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Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical activity.
ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication
as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

International Standard ISO/IEC 8652 was prepared by Joint Technical Committee ISO/IEC JTC 1,
Information Technology Subcommittee SC22, Programming languages, their environments and system
software interfaces.

This third edition cancels and replaces the second edition (ISO/IEC 8652:1995), which has been
technically revised. It also incorporates the Technical Corrigendum ISO/IEC 8652:1995:COR.1:2001 and
Amendment ISO/IEC 8652:1995:AMD 1:2007.
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Introduction

This is the Ada Reference Manual.

Other available Ada documents include:

e Ada 2012 Rationale. This gives an introduction to the changes and new features in Ada 2012,
and explains the rationale behind them. Programmers should read this rationale before reading
this Standard in depth. Rationales for Ada 83, Ada 95, and Ada 2005 are also available.

® This paragraph was deleted.

e The Annotated Ada Reference Manual (AARM). The AARM contains all of the text in this
International Standard, plus various annotations. It is intended primarily for compiler writers,
validation test writers, and others who wish to study the fine details. The annotations include
detailed rationale for individual rules and explanations of some of the more arcane interactions
among the rules.

Design Goals

Ada was originally designed with three overriding concerns: program reliability and maintenance,
programming as a human activity, and efficiency. The 1995 revision to the language was designed to
provide greater flexibility and extensibility, additional control over storage management and
synchronization, and standardized packages oriented toward supporting important application areas, while
at the same time retaining the original emphasis on reliability, maintainability, and efficiency. This third
edition provides further flexibility and adds more standardized packages within the framework provided
by the 1995 revision.

The need for languages that promote reliability and simplify maintenance is well established. Hence
emphasis was placed on program readability over ease of writing. For example, the rules of the language
require that program variables be explicitly declared and that their type be specified. Since the type of a
variable is invariant, compilers can ensure that operations on variables are compatible with the properties
intended for objects of the type. Furthermore, error-prone notations have been avoided, and the syntax of
the language avoids the use of encoded forms in favor of more English-like constructs. Finally, the
language offers support for separate compilation of program units in a way that facilitates program
development and maintenance, and which provides the same degree of checking between units as within a
unit.

Concern for the human programmer was also stressed during the design. Above all, an attempt was made
to keep to a relatively small number of underlying concepts integrated in a consistent and systematic way
while continuing to avoid the pitfalls of excessive involution. The design especially aims to provide
language constructs that correspond intuitively to the normal expectations of users.

Like many other human activities, the development of programs is becoming ever more decentralized and
distributed. Consequently, the ability to assemble a program from independently produced software
components continues to be a central idea in the design. The concepts of packages, of private types, and of
generic units are directly related to this idea, which has ramifications in many other aspects of the
language. An allied concern is the maintenance of programs to match changing requirements; type
extension and the hierarchical library enable a program to be modified while minimizing disturbance to
existing tested and trusted components.

No language can avoid the problem of efficiency. Languages that require over-elaborate compilers, or that
lead to the inefficient use of storage or execution time, force these inefficiencies on all machines and on all
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programs. Every construct of the language was examined in the light of present implementation
techniques. Any proposed construct whose implementation was unclear or that required excessive machine
resources was rejected.

Language Summary

An Ada program is composed of one or more program units. Program units may be subprograms (which
define executable algorithms), packages (which define collections of entities), task units (which define
concurrent computations), protected units (which define operations for the coordinated sharing of data
between tasks), or generic units (which define parameterized forms of packages and subprograms). Each
program unit normally consists of two parts: a specification, containing the information that must be
visible to other units, and a body, containing the implementation details, which need not be visible to other
units. Most program units can be compiled separately.

This distinction of the specification and body, and the ability to compile units separately, allows a program
to be designed, written, and tested as a set of largely independent software components.

An Ada program will normally make use of a library of program units of general utility. The language
provides means whereby individual organizations can construct their own libraries. All libraries are
structured in a hierarchical manner; this enables the logical decomposition of a subsystem into individual
components. The text of a separately compiled program unit must name the library units it requires.

Program Units

A subprogram is the basic unit for expressing an algorithm. There are two kinds of subprograms:
procedures and functions. A procedure is the means of invoking a series of actions. For example, it may
read data, update variables, or produce some output. It may have parameters, to provide a controlled
means of passing information between the procedure and the point of call. A function is the means of
invoking the computation of a value. It is similar to a procedure, but in addition will return a result.

A package is the basic unit for defining a collection of logically related entities. For example, a package
can be used to define a set of type declarations and associated operations. Portions of a package can be
hidden from the user, thus allowing access only to the logical properties expressed by the package
specification.

Subprogram and package units may be compiled separately and arranged in hierarchies of parent and child
units giving fine control over visibility of the logical properties and their detailed implementation.

A task unit is the basic unit for defining a task whose sequence of actions may be executed concurrently
with those of other tasks. Such tasks may be implemented on multicomputers, multiprocessors, or with
interleaved execution on a single processor. A task unit may define either a single executing task or a task
type permitting the creation of any number of similar tasks.

A protected unit is the basic unit for defining protected operations for the coordinated use of data shared
between tasks. Simple mutual exclusion is provided automatically, and more elaborate sharing protocols
can be defined. A protected operation can either be a subprogram or an entry. A protected entry specifies a
Boolean expression (an entry barrier) that must be True before the body of the entry is executed. A
protected unit may define a single protected object or a protected type permitting the creation of several
similar objects.
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Declarations and Statements

The body of a program unit generally contains two parts: a declarative part, which defines the logical
entities to be used in the program unit, and a sequence of statements, which defines the execution of the
program unit.

The declarative part associates names with declared entities. For example, a name may denote a type, a
constant, a variable, or an exception. A declarative part also introduces the names and parameters of other
nested subprograms, packages, task units, protected units, and generic units to be used in the program unit.

The sequence of statements describes a sequence of actions that are to be performed. The statements are
executed in succession (unless a transfer of control causes execution to continue from another place).

An assignment statement changes the value of a variable. A procedure call invokes execution of a
procedure after associating any actual parameters provided at the call with the corresponding formal
parameters.

Case statements and if statements allow the selection of an enclosed sequence of statements based on the
value of an expression or on the value of a condition.

The loop statement provides the basic iterative mechanism in the language. A loop statement specifies that
a sequence of statements is to be executed repeatedly as directed by an iteration scheme, or until an exit
statement is encountered.

A block statement comprises a sequence of statements preceded by the declaration of local entities used by
the statements.

Certain statements are associated with concurrent execution. A delay statement delays the execution of a
task for a specified duration or until a specified time. An entry call statement is written as a procedure call
statement; it requests an operation on a task or on a protected object, blocking the caller until the operation
can be performed. A called task may accept an entry call by executing a corresponding accept statement,
which specifies the actions then to be performed as part of the rendezvous with the calling task. An entry
call on a protected object is processed when the corresponding entry barrier evaluates to true, whereupon
the body of the entry is executed. The requeue statement permits the provision of a service as a number of
related activities with preference control. One form of the select statement allows a selective wait for one
of several alternative rendezvous. Other forms of the select statement allow conditional or timed entry
calls and the asynchronous transfer of control in response to some triggering event.

Execution of a program unit may encounter error situations in which normal program execution cannot
continue. For example, an arithmetic computation may exceed the maximum allowed value of a number,
or an attempt may be made to access an array component by using an incorrect index value. To deal with
such error situations, the statements of a program unit can be textually followed by exception handlers that
specify the actions to be taken when the error situation arises. Exceptions can be raised explicitly by a
raise statement.

Data Types

Every object in the language has a type, which characterizes a set of values and a set of applicable
operations. The main classes of types are elementary types (comprising enumeration, numeric, and access
types) and composite types (including array and record types).

An enumeration type defines an ordered set of distinct enumeration literals, for example a list of states or
an alphabet of characters. The enumeration types Boolean, Character, Wide Character, and
Wide Wide Character are predefined.
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Numeric types provide a means of performing exact or approximate numerical computations. Exact
computations use integer types, which denote sets of consecutive integers. Approximate computations use
either fixed point types, with absolute bounds on the error, or floating point types, with relative bounds on
the error. The numeric types Integer, Float, and Duration are predefined.

Composite types allow definitions of structured objects with related components. The composite types in
the language include arrays and records. An array is an object with indexed components of the same type.
A record is an object with named components of possibly different types. Task and protected types are
also forms of composite types. The array types String, Wide String, and Wide Wide String are
predefined.

Record, task, and protected types may have special components called discriminants which parameterize
the type. Variant record structures that depend on the values of discriminants can be defined within a
record type.

Access types allow the construction of linked data structures. A value of an access type represents a
reference to an object declared as aliased or to an object created by the evaluation of an allocator. Several
variables of an access type may designate the same object, and components of one object may designate
the same or other objects. Both the elements in such linked data structures and their relation to other
elements can be altered during program execution. Access types also permit references to subprograms to
be stored, passed as parameters, and ultimately dereferenced as part of an indirect call.

Private types permit restricted views of a type. A private type can be defined in a package so that only the
logically necessary properties are made visible to the users of the type. The full structural details that are
externally irrelevant are then only available within the package and any child units.

From any type a new type may be defined by derivation. A type, together with its derivatives (both direct
and indirect) form a derivation class. Class-wide operations may be defined that accept as a parameter an
operand of any type in a derivation class. For record and private types, the derivatives may be extensions
of the parent type. Types that support these object-oriented capabilities of class-wide operations and type
extension must be tagged, so that the specific type of an operand within a derivation class can be identified
at run time. When an operation of a tagged type is applied to an operand whose specific type is not known
until run time, implicit dispatching is performed based on the tag of the operand.

Interface types provide abstract models from which other interfaces and types may be composed and
derived. This provides a reliable form of multiple inheritance. Interface types may also be implemented by
task types and protected types thereby enabling concurrent programming and inheritance to be merged.

The concept of a type is further refined by the concept of a subtype, whereby a user can constrain the set
of allowed values of a type. Subtypes can be used to define subranges of scalar types, arrays with a limited
set of index values, and records and private types with particular discriminant values.

Other Facilities

Aspect clauses can be used to specify the mapping between types and features of an underlying machine.
For example, the user can specify that objects of a given type must be represented with a given number of
bits, or that the components of a record are to be represented using a given storage layout. Other features
allow the controlled use of low level, nonportable, or implementation-dependent aspects, including the
direct insertion of machine code.

The predefined environment of the language provides for input-output and other capabilities by means of
standard library packages. Input-output is supported for values of user-defined as well as of predefined
types. Standard means of representing values in display form are also provided.
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The predefined standard library packages provide facilities such as string manipulation, containers of
various kinds (vectors, lists, maps, etc.), mathematical functions, random number generation, and access to
the execution environment.

The specialized annexes define further predefined library packages and facilities with emphasis on areas
such as real-time scheduling, interrupt handling, distributed systems, numerical computation, and high-
integrity systems.

Finally, the language provides a powerful means of parameterization of program units, called generic
program units. The generic parameters can be types and subprograms (as well as objects and packages)
and so allow general algorithms and data structures to be defined that are applicable to all types of a given
class.

