT2, 4
CDF_INT4, 4
CDF_INTS, 5
CDF _REALA4, 5
CDF _REALS, 5
CDF_TIME TT2000, 5
CDF_UCHAR, 4
CDF_UINTI, 4
CDF_UINT2, 4
CDF UINT4, 5
inquiring size, 73
DECSTATION_ DECODING, 7
DECSTATION_ENCODING, 6
dimensions
limit, 11
encodeEPOCH, 128, 129, 133
encodeEPOCHI, 129
encodeEPOCH16, 134
encodeEPOCH16 1, 134
encodeEPOCH16 2, 135
encodeEPOCH16_3, 135
encodeEPOCH16 4, 135
encodeEPOCH16_x, 136
encodeEPOCH2, 130
encodeEPOCH3, 130
encodeEPOCH4, 130
encodeEPOCHXx, 130
encodeTT2000, 144, 145
EPOCH
computing, 127, 133
decomposing, 128, 133

encoding, 128, 129, 130, 133, 134, 135, 136
ISO 8601, 130, 132, 135, 138, 139, 146, 147
parsing, 131, 132, 137, 138, 139, 146, 147

utility routines, 127, 143
computeEPOCH, 127
computeEPOCH16, 133

encodeEPOCH, 128, 129, 133

encodeEPOCHI1, 129
encodeEPOCH16, 134
encodeEPOCHI16 1, 134
encodeEPOCH16 2, 135
encodeEPOCH16 3, 135
encodeEPOCH16 4, 135
encodeEPOCH16_x, 136
encodeEPOCH2, 130
encodeEPOCH3, 130
encodeEPOCH4, 130
encodeEPOCHx, 130
EPOCH16breakdown, 133
EPOCHbreakdown, 128

parseEPOCH, 131, 132, 137, 146

parseEPOCHI, 132
parseEPOCH16, 137
parseEPOCH16_1, 137
parseEPOCH16 2, 137
parseEPOCH16 3, 138

parssEPOCH16_4, 138, 139, 146, 147

parseEPOCH2, 132
parseEPOCH3, 132
parseEPOCH4, 132
EPOCH16breakdown, 133
EPOCHbreakdown, 128
examples
Backward file indicator
setting, 35
closing
CDF, 26
rVariable, 37
creating

attribute, 18, 117, 118, 119, 121, 122, 123

CDF, 27, 47
rVariable, 38, 111
zVariable, 111
deleting
CDF, 28
get
Backward file indicator, 31
checksum, 30
File validation, 32
rVariable
data, 39
inquiring
attribute, 22
entry, 19
attribute number, 23
CDF, 29, 33

error code explanation text, 30

rVariable, 43
variable number, 44
Internal Interface, 47, 111
interpreting
status codes, 125
opening
CDF, 34
reading
attribute entry, 20
rVariable values
hyper, 40, 112
zVariable values
sequential, 113
renaming
attribute, 25
attributes, 113
rVariable, 46
set
CDF
checksum, 35, 36
status handler, 125
writing
attribute
gEntry, 24
rEntry, 24, 114
rVariable

multiple records/values, 41

rVariable, 45
zVariable values
multiple variable, 114
GLOBAL_SCOPE, 10
HOST DECODING, 6

182

HOST_ENCODING, 5
HP_DECODING, 7
HP_ENCODING, 6
IA64VMSd ENCODING, 6, 7
IA64VMSg DECODING, 7
[A64VMSg_ENCODING, 6
IA64VMSi_DECODING, 7
IA64VMSi_ENCODING, 6
IBMPC_DECODING, 7
IBMPC_ENCODING, 6
IBMRS_DECODING, 7
IBMRS_ENCODING, 6
inquiring
CDF information, 28
interfaces
Internal, 47
Standard, 17, 117
Internal Interface, 47
common mistakes, 115
currnt objects/states, 49
attribute, 50
attribute entries, 50
CDF, 49