Language Changes
Paragraphs 44 through 57 have been removed as they described differences from the first edition of Ada (Ada 83).

This International Standard replaces the second edition of 1995. It modifies the previous edition by
making changes and additions that improve the capability of the language and the reliability of programs
written in the language. This edition incorporates the changes from Amendment 1 (ISO/IEC
8652:1995:AMD 1:2007), which were designed to improve the portability of programs, interfacing to
other languages, and both the object-oriented and real-time capabilities.

Significant changes originating in Amendment 1 are incorporated:

e Support for program text is extended to cover the entire ISO/IEC 10646:2003 repertoire.
Execution support now includes the 32-bit character set. See subclauses 2.1, 3.5.2, 3.6.3, A.1,
A.3,and A.4.

e The object-oriented model has been improved by the addition of an interface facility which
provides multiple inheritance and additional flexibility for type extensions. See subclauses 3.4,
3.9, and 7.3. An alternative notation for calling operations more akin to that used in other
languages has also been added. See subclause 4.1.3.

e Access types have been further extended to unify properties such as the ability to access
constants and to exclude null values. See clause 3.10. Anonymous access types are now
permitted more freely and anonymous access-to-subprogram types are introduced. See
subclauses 3.3, 3.6, 3.10, and 8.5.1.

e The control of structure and visibility has been enhanced to permit mutually dependent
references between units and finer control over access from the private part of a package. See
subclauses 3.10.1 and 10.1.2. In addition, limited types have been made more useful by the
provision of aggregates, constants, and constructor functions. See subclauses 4.3, 6.5, and 7.5.

e The predefined environment has been extended to include additional time and calendar
operations, improved string handling, a comprehensive container library, file and directory
management, and access to environment variables. See subclauses 9.6.1, A.4, A.16, A.17, and
A.18.

e Two of the Specialized Needs Annexes have been considerably enhanced:

o The Real-Time Systems Annex now includes the Ravenscar profile for high-integrity
systems, further dispatching policies such as Round Robin and Earliest Deadline First,
support for timing events, and support for control of CPU time utilization. See subclauses
D.2,D.13,D.14, and D.15.
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e The Numerics Annex now includes support for real and complex vectors and matrices as
previously defined in ISO/IEC 13813:1997 plus further basic operations for linear algebra.
See subclause G.3.

e The overall reliability of the language has been enhanced by a number of improvements. These
include new syntax which detects accidental overloading, as well as pragmas for making
assertions and giving better control over the suppression of checks. See subclauses 6.1, 11.4.2,
and 11.5.

In addition, this third edition makes enhancements to address two important issues, namely, the particular
problems of multiprocessor architectures, and the need to further increase the capabilities regarding
assertions for correctness. It also makes additional changes and additions that improve the capability of the
language and the reliability of programs written in the language.

The following significant changes with respect to the 1995 edition as amended by Amendment 1 are
incorporated:

e New syntax (the aspect specification) is introduced to enable properties to be specified for
various entities in a more structured manner than through pragmas. See subclause 13.1.1.

e The concept of assertions introduced in the 2005 edition is extended with the ability to specify
preconditions and postconditions for subprograms, and invariants for private types. The concept
of constraints in defining subtypes is supplemented with subtype predicates that enable subsets
to be specified other than as simple ranges. These properties are all indicated using aspect
specifications. See subclauses 3.2.4, 6.1.1, and 7.3.2.

e New forms of expressions are introduced. These are if expressions, case expressions, quantified
expressions, and expression functions. As well as being useful for programming in general by
avoiding the introduction of unnecessary assignments, they are especially valuable in conditions
and invariants since they avoid the need to introduce auxiliary functions. See subclauses 4.5.7,
4.5.8, and 6.8. Membership tests are also made more flexible. See subclauses 4.4 and 4.5.2.

e A number of changes are made to subprogram parameters. Functions may now have parameters
of all modes. In order to mitigate consequent (and indeed existing) problems of inadvertent order
dependence, rules are introduced to reduce aliasing. A parameter may now be explicitly marked
as aliased and the type of a parameter may be incomplete in certain circumstances. See
subclauses 3.10.1, 6.1, and 6.4.1.

e The use of access types is now more flexible. The rules for accessibility and certain conversions
are improved. See subclauses 3.10.2, 4.5.2, 4.6, and 8.6. Furthermore, better control of storage
pools is provided. See subclause 13.11.4.

e The Real-Time Systems Annex now includes facilities for defining domains of processors and
assigning tasks to them. Improvements are made to scheduling and budgeting facilities. See
subclauses D.10.1, D.14, and D.16.

e A number of important improvements are made to the standard library. These include packages
for conversions between strings and UTF encodings, and classification functions for wide and
wide wide characters. Internationalization is catered for by a package giving locale information.
See subclauses A.3, A.4.11, and A.19. The container library is extended to include bounded
forms of the existing containers and new containers for indefinite objects, multiway trees, and
queues. See subclause A.18.

e Finally, certain features are added primarily to ease the use of containers, such as the ability to
iterate over all elements in a container without having to encode the iteration. These can also be
used for iteration over arrays, and within quantified expressions. See subclauses 4.1.5, 4.1.6,
5.5.1,and 5.5.2.
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Instructions for Comment Submission

Informal comments on this International Standard may be sent via e-mail to ada-comment@ada-
auth.org. If appropriate, the Project Editor will initiate the defect correction procedure.

Comments should use the following format:

topic Title summarizing comment
!reference Ada 2012 RMss.ss(pp)
'from Author Name yy-mm-dd
'keywords keywords related to topic
!discussion

text of discussion

where ss.ss is the clause or subclause number, pp is the paragraph number where applicable, and yy-mm-dd
is the date the comment was sent. The date is optional, as is the !keywords line.

Please use a descriptive “Subject” in your e-mail message, and limit each message to a single comment.

When correcting typographical errors or making minor wording suggestions, please put the correction
directly as the topic of the comment; use square brackets [ ] to indicate text to be omitted and curly braces
{ } to indicate text to be added, and provide enough context to make the nature of the suggestion self-
evident or put additional information in the body of the comment, for example:

!topic [c]{C}haracter

!topic it[']s meaning is not defined
Formal requests for interpretations and for reporting defects in this International Standard may be made in
accordance with the ISO/IEC JTC 1 Directives and the ISO/IEC JTC 1/SC 22 policy for interpretations.
National Bodies may submit a Defect Report to ISO/IEC JTC 1/SC 22 for resolution under the JTC 1

procedures. A response will be provided and, if appropriate, a Technical Corrigendum will be issued in
accordance with the procedures.
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extensive reviews, and countless individual contributions by the members of the High Order Language
Working Group and other interested personnel. In particular, William A. Whitaker provided leadership for
the program during the formative stages. David A. Fisher was responsible for the successful development
and refinement of the language requirement documents that led to the Steelman specification.
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Changes

The International Standard is the same as this version of the Reference Manual, except:
e This list of Changes is not included in the International Standard.
e The “Acknowledgements” page is not included in the International Standard.

e The text in the running headers and footers on each page is slightly different in the International
Standard.

e The title page(s) are different in the International Standard.

e This document is formatted for 8.5-by-11-inch paper, whereas the International Standard is
formatted for A4 paper (210-by-297mm); thus, the page breaks are in different places.

®  This paragraph was deleted.

e The “Using this version of the Ada Reference Manual” subclause is not included in the
International Standard.

e Paragraph numbers are not included in the International Standard.

Using this version of the Ada Reference Manual

This document has been revised with the corrections specified in Technical Corrigendum 1 (ISO/IEC
8652:1995/COR.1:2001) and Amendment 1 (ISO/IEC 8652/AMD 1:2007), along with changes
specifically for this third edition. In addition, a variety of editorial errors have been corrected.

Changes to the original 8652:1995 can be identified by the version number following the paragraph
number. Paragraphs with a version number of /1 were changed by Technical Corrigendum 1 or were
editorial corrections at that time, while paragraphs with a version number of /2 were changed by
Amendment 1 or were more recent editorial corrections, and paragraphs with a version number of /3 were
changed by the third (2012) edition of the Standard or were still more recent editorial corrections.
Paragraphs not so marked are unchanged by the third edition, Amendment 1, Technical Corrigendum 1, or
editorial corrections. Paragraph numbers of unchanged paragraphs are the same as in the 1995 edition of
the Ada Reference Manual. In addition, some versions of this document include revision bars near the
paragraph numbers. Where paragraphs are inserted, the paragraph numbers are of the form pp.nn, where
pp is the number of the preceding paragraph, and nn is an insertion number. For instance, the first
paragraph inserted after paragraph 8 is numbered 8.1, the second paragraph inserted is numbered 8.2, and
so on. Deleted paragraphs are indicated by the text This paragraph was deleted. Deleted paragraphs include
empty paragraphs that were numbered in the 1995 edition of the Ada Reference Manual.
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INTERNATIONAL STANDARD ISO/IEC 8652:2012(E)

Information technology — Programming
Languages — Ada

1 General

1.1 Scope

This International Standard specifies the form and meaning of programs written in Ada. Its purpose is to
promote the portability of Ada programs to a variety of computing systems.

Ada is a programming language designed to support the construction of long-lived, highly reliable
software systems. The language includes facilities to define packages of related types, objects, and
operations. The packages may be parameterized and the types may be extended to support the construction
of libraries of reusable, adaptable software components. The operations may be implemented as
subprograms using conventional sequential control structures, or as entries that include synchronization of
concurrent threads of control as part of their invocation. Ada supports object-oriented programming by
providing classes and interfaces, inheritance, polymorphism of variables and methods, and generic units.
The language treats modularity in the physical sense as well, with a facility to support separate
compilation.

The language provides rich support for real-time, concurrent programming, and includes facilities for
multicore and multiprocessor programming. Errors can be signaled as exceptions and handled explicitly.
The language also covers systems programming; this requires precise control over the representation of
data and access to system-dependent properties. Finally, a predefined environment of standard packages is
provided, including facilities for, among others, input-output, string manipulation, numeric elementary
functions, and random number generation, and definition and use of containers.

1.1.1 Extent
This International Standard specifies:
e The form of a program written in Ada;
e The effect of translating and executing such a program,;

e The manner in which program units may be combined to form Ada programs;
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5 e The language-defined library units that a conforming implementation is required to supply;

6 e The permissible variations within the standard, and the manner in which they are to be
documented;

7 e Those violations of the standard that a conforming implementation is required to detect, and the
effect of attempting to translate or execute a program containing such violations;

8 e Those violations of the standard that a conforming implementation is not required to detect.

9  This International Standard does not specify:

10 e The means whereby a program written in Ada is transformed into object code executable by a
processor;

11 e The means whereby translation or execution of programs is invoked and the executing units are
controlled;

12 e The size or speed of the object code, or the relative execution speed of different language
constructs;

13 e The form or contents of any listings produced by implementations; in particular, the form or
contents of error or warning messages;

14 e The effect of unspecified execution.

15 e The size of a program or program unit that will exceed the capacity of a particular conforming
implementation.

1.1.2 Structure
113 This International Standard contains thirteen clauses, fifteen annexes, and an index.

2 The core of the Ada language consists of:

33 e Clauses 1 through 13

4 e Annex A, “Predefined Language Environment”
5 e Annex B, “Interface to Other Languages”
6 e Annex J, “Obsolescent Features”

7 The following Specialized Needs Annexes define features that are needed by certain application areas:
8 e Annex C, “Systems Programming”

9 e Annex D, “Real-Time Systems”

10 e Annex E, “Distributed Systems”

1 e Annex F, “Information Systems”

12 e Annex G, “Numerics”

13 e Annex H, “High Integrity Systems”

14 The core language and the Specialized Needs Annexes are normative, except that the material in each of
the items listed below is informative:

15 e Text under a NOTES or Examples heading.

16/3 e Each subclause whose title starts with the word “Example” or “Examples”.

1.1.1 Extent 13 December 2012 2
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All implementations shall conform to the core language. In addition, an implementation may conform
separately to one or more Specialized Needs Annexes.

The following Annexes are informative:
e Annex K, “Language-Defined Aspects and Attributes”
e Annex L, “Language-Defined Pragmas”
e Annex M, “Summary of Documentation Requirements”
e Annex N, “Glossary”
e Annex P, “Syntax Summary”

e Annex Q, “Language-Defined Entities”

Each section is divided into subclauses that have a common structure. Each clause and subclause first
introduces its subject. After the introductory text, text is labeled with the following headings:

Syntax
Syntax rules (indented).

Name Resolution Rules

Compile-time rules that are used in name resolution, including overload resolution.

Legality Rules
Rules that are enforced at compile time. A construct is /egal if it obeys all of the Legality Rules.

Static Semantics

A definition of the compile-time effect of each construct.

Post-Compilation Rules

Rules that are enforced before running a partition. A partition is legal if its compilation units are legal and
it obeys all of the Post-Compilation Rules.

Dynamic Semantics

A definition of the run-time effect of each construct.

Bounded (Run-Time) Errors

Situations that result in bounded (run-time) errors (see 1.1.5).

Erroneous Execution

Situations that result in erroneous execution (see 1.1.5).

Implementation Requirements

Additional requirements for conforming implementations.

Documentation Requirements

Documentation requirements for conforming implementations.
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Metrics

Metrics that are specified for the time/space properties of the execution of certain language constructs.

Implementation Permissions

Additional permissions given to the implementer.

Implementation Advice

Optional advice given to the implementer. The word “should” is used to indicate that the advice is a
recommendation, not a requirement. It is implementation defined whether or not a given recommendation
is obeyed.

NOTES
1 Notes emphasize consequences of the rules described in the (sub)clause or elsewhere. This material is informative.

Examples

Examples illustrate the possible forms of the constructs described. This material is informative.

1.1.3 Conformity of an Implementation with the Standard

Implementation Requirements

A conforming implementation shall:

e Translate and correctly execute legal programs written in Ada, provided that they are not so
large as to exceed the capacity of the implementation;

e Identify all programs or program units that are so large as to exceed the capacity of the
implementation (or raise an appropriate exception at run time);

e Identify all programs or program units that contain errors whose detection is required by this
International Standard;

e Supply all language-defined library units required by this International Standard,

e Contain no variations except those explicitly permitted by this International Standard, or those
that are impossible or impractical to avoid given the implementation's execution environment;

e Specify all such variations in the manner prescribed by this International Standard.

The external effect of the execution of an Ada program is defined in terms of its interactions with its
external environment. The following are defined as external interactions:

e Any interaction with an external file (see A.7);

e The execution of certain code_statements (see 13.8); which code_statements cause external
interactions is implementation defined.

e Any call on an imported subprogram (see Annex B), including any parameters passed to it;

e Any result returned or exception propagated from a main subprogram (see 10.2) or an exported
subprogram (see Annex B) to an external caller;

e Any read or update of an atomic or volatile object (see C.6);

e The values of imported and exported objects (see Annex B) at the time of any other interaction
with the external environment.

1.1.2 Structure 13 December 2012 4
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A conforming implementation of this International Standard shall produce for the execution of a given
Ada program a set of interactions with the external environment whose order and timing are consistent
with the definitions and requirements of this International Standard for the semantics of the given program.

An implementation that conforms to this Standard shall support each capability required by the core
language as specified. In addition, an implementation that conforms to this Standard may conform to one
or more Specialized Needs Annexes (or to none). Conformance to a Specialized Needs Annex means that
each capability required by the Annex is provided as specified.

An implementation conforming to this International Standard may provide additional aspects, attributes,
library units, and pragmas. However, it shall not provide any aspect, attribute, library unit, or pragma
having the same name as an aspect, attribute, library unit, or pragma (respectively) specified in a
Specialized Needs Annex unless the provided construct is either as specified in the Specialized Needs
Annex or is more limited in capability than that required by the Annex. A program that attempts to use an
unsupported capability of an Annex shall either be identified by the implementation before run time or
shall raise an exception at run time.

Documentation Requirements

Certain aspects of the semantics are defined to be either implementation defined or unspecified. In such
cases, the set of possible effects is specified, and the implementation may choose any effect in the set.
Implementations shall document their behavior in implementation-defined situations, but documentation is
not required for unspecified situations. The implementation-defined characteristics are summarized in M.2.

The implementation may choose to document implementation-defined behavior either by documenting
what happens in general, or by providing some mechanism for the user to determine what happens in a
particular case.

Implementation Advice
If an implementation detects the use of an unsupported Specialized Needs Annex feature at run time, it
should raise Program_Error if feasible.
If an implementation wishes to provide implementation-defined extensions to the functionality of a

language-defined library unit, it should normally do so by adding children to the library unit.

NOTES
2 The above requirements imply that an implementation conforming to this Standard may support some of the capabilities
required by a Specialized Needs Annex without supporting all required capabilities.

1.1.4 Method of Description and Syntax Notation

The form of an Ada program is described by means of a context-free syntax together with context-
dependent requirements expressed by narrative rules.

The meaning of Ada programs is described by means of narrative rules defining both the effects of each
construct and the composition rules for constructs.

The context-free syntax of the language is described using a simple variant of Backus-Naur Form. In
particular:

e Lower case words in a sans-serif font, some containing embedded underlines, are used to denote
syntactic categories, for example:

case_statement

5 13 December 2012 Conformity of an Implementation with the Standard 1.1.3
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Boldface words are used to denote reserved words, for example:

array

e Square brackets enclose optional items. Thus the two following rules are equivalent.

simple_return_statement ::= return [expression];
simple_return_statement ::= return; | return expression;

e Curly brackets enclose a repeated item. The item may appear zero or more times; the repetitions
occur from left to right as with an equivalent left-recursive rule. Thus the two following rules are
equivalent.

term ::= factor {multiplying_operator factor}
term ::= factor | term multiplying_operator factor

e A vertical line separates alternative items unless it occurs immediately after an opening curly
bracket, in which case it stands for itself:

constraint ::= scalar_constraint | composite_constraint
discrete_choice_list ::= discrete_choice {| discrete_choice}

e If the name of any syntactic category starts with an italicized part, it is equivalent to the category
name without the italicized part. The italicized part is intended to convey some semantic
information. For example subtype_name and fask_name are both equivalent to name alone.

The delimiters, compound delimiters, reserved words, and numeric_literals are exclusively made of the
characters whose code point is between 16#20# and 16#7E#, inclusively. The special characters for which
names are defined in this International Standard (see 2.1) belong to the same range. For example, the
character E in the definition of exponent is the character whose name is “LATIN CAPITAL LETTER E”,
not “GREEK CAPITAL LETTER EPSILON”.

When this International Standard mentions the conversion of some character or sequence of characters to
upper case, it means the character or sequence of characters obtained by using simple upper case mapping,
as defined by documents referenced in the note in Clause 1 of ISO/IEC 10646:2011.

A syntactic category is a nonterminal in the grammar defined in BNF under “Syntax.” Names of syntactic
categories are set in a different font, like_this.

A construct is a piece of text (explicit or implicit) that is an instance of a syntactic category defined under
“Syntax”.

A constituent of a construct is the construct itself, or any construct appearing within it.

Whenever the run-time semantics defines certain actions to happen in an arbitrary order, this means that
the implementation shall arrange for these actions to occur in a way that is equivalent to some sequential
order, following the rules that result from that sequential order. When evaluations are defined to happen in
an arbitrary order, with conversion of the results to some subtypes, or with some run-time checks, the
evaluations, conversions, and checks may be arbitrarily interspersed, so long as each expression is
evaluated before converting or checking its value. Note that the effect of a program can depend on the
order chosen by the implementation. This can happen, for example, if two actual parameters of a given call
have side effects.

1.1.4 Method of Description and Syntax Notation 13 December 2012 6
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NOTES
3 The syntax rules describing structured constructs are presented in a form that corresponds to the recommended
paragraphing. For example, an if_statement is defined as:

if_statement ::=
if condition then
sequence_of_statements
{elsif condition then
sequence_of_statements }
[else
sequence_of_statements]
end if;
4 The line breaks and indentation in the syntax rules indicate the recommended line breaks and indentation in the
corresponding constructs. The preferred places for other line breaks are after semicolons.

1.1.5 Classification of Errors

Implementation Requirements
The language definition classifies errors into several different categories:
o Errors that are required to be detected prior to run time by every Ada implementation;

These errors correspond to any violation of a rule given in this International Standard, other than
those listed below. In particular, violation of any rule that uses the terms shall, allowed,
permitted, legal, or illegal belongs to this category. Any program that contains such an error is
not a legal Ada program; on the other hand, the fact that a program is legal does not mean, per
se, that the program is free from other forms of error.

The rules are further classified as either compile time rules, or post compilation rules, depending
on whether a violation has to be detected at the time a compilation unit is submitted to the
compiler, or may be postponed until the time a compilation unit is incorporated into a partition
of a program.

e Errors that are required to be detected at run time by the execution of an Ada program;

The corresponding error situations are associated with the names of the predefined exceptions.
Every Ada compiler is required to generate code that raises the corresponding exception if such
an error situation arises during program execution. If such an error situation is certain to arise in
every execution of a construct, then an implementation is allowed (although not required) to
report this fact at compilation time.

e Bounded errors;

The language rules define certain kinds of errors that need not be detected either prior to or
during run time, but if not detected, the range of possible effects shall be bounded. The errors of
this category are called bounded errors. The possible effects of a given bounded error are
specified for each such error, but in any case one possible effect of a bounded error is the raising
of the exception Program_Error.

e Erroneous execution.

In addition to bounded errors, the language rules define certain kinds of errors as leading to
erroneous execution. Like bounded errors, the implementation need not detect such errors either
prior to or during run time. Unlike bounded errors, there is no language-specified bound on the
possible effect of erroneous execution; the effect is in general not predictable.

Implementation Permissions

An implementation may provide nonstandard modes of operation. Typically these modes would be
selected by a pragma or by a command line switch when the compiler is invoked. When operating in a
nonstandard mode, the implementation may reject compilation_units that do not conform to additional
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requirements associated with the mode, such as an excessive number of warnings or violation of coding
style guidelines. Similarly, in a nonstandard mode, the implementation may apply special optimizations or
alternative algorithms that are only meaningful for programs that satisfy certain criteria specified by the
implementation. In any case, an implementation shall support a standard mode that conforms to the
requirements of this International Standard; in particular, in the standard mode, all legal compilation_units
shall be accepted.