records/dimensions, 50, 51, 52

sequential value, 51, 52
status code, 52
variables, 50
examples, 47, 111
Indentation/Style, 53
Operations, 54
status codes, returned, 52
syntax, 53
argument list, 53
limitations, 53
leapsecondsinfo, 147
limits
attribute name, 11
Copyright text, 11
dimensions, 11
explanation/status text, 11
file name, 11
parameters, 11
variable name, 11
Limits of names, 11
MAC DECODING, 7
MAC_ENCODING, 6
MULTI FILE, 4
NEGtoPOSfp0off, 11
NEGtoPOSfpOon, 11
NETWORK DECODING, 7
NETWORK ENCODING, 5
NeXT _DECODING, 7
NeXT ENCODING, 6
NO_COMPRESSION, 9
NO_SPARSEARRAYS, 10
NO_SPARSERECORDS, 9
NOVARY, 8
PAD_SPARSERECORDS, 9
parseEPOCH, 131, 132, 137, 146
parseEPOCH1, 132
parseEPOCH16, 137
parseEPOCH16 1, 137

parseEPOCH16_2, 137
parseEPOCH16_3, 138

parseEPOCH16_4, 138, 139, 146, 147

parseEPOCH2, 132
parseEPOCH3, 132
parseEPOCH4, 132
parseTT2000, 146
PREV_SPARSERECORDS, 9
READONLYoff, 10
READONLYon, 10
ROW_MAJOR, 8
rVariables
close, 36
creating, 37
hyper values
accessing, 40
writing, 41
renaming, 45
single value
accessing, 39
writing, 44
scratch directory
specifying, 104
SGi_DECODING, 7
SGi_ENCODING, 6
SINGLE FILE, 4
sparse arrays
inquiring, 81, 89
specifying, 97, 102
types, 10
sparse records
inquiring, 81, 89
specifying, 97, 102
types, 9
Standard Interface, 17, 117
status codes
constants, 4, 125
CDF_OK, 4
CDF_WARN, 4
current, 52
confirming, 56
selecting, 104
error, 149
explanation text
inquiring, 29, 82
max length, 11
informational, 149
interpreting, 125
status handler, example, 114
warning, 149
SUN_DECODING, 7
SUN_ENCODING, 6
TT2000
computing, 143
decomposing, 144
encoding, 144, 145
leap seconds, 147
parsing, 146
utility routines
computeTT2000, 143
encodeTT2000, 144, 145
leapsecondsinfo, 147

183

parseTT2000, 146
TT2000breakdown, 144

TT2000breakdown, 144
Validate, 31, 36
VARIABLE SCOPE, 10
variables

closing, 54, 55
compression
confirming, 59, 63
inquiring, 70, 77, 84
selecting, 106, 110
specifying, 94, 99
types/parameters, 8
creating, 64, 65
current, 50
confirming, 58, 61
selecting
by name, 106, 109
by number, 105, 108
data specification
changing, 95, 100
data type
inquiring, 42, 77, 85
number of elements
inquiring, 42, 80, 88
deleting, 67
dimension counts
current, 51, 52
confirming, 59, 61
selecting, 106, 108
dimension indices, starting
current, 51, 52
confirming, 60, 61
selecting, 107, 109
dimension intervals
current, 51, 52
confirming, 60, 62
selecting, 107, 109
dimensionality
inquiring, 32, 82, 87
existence, determining, 58, 62
majority
changing, 92
considering, 8
constants, 8
COLUMN_MAIJOR, 8
ROW_MAIJOR, 8
default, 64
inquiring, 72
naming, 37
inquiring, 42, 78, 86
max length, 11
renaming, 96, 101
number
inquiring, 43
number of
inquiring, 32
number of, inquiring, 72, 73
numbering
inquiring, 79, 87
pad value
confirming, 59, 62

inquiring, 80, 88
specifying, 96, 101
reading, 77, 78, 85, 86
record count
current, 50, 51
confirming, 60, 62
selecting, 107, 109
record interval
current, 51
confirming, 60, 62
selecting, 107, 109
record number, starting
current, 50, 51
confirming, 60, 63
selecting, 107, 110
records
allocated
inquiring, 76, 79, 84, 87
specifying, 94, 99
blocking factor
inquiring, 77, 84
specifying, 94, 99
deleting, 67
indexing
inquiring, 79, 87
initial
writing, 96, 100

184

maximum
inquiring, 78, 81, 86, 89
number of
inquiring, 80, 88
sparse, 9
inquiring, 81, 89
specifying, 97, 102
sparse arrays
inquiring, 81, 89, 97, 102
types, 10
variances
constants, 8
NOVARY, 8
VARY, 8
dimensional
inquiring, 78, 85
specifying, 95, 100
record
changing, 96, 101
inquiring, 80, 88
writing, 95, 101
VARY, 8
VAX DECODING, 7
VAX _ENCODING, 5
zMODEOoff, 10
zMODEonl, 11
zMODEon2, 11