Implementation Advice

If an implementation detects a bounded error or erroneous execution, it should raise Program_Error.

1.2 Normative References

The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.

ISO 639-3:2007, Codes for the representation of names of languages — Part 3: Alpha-3 code for
comprehensive coverage of languages.

ISO/IEC 646:1991, Information technology — ISO 7-bit coded character set for information interchange.

ISO/IEC 1539-1:2004, Information technology — Programming languages — Fortran — Part 1: Base
language.

ISO/IEC 1989:2002, Information technology — Programming languages — COBOL.

ISO/IEC 3166-1:2006, Codes for the representation of names of countries and their subdivisions — Part
1: Country Codes.

ISO/IEC 6429:1992, Information technology — Control functions for coded graphic character sets.

ISO 8601:2004, Data elements and interchange formats — Information interchange — Representation of
dates and times.

ISO/IEC 8859-1:1998, Information technology — 8-bit single-byte coded graphic character sets — Part 1:
Latin alphabet No. 1.

ISO/IEC 9899:2011, Information technology — Programming languages — C.
ISO/IEC 10646:2011, Information technology — Universal Multiple-Octet Coded Character Set (UCS).
ISO/IEC 14882:2011, Information technology — Programming languages — C++.

ISO/IEC TR 19769:2004, Information technology — Programming languages, their environments and
system software interfaces — Extensions for the programming language C to support new character data

types.

1.3 Terms and Definitions

Terms are defined throughout this International Standard, indicated by italic type. Terms explicitly defined
in this International Standard are not to be presumed to refer implicitly to similar terms defined elsewhere.
Mathematical terms not defined in this International Standard are to be interpreted according to the CRC
Concise Encyclopedia of Mathematics, Second Edition. Other terms not defined in this International
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Standard are to be interpreted according to the Webster's Third New International Dictionary of the
English Language. Informal descriptions of some terms are also given in Annex N, “Glossary”.
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2 Lexical Elements

The text of a program consists of the texts of one or more compilations. The text of a compilation is a
sequence of lexical elements, each composed of characters; the rules of composition are given in this
clause. Pragmas, which provide certain information for the compiler, are also described in this clause.

2.1 Character Set

The character repertoire for the text of an Ada program consists of the entire coding space described by the
ISO/IEC 10646:2011 Universal Multiple-Octet Coded Character Set. This coding space is organized in
planes, each plane comprising 65536 characters.

Syntax
Paragraphs 2 and 3 were deleted.
A character is defined by this International Standard for each cell in the coding space described by

ISO/IEC 10646:2011, regardless of whether or not ISO/IEC 10646:2011 allocates a character to that
cell.

Static Semantics

The coded representation for characters is implementation defined (it need not be a representation defined
within ISO/IEC 10646:2011). A character whose relative code point in its plane is 16#FFFE# or
16#FFFF# is not allowed anywhere in the text of a program. The only characters allowed outside of
comments are those in categories other_format, format_effector, and graphic_character.

The semantics of an Ada program whose text is not in Normalization Form KC (as defined by Clause 21
of ISO/IEC 10646:2011) is implementation defined.

The description of the language definition in this International Standard uses the character properties
General Category, Simple Uppercase Mapping, Uppercase Mapping, and Special Case Condition of the
documents referenced by the note in Clause 1 of ISO/IEC 10646:2011. The actual set of graphic symbols
used by an implementation for the visual representation of the text of an Ada program is not specified.

Characters are categorized as follows:
This paragraph was deleted.
letter_uppercase
Any character whose General Category is defined to be “Letter, Uppercase”.

letter_lowercase
Any character whose General Category is defined to be “Letter, Lowercase”.

letter_titlecase
Any character whose General Category is defined to be “Letter, Titlecase”.

letter_maodifier
Any character whose General Category is defined to be “Letter, Modifier”.

letter_other
Any character whose General Category is defined to be “Letter, Other”.

mark_non_spacing
Any character whose General Category is defined to be “Mark, Non-Spacing”.

mark_spacing_combining
Any character whose General Category is defined to be “Mark, Spacing Combining”.
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number_decimal

Any character whose General Category is defined to be “Number, Decimal”.

number_letter

Any character whose General Category is defined to be “Number, Letter”.

punctuation_connector

Any character whose General Category is defined to be “Punctuation, Connector”.

other_format

Any character whose General Category is defined to be “Other, Format”.

separator_space

Any character whose General Category is defined to be “Separator, Space”.

separator_line

Any character whose General Category is defined to be “Separator, Line”.

separator_paragraph

Any character whose General Category is defined to be “Separator, Paragraph”.

format_effector

The characters whose code points are 16#09# (CHARACTER TABULATION), 16#0A#
(LINE FEED), 16#0B# (LINE TABULATION), 16#0C# (FORM FEED), 16#0D#
(CARRIAGE RETURN), 16#85# (NEXT LINE), and the characters in categories
separator_line and separator_paragraph.

other_control

Any character whose General Category is defined to be “Other, Control”, and which is not
defined to be a format_effector.

other_private_use

Any character whose General Category is defined to be “Other, Private Use”.

other_surrogate

Any character whose General Category is defined to be “Other, Surrogate”.

graphic_character

Any character that is not
other_surrogate, format_effector, and whose relative code point in its plane is neither
16#FFFE# nor 16#FFFF#.

the categories

other_control,

other_private_use,

The following names are used when referring to certain characters (the first name is that given in ISO/IEC

10646:2011):
graphic symbol

"

#
&

+ %~

2.1 Character Set

name

quotation mark
number sign
ampersand
apostrophe, tick
left parenthesis
right parenthesis
asterisk, multiply
plus sign

comma
hyphen-minus, minus
full stop, dot, point

graphic symbol

INCREE

name

colon

semicolon
less-than sign
equals sign
greater-than sign
low line, underline
vertical line
solidus, divide
exclamation point
percent sign
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Implementation Requirements

An Ada implementation shall accept Ada source code in UTF-8 encoding, with or without a BOM (see
A.4.11), where every character is represented by its code point. The character pair CARRIAGE
RETURN/LINE FEED (code points 16#0D# 16#0A#) signifies a single end of line (see 2.2); every other
occurrence of a format_effector other than the character whose code point position is 16#09#
(CHARACTER TABULATION) also signifies a single end of line.

Implementation Permissions

The categories defined above, as well as case mapping and folding, may be based on an implementation-
defined version of ISO/IEC 10646 (2003 edition or later).

NOTES
1 The characters in categories other_control, other_private_use, and other_surrogate are only allowed in comments.

2.2 Lexical Elements, Separators, and Delimiters

Static Semantics

The text of a program consists of the texts of one or more compilations. The text of each compilation is a
sequence of separate lexical elements. Each lexical element is formed from a sequence of characters, and
is either a delimiter, an identifier, a reserved word, a numeric_literal, a character_literal, a string_literal, or
a comment. The meaning of a program depends only on the particular sequences of lexical elements that
form its compilations, excluding comments.

The text of a compilation is divided into /ines. In general, the representation for an end of line is
implementation defined. However, a sequence of one or more format_effectors other than the character
whose code point is 16#09# (CHARACTER TABULATION) signifies at least one end of line.

In some cases an explicit separator is required to separate adjacent lexical elements. A separator is any of
a separator_space, a format_effector, or the end of a line, as follows:

e A separator_space is a separator except within a comment, a string_literal, or a
character_literal.

e The character whose code point is 16#09# (CHARACTER TABULATION) is a separator
except within a comment.

e The end of a line is always a separator.

One or more separators are allowed between any two adjacent lexical elements, before the first of each
compilation, or after the last. At least one separator is required between an identifier, a reserved word, or a
numeric_literal and an adjacent identifier, reserved word, or numeric_literal.

One or more other_format characters are allowed anywhere that a separator is; any such characters have
no effect on the meaning of an Ada program.

A delimiter is either one of the following characters:
& () *+ , = Ly < o= >
or one of the following compound delimiters each composed of two adjacent special characters

= | ¥ = /= >= <= << >> <>
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12 Each of the special characters listed for single character delimiters is a single delimiter except if this
character is used as a character of a compound delimiter, or as a character of a comment, string_literal,
character_literal, or numeric_literal.

13 The following names are used when referring to compound delimiters:

delimiter name
== arrow
double dot
*k double star, exponentiate

= assignment (pronounced: “becomes”)

/= inequality (pronounced: “not equal”)
>= greater than or equal

<= less than or equal

<< left label bracket

>> right label bracket

< box

Implementation Requirements

14 An implementation shall support lines of at least 200 characters in length, not counting any characters used
to signify the end of a line. An implementation shall support lexical elements of at least 200 characters in
length. The maximum supported line length and lexical element length are implementation defined.

2.3 Identifiers

1 Identifiers are used as names.

Syntax

212 identifier ::=
identifier_start {identifier_start | identifier_extend}

312 identifier_start ::=
letter_uppercase
| letter_lowercase
| letter_titlecase
| letter_modifier
| letter_other
| number_letter

3.1/3 identifier_extend ::=
mark_non_spacing
| mark_spacing_combining
| number_decimal
| punctuation_connector

413 An identifier shall not contain two consecutive characters in category punctuation_connector, or end
with a character in that category.
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Static Semantics

Two identifiers are considered the same if they consist of the same sequence of characters after applying
locale-independent simple case folding, as defined by documents referenced in the note in Clause 1 of
ISO/IEC 10646:2011.

After applying simple case folding, an identifier shall not be identical to a reserved word.

Implementation Permissions
In a nonstandard mode, an implementation may support other upper/lower case equivalence rules for
identifiers, to accommodate local conventions.

NOTES
2 Identifiers differing only in the use of corresponding upper and lower case letters are considered the same.

Examples
Examples of identifiers:
Count X Get_Symbol Ethelyn Marion
Snobol_4 X1 Page_Count Store_Next Item
A&tV - - Plato
YamkoBCkuit - - Ichaikovsky
0 ¢ - - Angles

2.4 Numeric Literals

There are two kinds of numeric_literals, real literals and integer literals. A real literal is a numeric_literal
that includes a point; an integer literal is a numeric_literal without a point.

Syntax
numeric_literal ::= decimal_literal | based_literal

NOTES
3 The type of an integer literal is universal_integer. The type of a real literal is universal_real.

2.4.1 Decimal Literals

A decimal_literal is a numeric_literal in the conventional decimal notation (that is, the base is ten).

Syntax
decimal_literal ::= numeral [.numeral] [exponent]

numeral ::= digit {[underline] digit}
exponent ::= E [+] numeral | E — numeral
digit:=0]1]2(3|4]|5/6|7]8]9

An exponent for an integer literal shall not have a minus sign.

Static Semantics

An underline character in a numeric_literal does not affect its meaning. The letter E of an exponent can be
written either in lower case or in upper case, with the same meaning.

An exponent indicates the power of ten by which the value of the decimal_literal without the exponent is
to be multiplied to obtain the value of the decimal_literal with the exponent.
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Examples
Examples of decimal literals:
12 0 1E6 123 456 - - integer literals
12.0 0.0 0.456 3.14159 26 -- real literals

2.4.2 Based Literals

A based_literal is a numeric_literal expressed in a form that specifies the base explicitly.

Syntax

based_literal ::=
base # based_numeral [.based_numeral] # [exponent]

base ::= numeral

based_numeral ::=
extended_digit {[underline] extended_digit}

extended_digit ::= digit| A|B|C|D|E | F

Legality Rules

The base (the numeric value of the decimal numeral preceding the first #) shall be at least two and at most
sixteen. The extended_digits A through F represent the digits ten through fifteen, respectively. The value

of each extended_digit of a based_literal shall be less than the base.

Static Semantics

The conventional meaning of based notation is assumed. An exponent indicates the power of the base by
which the value of the based_literal without the exponent is to be multiplied to obtain the value of the

based_literal with the exponent. The base and the exponent, if any, are in decimal notation.

The extended_digits A through F can be written either in lower case or in upper case, with the same

meaning.
Examples
Examples of based literals:
2#1111 1111# 16#FF# 0l6#OEf# - - integer literals of value 255
16H#E#EL 2#1110_0000# - - integer literals of value 224
16#F.FF#E+2 2#1.1111 1111 1110#E11 -- real literals of value 4095.0

2.5 Character Literals

A character_literal is formed by enclosing a graphic character between two apostrophe characters.

Syntax
character_literal ::= 'graphic_character'

NOTES
4 A character_literal is an enumeration literal of a character type. See 3.5.2.

2.4.1 Decimal Literals 13 December 2012
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Examples
Examples of character literals:
YAY T T 1 1
'L "I N - - Various els.
Tool R - - Big numbers - infinity and aleph.

2.6 String Literals

A string_literal is formed by a sequence of graphic characters (possibly none) enclosed between two
quotation marks used as string brackets. They are used to represent operator_symbols (see 6.1), values of
a string type (see 4.2), and array subaggregates (see 4.3.3).

Syntax
string_literal ::= "{string_element}"
string_element ::="" | non_quotation_mark_graphic_character
A string_element is either a pair of quotation marks (""), or a single graphic_character other than a
quotation mark.
Static Semantics

The sequence of characters of a string_literal is formed from the sequence of string_elements between the
bracketing quotation marks, in the given order, with a string_element that is "" becoming a single
quotation mark in the sequence of characters, and any other string_element being reproduced in the
sequence.

A null string literal is a string_literal with no string_elements between the quotation marks.

NOTES
5 An end of line cannot appear in a string_literal.

6 No transformation is performed on the sequence of characters of a string_literal.

Examples
Examples of string literals:

"Message of the day:"

" -~ a null string literal
non nAM mwnn -~ three string literals of length 1

"Characters such as $, %, and } are allowed in string literals"

"Archimedes said ""EGpnxo"""
"Volume of cylinder (mr2h) = "

2.7 Comments

A comment starts with two adjacent hyphens and extends up to the end of the line.

Syntax
comment ::= --{non_end_of line_character}

A comment may appear on any line of a program.
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Static Semantics

The presence or absence of comments has no influence on whether a program is legal or illegal.
Furthermore, comments do not influence the meaning of a program; their sole purpose is the
enlightenment of the human reader.

Examples
Examples of comments:

- - the last sentence above echoes the Algol 68 report
end; -- processing of Line is complete

- - along comment may be split onto
- - two or more consecutive lines

———————————————— the first two hyphens start the comment

2.8 Pragmas

A pragma is a compiler directive. There are language-defined pragmas that give instructions for
optimization, listing control, etc. An implementation may support additional (implementation-defined)
pragmas.

Syntax

pragma ::=

pragma identifier [(pragma_argument_association {, pragma_argument_association})];
pragma_argument_association ::=

[pragma_argument identifier =>] name

| [pragma_argument_identifier =>] expression

| pragma_argument_aspect_mark => name

| pragma_argument_aspect_mark => expression
In a pragma, any pragma_argument_associations without a pragma_argument_identifier or
pragma_argument_aspect_mark shall precede any associations with a pragma_argument_identifier
or pragma_argument _aspect_mark.

Pragmas are only allowed at the following places in a program:
e After a semicolon delimiter, but not within a formal_part or discriminant_part.

e At any place where the syntax rules allow a construct defined by a syntactic category

29

whose name ends with “declaration”, “item”, “statement”, “clause”, or “alternative”, or
one of the syntactic categories variant or exception_handler; but not in place of such a
construct if the construct is required, or is part of a list that is required to have at least one
such construct.

e In place of a statement in a sequence_of_statements.
e At any place where a compilation_unit is allowed.
Additional syntax rules and placement restrictions exist for specific pragmas.
The name of a pragma is the identifier following the reserved word pragma. The name or expression of
a pragma_argument_association is a pragma argument.

An identifier specific to a pragma is an identifier or reserved word that is used in a pragma argument with
special meaning for that pragma.

2.7 Comments 13 December 2012 18



ISO/IEC 8652:2012(E) — Ada Reference Manual

Static Semantics

If an implementation does not recognize the name of a pragma, then it has no effect on the semantics of
the program. Inside such a pragma, the only rules that apply are the Syntax Rules.

Dynamic Semantics

Any pragma that appears at the place of an executable construct is executed. Unless otherwise specified
for a particular pragma, this execution consists of the evaluation of each evaluable pragma argument in an
arbitrary order.

Implementation Requirements

The implementation shall give a warning message for an unrecognized pragma name.

Implementation Permissions
An implementation may provide implementation-defined pragmas; the name of an implementation-defined
pragma shall differ from those of the language-defined pragmas.

An implementation may ignore an unrecognized pragma even if it violates some of the Syntax Rules, if
detecting the syntax error is too complex.

Implementation Advice

Normally, implementation-defined pragmas should have no semantic effect for error-free programs; that
is, if the implementation-defined pragmas in a working program are replaced with unrecognized pragmas,
the program should still be legal, and should still have the same semantics.

Normally, an implementation should not define pragmas that can make an illegal program legal, except as
follows:
e A pragma used to complete a declaration;

e A pragma used to configure the environment by adding, removing, or replacing library_items.

Syntax
The forms of List, Page, and Optimize pragmas are as follows:
pragma List(identifier);
pragma Page;
pragma Optimize(identifier);

Other pragmas are defined throughout this International Standard, and are summarized in Annex L.

Static Semantics

A pragma List takes one of the identifiers On or Off as the single argument. This pragma is allowed
anywhere a pragma is allowed. It specifies that listing of the compilation is to be continued or suspended
until a List pragma with the opposite argument is given within the same compilation. The pragma itself is
always listed if the compiler is producing a listing.

A pragma Page is allowed anywhere a pragma is allowed. It specifies that the program text which follows
the pragma should start on a new page (if the compiler is currently producing a listing).

A pragma Optimize takes one of the identifiers Time, Space, or Off as the single argument. This pragma
is allowed anywhere a pragma is allowed, and it applies until the end of the immediately enclosing
declarative region, or for a pragma at the place of a compilation_unit, to the end of the compilation. It
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gives advice to the implementation as to whether time or space is the primary optimization criterion, or
that optional optimizations should be turned off. It is implementation defined how this advice is followed.

Examples
28 Examples of pragmas:
20/3 pragma List (Off); -- turn off listing generation
pragma Optimize (Off); -- turn off optional optimizations
pragma Pure (Rational Numbers); -- sefcategorization for package
pragma Assert (Exists(File Name),
Message => "Nonexistent file"); -- assertfile exists
2.9 Reserved Words
Syntax
11 This paragraph was deleted.
23 The following are the reserved words. Within a program, some or all of the letters of a reserved word
may be in upper case.
abort else new return
abs elsif not reverse
abstract end null
select
accept entry
. of separate
access exception
R . or some
aliased exit
all others subtype
and for out synchronized
function overriding
array tagged
at generic package task
. oto ragma terminate
begin g p ) g
. private then
body if
. procedure type
in
case . protected .
interface until
constant N .
is raise use
declare L. range
limited g when
delay record .
loop while
delta rem .
. . with
digits mod renames
do requeue xor
NOTES
3 7 The reserved words appear in lower case boldface in this International Standard, except when used in the designator of

an attribute (see 4.1.4). Lower case boldface is also used for a reserved word in a string_literal used as an
operator_symbol. This is merely a convention — programs may be written in whatever typeface is desired and available.
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3 Declarations and Types

This clause describes the types in the language and the rules for declaring constants, variables, and named
numbers.

3.1 Declarations

The language defines several kinds of named entities that are declared by declarations. The entity's name
is defined by the declaration, usually by a defining_identifier, but sometimes by a defining_character_-
literal or defining_operator_symbol.

There are several forms of declaration. A basic_declaration is a form of declaration defined as follows.

Syntax
basic_declaration ::=

type_declaration | subtype_declaration
| object_declaration | number_declaration
| subprogram_declaration | abstract_subprogram_declaration
| null_procedure_declaration | expression_function_declaration
| package_declaration | renaming_declaration
| exception_declaration | generic_declaration

| generic_instantiation
defining_identifier ::= identifier

Static Semantics

A declaration is a language construct that associates a name with (a view of) an entity. A declaration may
appear explicitly in the program text (an explicit declaration), or may be supposed to occur at a given place
in the text as a consequence of the semantics of another construct (an implicit declaration).

Each of the following is defined to be a declaration: any basic_declaration; an enumeration_literal_-
specification; a discriminant_specification; a component_declaration; a loop_parameter_specification;
an iterator_specification; a parameter_specification; a subprogram_body; an extended_return_object_-
declaration; an entry_declaration; an entry_index_specification; a choice_parameter_specification; a
generic_formal_parameter_declaration.

All declarations contain a definition for a view of an entity. A view consists of an identification of the
entity (the entity of the view), plus view-specific characteristics that affect the use of the entity through
that view (such as mode of access to an object, formal parameter names and defaults for a subprogram, or
visibility to components of a type). In most cases, a declaration also contains the definition for the entity
itself (a renaming_declaration is an example of a declaration that does not define a new entity, but instead
defines a view of an existing entity (see 8.5)).

When it is clear from context, the term object is used in place of view of an object. Similarly, the terms
type and subtype are used in place of view of a type and view of a subtype, respectively.

For each declaration, the language rules define a certain region of text called the scope of the declaration
(see 8.2). Most declarations associate an identifier with a declared entity. Within its scope, and only there,
there are places where it is possible to use the identifier to refer to the declaration, the view it defines, and
the associated entity; these places are defined by the visibility rules (see 8.3). At such places the identifier
is said to be a name of the entity (the direct_name or selector_name); the name is said to denote the
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declaration, the view, and the associated entity (see 8.6). The declaration is said to declare the name, the
view, and in most cases, the entity itself.

As an alternative to an identifier, an enumeration literal can be declared with a character_literal as its
name (see 3.5.1), and a function can be declared with an operator_symbol as its name (see 6.1).

The syntax rules use the terms defining_identifier, defining_character_literal, and defining_operator_-
symbol for the defining occurrence of a name; these are collectively called defining names. The terms
direct_name and selector_name are used for usage occurrences of identifiers, character_literals, and
operator_symbols. These are collectively called usage names.

Dynamic Semantics

The process by which a construct achieves its run-time effect is called execution. This process is also
called elaboration for declarations and evaluation for expressions. One of the terms execution,
elaboration, or evaluation is defined by this International Standard for each construct that has a run-time
effect.

NOTES
1 At compile time, the declaration of an entity declares the entity. At run time, the elaboration of the declaration creates
the entity.

3.2 Types and Subtypes

Static Semantics

A type is characterized by a set of values, and a set of primitive operations which implement the
fundamental aspects of its semantics. An object of a given type is a run-time entity that contains (has) a
value of the type.

Types are grouped into categories of types. There exist several language-defined categories of types (see
NOTES below), reflecting the similarity of their values and primitive operations. Most categories of types
form classes of types. Elementary types are those whose values are logically indivisible; composite types
are those whose values are composed of component values.

The elementary types are the scalar types (discrete and real) and the access types (whose values provide
access to objects or subprograms). Discrete types are either integer types or are defined by enumeration of
their values (enumeration types). Real types are either floating point types or fixed point types.

The composite types are the record types, record extensions, array types, interface types, task types, and
protected types.

There can be multiple views of a type with varying sets of operations. An incomplete type represents an
incomplete view (see 3.10.1) of a type with a very restricted usage, providing support for recursive data
structures. A private type or private extension represents a partial view (see 7.3) of a type, providing
support for data abstraction. The full view (see 3.2.1) of a type represents its complete definition. An
incomplete or partial view is considered a composite type, even if the full view is not.

Certain composite types (and views thereof) have special components called discriminants whose values
affect the presence, constraints, or initialization of other components. Discriminants can be thought of as
parameters of the type.

The term subcomponent is used in this International Standard in place of the term component to indicate
either a component, or a component of another subcomponent. Where other subcomponents are excluded,
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the term component is used instead. Similarly, a part of an object or value is used to mean the whole
object or value, or any set of its subcomponents. The terms component, subcomponent, and part are also
applied to a type meaning the component, subcomponent, or part of objects and values of the type.

The set of possible values for an object of a given type can be subjected to a condition that is called a
constraint (the case of a null constraint that specifies no restriction is also included); the rules for which
values satisfy a given kind of constraint are given in 3.5 for range_constraints, 3.6.1 for
index_constraints, and 3.7.1 for discriminant_constraints. The set of possible values for an object of an
access type can also be subjected to a condition that excludes the null value (see 3.10).

A subtype of a given type is a combination of the type, a constraint on values of the type, and certain
attributes specific to the subtype. The given type is called the type of the subtype. Similarly, the associated
constraint is called the constraint of the subtype. The set of values of a subtype consists of the values of its
type that satisfy its constraint and any exclusion of the null value. Such values belong to the subtype.

A subtype is called an unconstrained subtype if its type has unknown discriminants, or if its type allows
range, index, or discriminant constraints, but the subtype does not impose such a constraint; otherwise, the
subtype is called a constrained subtype (since it has no unconstrained characteristics).

NOTES

2 Any set of types can be called a “category” of types, and any set of types that is closed under derivation (see 3.4) can be
called a “class” of types. However, only certain categories and classes are used in the description of the rules of the
language — generally those that have their own particular set of primitive operations (see 3.2.3), or that correspond to a
set of types that are matched by a given kind of generic formal type (see 12.5). The following are examples of
“interesting” language-defined classes: elementary, scalar, discrete, enumeration, character, boolean, integer, signed
integer, modular, real, floating point, fixed point, ordinary fixed point, decimal fixed point, numeric, access, access-to-
object, access-to-subprogram, composite, array, string, (untagged) record, tagged, task, protected, nonlimited. Special
syntax is provided to define types in each of these classes. In addition to these classes, the following are examples of
“interesting” language-defined categories: abstract, incomplete, interface, limited, private, record.

These language-defined categories are organized like this:

all types
elementary
scalar
discrete
enumeration
character
boolean
other enumeration
integer
signed integer
modular integer
real
floating point
fixed point
ordinary fixed point
decimal fixed point
access
access-to-object
access-to-subprogram
composite
untagged
array
string
other array
record
task
protected
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tagged (including interfaces)
nonlimited tagged record
limited tagged
limited tagged record
synchronized tagged
tagged task
tagged protected

There are other categories, such as “numeric” and “discriminated”, which represent other categorization dimensions, but
do not fit into the above strictly hierarchical picture.

3.2.1 Type Declarations

A type_declaration declares a type and its first subtype.

Syntax

type_declaration ::= full_type_declaration
| incomplete_type_declaration
| private_type_declaration
| private_extension_declaration

full_type_declaration ::=
type defining_identifier [known_discriminant_part] is type_definition
[aspect_specification];
| task_type_declaration
| protected_type_declaration

type_definition ::=
enumeration_type_definition | integer_type_definition

| real_type_definition | array_type_definition

| record_type_definition | access_type_definition

| derived_type_definition | interface_type_definition
Legality Rules

A given type shall not have a subcomponent whose type is the given type itself.

Static Semantics

The defining_identifier of a type_declaration denotes the first subtype of the type. The known_-
discriminant_part, if any, defines the discriminants of the type (see 3.7, “Discriminants”). The remainder
of the type_declaration defines the remaining characteristics of (the view of) the type.

A type defined by a type_declaration is a named type; such a type has one or more nameable subtypes.
Certain other forms of declaration also include type definitions as part of the declaration for an object. The
type defined by such a declaration is anonymous — it has no nameable subtypes. For explanatory
purposes, this International Standard sometimes refers to an anonymous type by a pseudo-name, written in
italics, and uses such pseudo-names at places where the syntax normally requires an identifier. For a
named type whose first subtype is T, this International Standard sometimes refers to the type of T as
simply “the type T”.

A named type that is declared by a full_type_declaration, or an anonymous type that is defined by an
access_definition or as part of declaring an object of the type, is called a full type. The declaration of a
full type also declares the full view of the type. The type_definition, task_definition, protected_definition,
or access_definition that defines a full type is called a full type definition. Types declared by other forms
of type_declaration are not separate types; they are partial or incomplete views of some full type.
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The definition of a type implicitly declares certain predefined operators that operate on the type,
according to what classes the type belongs, as specified in 4.5, “Operators and Expression Evaluation”.

The predefined types (for example the types Boolean, Wide Character, Integer, root integer, and
universal_integer) are the types that are defined in a predefined library package called Standard; this
package also includes the (implicit) declarations of their predefined operators. The package Standard is
described in A.1.

Dynamic Semantics
The elaboration of a full_type_declaration consists of the elaboration of the full type definition. Each
elaboration of a full type definition creates a distinct type and its first subtype.

Examples
Examples of type definitions:

(White, Red, Yellow, Green, Blue, Brown, Black)
range 1 .. 72
array(l .. 10) of Integer

Examples of type declarations:

type Color is (White, Red, Yellow, Green, Blue, Brown, Black);

type Column is range 1 .. 72;
type Table 1is array(l .. 10) of Integer;
NOTES

3 Each of the above examples declares a named type. The identifier given denotes the first subtype of the type. Other
named subtypes of the type can be declared with subtype_declarations (see 3.2.2). Although names do not directly denote
types, a phrase like “the type Column” is sometimes used in this International Standard to refer to the type of Column,
where Column denotes the first subtype of the type. For an example of the definition of an anonymous type, see the
declaration of the array Color_Table in 3.3.1; its type is anonymous — it has no nameable subtypes.

3.2.2 Subtype Declarations

A subtype_declaration declares a subtype of some previously declared type, as defined by a
subtype_indication.

Syntax

subtype_declaration ::=
subtype defining_identifier is subtype_indication
[aspect_specification];

subtype_indication ::= [null_exclusion] subtype_mark [constraint]
subtype_mark ::= subtype_name
constraint ::= scalar_constraint | composite_constraint

scalar_constraint ::=
range_constraint | digits_constraint | delta_constraint

composite_constraint ::=
index_constraint | discriminant_constraint
Name Resolution Rules

A subtype_mark shall resolve to denote a subtype. The type determined by a subtype_mark is the type of
the subtype denoted by the subtype_mark.
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Dynamic Semantics

The elaboration of a subtype_declaration consists of the elaboration of the subtype_indication. The
claboration of a subtype_indication creates a new subtype. If the subtype_indication does not include a
constraint, the new subtype has the same (possibly null) constraint as that denoted by the subtype_mark.
The elaboration of a subtype_indication that includes a constraint proceeds as follows:

e The constraint is first elaborated.

e A check is then made that the constraint is compatible with the subtype denoted by the
subtype_mark.

The condition imposed by a constraint is the condition obtained after elaboration of the constraint. The
rules defining compatibility are given for each form of constraint in the appropriate subclause. These rules
are such that if a constraint is compatible with a subtype, then the condition imposed by the constraint
cannot contradict any condition already imposed by the subtype on its values. The exception
Constraint_Error is raised if any check of compatibility fails.

NOTES

4 A scalar_constraint may be applied to a subtype of an appropriate scalar type (see 3.5, 3.5.9, and J.3), even if the
subtype is already constrained. On the other hand, a composite_constraint may be applied to a composite subtype (or an
access-to-composite subtype) only if the composite subtype is unconstrained (see 3.6.1 and 3.7.1).

Examples

Examples of subtype declarations:
subtype Rainbow is Color range Red .. Blue; -- see3.2.1
subtype Red Blue is Rainbow;
subtype Int is Integer;
subtype Small Int is Integer range -10 .. 10;
subtype Up To K is Column range 1 .. K; -- see3.2.1
subtype Square is Matrix(1 .. 10, 1 .. 10); -- see 3.6
subtype Male is Person(Sex => M) ; -- see 3.10.1
subtype Binop Ref is not null Binop Ptr; -- see3.10

3.2.3 Classification of Operations

Static Semantics

An operation operates on a type T if it yields a value of type T, if it has an operand whose expected type
(see 8.6) is T, or if it has an access parameter or access result type (see 6.1) designating 7. A predefined
operator, or other language-defined operation such as assignment or a membership test, that operates on a
type, is called a predefined operation of the type. The primitive operations of a type are the predefined
operations of the type, plus any user-defined primitive subprograms.

The primitive subprograms of a specific type are defined as follows:
e The predefined operators of the type (see 4.5);
e For a derived type, the inherited (see 3.4) user-defined subprograms;

e For an enumeration type, the enumeration literals (which are considered parameterless functions
—see 3.5.1);

e For a specific type declared immediately within a package_specification, any subprograms (in
addition to the enumeration literals) that are explicitly declared immediately within the same
package_specification and that operate on the type;

n_n

e For a specific type with an explicitly declared primitive
Boolean, the corresponding "/=" operator (see 6.6);

operator whose result type is
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e For a nonformal type, any subprograms not covered above that are explicitly declared
immediately within the same declarative region as the type and that override (see 8.3) other
implicitly declared primitive subprograms of the type.

A primitive subprogram whose designator is an operator_symbol is called a primitive operator.

3.2.4 Subtype Predicates

The language-defined predicate aspects Static_Predicate and Dynamic_Predicate may be used to define
properties of subtypes. A predicate specification is an aspect_specification for one of the two predicate
aspects. General rules for aspects and aspect_specifications are found in Clause 13 (13.1 and 13.1.1
respectively).

Name Resolution Rules

The expected type for a predicate aspect expression is any boolean type.

Static Semantics
A predicate specification may be given on a type_declaration or a subtype_declaration, and applies to the
declared subtype. In addition, predicate specifications apply to certain other subtypes:

e For a (first) subtype defined by a derived type declaration, the predicates of the parent subtype
and the progenitor subtypes apply.

e For a subtype created by a subtype_indication, the predicate of the subtype denoted by the
subtype_mark applies.

The predicate of a subtype consists of all predicate specifications that apply, and-ed together; if no
predicate specifications apply, the predicate is True (in particular, the predicate of a base subtype is True).

Predicate checks are defined to be enabled or disabled for a given subtype as follows:

e [f a subtype is declared by a type_declaration or subtype_declaration that includes a predicate
specification, then:

e if performing checks is required by the Static Predicate assertion policy (see 11.4.2) and
the declaration includes a Static_Predicate specification, then predicate checks are enabled
for the subtype;

e if performing checks is required by the Dynamic Predicate assertion policy (see 11.4.2)
and the declaration includes a Dynamic_Predicate specification, then predicate checks are
enabled for the subtype;

e otherwise, predicate checks are disabled for the subtype, regardless of whether predicate
checking is enabled for any other subtypes mentioned in the declaration;

o If a subtype is defined by a derived type declaration that does not include a predicate
specification, then predicate checks are enabled for the subtype if and only if predicate checks
are enabled for at least one of the parent subtype and the progenitor subtypes;

e [f a subtype is created by a subtype_indication other than in one of the previous cases, then
predicate checks are enabled for the subtype if and only if predicate checks are enabled for the
subtype denoted by the subtype_mark;

e Otherwise, predicate checks are disabled for the given subtype.

Legality Rules
The expression of a Static_Predicate specification shall be predicate-static; that is, one of the following:
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e a static expression;

e a membership test whose simple_expression is the current instance, and whose
membership_choice_list meets the requirements for a static membership test (see 4.9);

e a case_expression whose selecting expression is the current instance, and whose
dependent_expressions are static expressions;

e a call to a predefined equality or ordering operator, where one operand is the current instance,
and the other is a static expression;

e acall to a predefined boolean logical operator, where each operand is predicate-static;
e a short-circuit control form where both operands are predicate-static; or
e aparenthesized predicate-static expression.

A predicate shall not be specified for an incomplete subtype.

If a predicate applies to a subtype, then that predicate shall not mention any other subtype to which the
same predicate applies.

An index subtype, discrete_range of an index_constraint or slice, or a discrete_subtype_definition of a
constrained_array_definition, entry_declaration, or entry_index_specification shall not denote a subtype
to which predicate specifications apply.

The prefix of an attribute_reference whose attribute_designator is First, Last, or Range shall not denote a
scalar subtype to which predicate specifications apply.

The discrete_subtype_definition of a loop_parameter_specification shall not denote a nonstatic subtype
to which predicate specifications apply or any subtype to which Dynamic_Predicate specifications apply.

The discrete_choice of a named_array_aggregate shall not denote a nonstatic subtype to which
predicate specifications apply.

In addition to the places where Legality Rules normally apply (see 12.3), these rules apply also in the
private part of an instance of a generic unit.

Dynamic Semantics

If predicate checks are enabled for a given subtype, then:

On every subtype conversion, the predicate of the target subtype is evaluated, and a check is
performed that the predicate is True. This includes all parameter passing, except for certain
parameters passed by reference, which are covered by the following rule: After normal
completion and leaving of a subprogram, for each in out or out parameter that is passed by
reference, the predicate of the subtype of the actual is evaluated, and a check is performed that
the predicate is True. For an object created by an object declaration with no explicit
initialization expression, or by an uninitialized allocator, if any subcomponents have
default_expressions, the predicate of the nominal subtype of the created object is evaluated, and
a check is performed that the predicate is True. Assertions.Assertion Error is raised if any of
these checks fail.

A value satisfies a predicate if the predicate is True for that value.

If any of the above Legality Rules is violated in an instance of a generic unit, Program_Error is raised at
the point of the violation.
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NOTES
5 A predicate specification does not cause a subtype to be considered constrained.

6 A Static Predicate, like a constraint, always remains True for all objects of the subtype, except in the case of
uninitialized variables and other invalid values. A Dynamic_Predicate, on the other hand, is checked as specified above,
but can become False at other times. For example, the predicate of a record subtype is not checked when a subcomponent
is modified.

3.3 Objects and Named Numbers

Objects are created at run time and contain a value of a given type. An object can be created and initialized
as part of elaborating a declaration, evaluating an allocator, aggregate, or function_call, or passing a
parameter by copy. Prior to reclaiming the storage for an object, it is finalized if necessary (see 7.6.1).

Static Semantics
All of the following are objects:
e the entity declared by an object_declaration;
e a formal parameter of a subprogram, entry, or generic subprogram;
e a generic formal object;
e aloop parameter;
e achoice parameter of an exception_handler;
e an entry index of an entry_body;
e the result of dereferencing an access-to-object value (see 4.1);
e the return object of a function;
e the result of evaluating an aggregate;
e aqualified_expression whose operand denotes an object;
e acomponent, slice, or view conversion of another object.

An object is either a constant object or a variable object. Similarly, a view of an object is either a constant
or a variable. All views of a constant elementary object are constant. All views of a constant composite
object are constant, except for parts that are of controlled or immutably limited types; variable views of
those parts and their subcomponents may exist. In this sense, objects of controlled and immutably limited
types are inherently mutable. A constant view of an object cannot be used to modify its value. The terms
constant and variable by themselves refer to constant and variable views of objects.

The value of an object is read when the value of any part of the object is evaluated, or when the value of
an enclosing object is evaluated. The value of a variable is updated when an assignment is performed to
any part of the variable, or when an assignment is performed to an enclosing object.

Whether a view of an object is constant or variable is determined by the definition of the view. The
following (and no others) represent constants:

¢ an object declared by an object_declaration with the reserved word constant;

e a formal parameter or generic formal object of mode in;

e a discriminant;

o aloop parameter unless specified to be a variable for a generalized loop (see 5.5.2);

e a choice parameter or entry index;
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the dereference of an access-to-constant value;

the return object declared by an extended_return_statement with the reserved word constant;
the object denoted by a function_call or an aggregate;

the result of evaluating a qualified_expression;

within the body of a protected function (or a function declared immediately within a
protected_body), the current instance of the enclosing protected unit;

a selected_component, indexed_component, slice, or view conversion of a constant.

At the place where a view of an object is defined, a nominal subtype is associated with the view. The
object's actual subtype (that is, its subtype) can be more restrictive than the nominal subtype of the view; it
always is if the nominal subtype is an indefinite subtype. A subtype is an indefinite subtype if it is an
unconstrained array subtype, or if it has unknown discriminants or unconstrained discriminants without
defaults (see 3.7); otherwise, the subtype is a definite subtype (all elementary subtypes are definite
subtypes). A class-wide subtype is defined to have unknown discriminants, and is therefore an indefinite
subtype. An indefinite subtype does not by itself provide enough information to create an object; an
additional constraint or explicit initialization expression is necessary (see 3.3.1). A component cannot
have an indefinite nominal subtype.

A view of a composite object is known to be constrained if:

its nominal subtype is constrained, and is not an untagged partial view; or

its nominal subtype is indefinite; or

its type is immutably limited (see 7.5); or

it is part of a stand-alone constant (including a generic formal object of mode in); or
it is part of a formal parameter of mode in; or

it is part of the object denoted by a function_call or aggregate; or

it is part of a constant return object of an extended_return_statement; or

it is a dereference of a pool-specific access type, and there is no ancestor of its type that has a
constrained partial view.

For the purposes of determining within a generic body whether an object is known to be constrained:

if a subtype is a descendant of an untagged generic formal private or derived type, and the
subtype is not an unconstrained array subtype, it is not considered indefinite and is considered to
have a constrained partial view;

if a subtype is a descendant of a formal access type, it is not considered pool-specific.

A named number provides a name for a numeric value known at compile time. It is declared by a
number_declaration.

NOTES
7 A constant cannot be the target of an assignment operation, nor be passed as an in out or out parameter, between its
initialization and finalization, if any.

8 The value of a constant object cannot be changed after its initialization, except in some cases where the object has a
controlled or immutably limited part (see 7.5, 7.6, and 13.9.1).

9 The nominal and actual subtypes of an elementary object are always the same. For a discriminated or array object, if the
nominal subtype is constrained, then so is the actual subtype.
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3.3.1 Object Declarations

An object_declaration declares a stand-alone object with a given nominal subtype and, optionally, an
explicit initial value given by an initialization expression. For an array, access, task, or protected object,
the object_declaration may include the definition of the (anonymous) type of the object.

Syntax

object_declaration ::=

defining_identifier_list :
[aspect_specification

| defining_identifier_list :
[aspect_specification

| defining_identifier_list :
[aspect_specification

| single_task_declaration

| single_protected_declaration

aliased] [constant] subtype_indication [:= expression]
aliased] [constant] access_definition [:= expression]
aliased] [constant] array_type_definition [:= expression]

5

e e —

defining_identifier_list ::=
defining_identifier {, defining_identifier}

Name Resolution Rules

For an object_declaration with an expression following the compound delimiter :=, the type expected for
the expression is that of the object. This expression is called the initialization expression.

Legality Rules

An object_declaration without the reserved word constant declares a variable object. If it has a
subtype_indication or an array_type_definition that defines an indefinite subtype, then there shall be an
initialization expression.

Static Semantics

An object_declaration with the reserved word constant declares a constant object. If it has an
initialization expression, then it is called a full constant declaration. Otherwise, it is called a deferred
constant declaration. The rules for deferred constant declarations are given in subclause 7.4. The rules for
full constant declarations are given in this subclause.

Any declaration that includes a defining_identifier_list with more than one defining_identifier is equivalent
to a series of declarations each containing one defining_identifier from the list, with the rest of the text of
the declaration copied for each declaration in the series, in the same order as the list. The remainder of this
International Standard relies on this equivalence; explanations are given for declarations with a single
defining_identifier.

The subtype_indication, access_definition, or full type definition of an object_declaration defines the
nominal subtype of the object. The object_declaration declares an object of the type of the nominal
subtype.

A component of an object is said to require late initialization if it has an access discriminant value
constrained by a per-object expression, or if it has an initialization expression that includes a name
denoting the current instance of the type or denoting an access discriminant.
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Dynamic Semantics

If a composite object declared by an object_declaration has an unconstrained nominal subtype, then if this
subtype is indefinite or the object is constant the actual subtype of this object is constrained. The
constraint is determined by the bounds or discriminants (if any) of its initial value; the object is said to be
constrained by its initial value. When not constrained by its initial value, the actual and nominal subtypes
of the object are the same. If its actual subtype is constrained, the object is called a constrained object.

For an object_declaration without an initialization expression, any initial values for the object or its
subcomponents are determined by the implicit initial values defined for its nominal subtype, as follows:

The implicit initial value for an access subtype is the null value of the access type.

The implicit initial value for a scalar subtype that has the Default Value aspect specified is the
value of that aspect converted to the nominal subtype (which might raise Constraint Error —
see 4.6, “Type Conversions”);

The implicit initial (and only) value for each discriminant of a constrained discriminated subtype
is defined by the subtype.

For a (definite) composite subtype, the implicit initial value of each component with a
default_expression is obtained by evaluation of this expression and conversion to the
component's nominal subtype (which might raise Constraint Error), unless the component is a
discriminant of a constrained subtype (the previous case), or is in an excluded variant (see
3.8.1). For each component that does not have a default_expression, if the composite subtype
has the Default Component Value aspect specified, the implicit initial value is the value of that
aspect converted to the component's nominal subtype; otherwise, any implicit initial values are
those determined by the component's nominal subtype.

For a protected or task subtype, there is an implicit component (an entry queue) corresponding to
each entry, with its implicit initial value being an empty queue.

The elaboration of an object_declaration proceeds in the following sequence of steps:

1.

The subtype_indication, access_definition, array_type_definition, single_task_declaration, or
single_protected_declaration is first elaborated. This creates the nominal subtype (and the
anonymous type in the last four cases).

. If the object_declaration includes an initialization expression, the (explicit) initial value is

obtained by evaluating the expression and converting it to the nominal subtype (which might
raise Constraint_Error — see 4.6).

The object is created, and, if there is not an initialization expression, the object is initialized by
default. When an object is initialized by default, any per-object constraints (see 3.8) are
elaborated and any implicit initial values for the object or for its subcomponents are obtained as
determined by the nominal subtype. Any initial values (whether explicit or implicit) are assigned
to the object or to the corresponding subcomponents. As described in 5.2 and 7.6, Initialize and
Adjust procedures can be called.

This paragraph was deleted.

For the third step above, evaluations and assignments are performed in an arbitrary order subject to the
following restrictions:

Assignment to any part of the object is preceded by the evaluation of the value that is to be
assigned.

The evaluation of a default_expression that includes the name of a discriminant is preceded by
the assignment to that discriminant.
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e The evaluation of the default_expression for any component that depends on a discriminant is
preceded by the assignment to that discriminant.

e The assignments to any components, including implicit components, not requiring late
initialization precede the initial value evaluations for any components requiring late
initialization; if two components both require late initialization, then assignments to parts of the
component occurring earlier in the order of the component declarations precede the initial value
evaluations of the component occurring later.

There is no implicit initial value defined for a scalar subtype unless the Default Value aspect has been
specified for the type. In the absence of an explicit initialization or the specification of the Default Value
aspect, a newly created scalar object might have a value that does not belong to its subtype (see 13.9.1 and
H.D).

NOTES
10 Implicit initial values are not defined for an indefinite subtype, because if an object's nominal subtype is indefinite, an
explicit initial value is required.

11 As indicated above, a stand-alone object is an object declared by an object_declaration. Similar definitions apply to
“stand-alone constant” and “stand-alone variable.” A subcomponent of an object is not a stand-alone object, nor is an
object that is created by an allocator. An object declared by a loop_parameter_specification, iterator_specification,
parameter_specification, entry_index_specification, choice_parameter_specification, extended_return_statement, or a
formal_object_declaration of mode in out is not considered a stand-alone object.

12 The type of a stand-alone object cannot be abstract (see 3.9.3).

Examples
Example of a multiple object declaration:
- - the multiple object declaration
John, Paul : not null Person Name := new Person(Sex => M); -- see3.10./

- - is equivalent to the two single object declarations in the order given

John : not null Person Name := new Person(Sex => M);
Paul : not null Person Name := new Person(Sex => M);

Examples of variable declarations:

Count, Sum : Integer;

Size : Integer range 0 .. 10 000 := 0O;

Sorted : Boolean := False;

Color_ Table : array(l .. Max) of Color;

Option : Bit_Vector(l .. 10) := (others => True);
Hello : aliased String := "Hi, world.";

6, ¢ : Float range -m .. +W;

Examples of constant declarations:

Limit : constant Integer := 10_000;

Low_Limit : constant Integer := Limit/10;

Tolerance : constant Real := Dispersion(1l.15);

Hello Msg : constant access String := Hello'Access; --see3.10.2

3.3.2 Number Declarations

A number_declaration declares a named number.

Syntax

number_declaration ::=
defining_identifier_list : constant := static_expression;
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Name Resolution Rules

The static_expression given for a number_declaration is expected to be of any numeric type.

Legality Rules
The static_expression given for a number declaration shall be a static expression, as defined by subclause
4.9.

Static Semantics

The named number denotes a value of type universal_integer if the type of the static_expression is an
integer type. The named number denotes a value of type universal real if the type of the static -
expression is a real type.

The value denoted by the named number is the value of the static_expression, converted to the
corresponding universal type.

Dynamic Semantics

The elaboration of a number_declaration has no effect.

Examples
Examples of number declarations:
Two_Pi : constant := 2.0*Ada.Numerics.Pi; - - a real number (see A.5)
Max : constant := 500; - - an integer number
Max Line Size : constant := Max/6; - - the integer 83
Power 16 : constant := 2**16; - - the integer 65 536
One, Un, Eins : constant := 1; - - three different names for 1

3.4 Derived Types and Classes

A derived_type_definition defines a derived type (and its first subtype) whose characteristics are derived
from those of a parent type, and possibly from progenitor types.

A class of types is a set of types that is closed under derivation; that is, if the parent or a progenitor type of
a derived type belongs to a class, then so does the derived type. By saying that a particular group of types
forms a class, we are saying that all derivatives of a type in the set inherit the characteristics that define
that set. The more general term category of types is used for a set of types whose defining characteristics
are not necessarily inherited by derivatives; for example, limited, abstract, and interface are all categories
of types, but not classes of types.

Syntax
derived_type_definition ::=
[abstract] [limited] new parent_subtype_indication [[and interface_list] record_extension_part]
Legality Rules
The parent_subtype_indication defines the parent subtype; its type is the parent type. The interface_list
defines the progenitor types (see 3.9.4). A derived type has one parent type and zero or more progenitor
types.
A type shall be completely defined (see 3.11.1) prior to being specified as the parent type in a

derived_type_definition — the full_type_declarations for the parent type and any of its subcomponents
have to precede the derived_type_definition.
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If there is a record_extension_part, the derived type is called a record extension of the parent type. A
record_extension_part shall be provided if and only if the parent type is a tagged type. An interface_list
shall be provided only if the parent type is a tagged type.

If the reserved word limited appears in a derived_type_definition, the parent type shall be a limited type.
If the parent type is a tagged formal type, then in addition to the places where Legality Rules normally
apply (see 12.3), this rule applies also in the private part of an instance of a generic unit.

Static Semantics

The first subtype of the derived type is unconstrained if a known_discriminant_part is provided in the
declaration of the derived type, or if the parent subtype is unconstrained. Otherwise, the constraint of the
first subtype corresponds to that of the parent subtype in the following sense: it is the same as that of the
parent subtype except that for a range constraint (implicit or explicit), the value of each bound of its range
is replaced by the corresponding value of the derived type.

The first subtype of the derived type excludes null (see 3.10) if and only if the parent subtype excludes
null.

The characteristics and implicitly declared primitive subprograms of the derived type are defined as
follows:

e [f the parent type or a progenitor type belongs to a class of types, then the derived type also
belongs to that class. The following sets of types, as well as any higher-level sets composed
from them, are classes in this sense, and hence the characteristics defining these classes are
inherited by derived types from their parent or progenitor types: signed integer, modular integer,
ordinary fixed, decimal fixed, floating point, enumeration, boolean, character, access-to-
constant, general access-to-variable, pool-specific access-to-variable, access-to-subprogram,
array, string, non-array composite, nonlimited, untagged record, tagged, task, protected, and
synchronized tagged.

o [f the parent type is an elementary type or an array type, then the set of possible values of the
derived type is a copy of the set of possible values of the parent type. For a scalar type, the base
range of the derived type is the same as that of the parent type.

o [f the parent type is a composite type other than an array type, then the components, protected
subprograms, and entries that are declared for the derived type are as follows:

o The discriminants specified by a new known_discriminant_part, if there is one; otherwise,
each discriminant of the parent type (implicitly declared in the same order with the same
specifications) — in the latter case, the discriminants are said to be inkerited, or if unknown
in the parent, are also unknown in the derived type;

o Each nondiscriminant component, entry, and protected subprogram of the parent type,
implicitly declared in the same order with the same declarations; these components, entries,
and protected subprograms are said to be inherited,

o Each component declared in a record_extension_part, if any.

Declarations of components, protected subprograms, and entries, whether implicit or explicit,
occur immediately within the declarative region of the type, in the order indicated above,
following the parent subtype_indication.

®  This paragraph was deleted.

e For each predefined operator of the parent type, there is a corresponding predefined operator of
the derived type.
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e For each user-defined primitive subprogram (other than a user-defined equality operator — see
below) of the parent type or of a progenitor type that already exists at the place of the
derived_type_definition, there exists a corresponding inherited primitive subprogram of the
derived type with the same defining name. Primitive user-defined equality operators of the
parent type and any progenitor types are also inherited by the derived type, except when the
derived type is a nonlimited record extension, and the inherited operator would have a profile
that is type conformant with the profile of the corresponding predefined equality operator; in this
case, the user-defined equality operator is not inherited, but is rather incorporated into the
implementation of the predefined equality operator of the record extension (see 4.5.2).

The profile of an inherited subprogram (including an inherited enumeration literal) is obtained
from the profile of the corresponding (user-defined) primitive subprogram of the parent or
progenitor type, after systematic replacement of each subtype of its profile (see 6.1) that is of the
parent or progenitor type, other than those subtypes found in the designated profile of an
access_definition, with a corresponding subtype of the derived type. For a given subtype of the
parent or progenitor type, the corresponding subtype of the derived type is defined as follows:

o If the declaration of the derived type has neither a known_discriminant_part nor a
record_extension_part, then the corresponding subtype has a constraint that corresponds
(as defined above for the first subtype of the derived type) to that of the given subtype.

o If the derived type is a record extension, then the corresponding subtype is the first subtype
of the derived type.

o If the derived type has a new known_discriminant_part but is not a record extension, then
the corresponding subtype is constrained to those values that when converted to the parent
type belong to the given subtype (see 4.6).

The same formal parameters have default_expressions in the profile of the inherited
subprogram. Any type mismatch due to the systematic replacement of the parent or progenitor
type by the derived type is handled as part of the normal type conversion associated with
parameter passing — see 6.4.1.

If a primitive subprogram of the parent or progenitor type is visible at the place of the
derived_type_definition, then the corresponding inherited subprogram is implicitly declared immediately
after the derived_type_definition. Otherwise, the inherited subprogram is implicitly declared later or not at
all, as explained in 7.3.1.

A derived type can also be defined by a private_extension_declaration (see 7.3) or a formal_derived_-
type_definition (see 12.5.1). Such a derived type is a partial view of the corresponding full or actual type.

All numeric types are derived types, in that they are implicitly derived from a corresponding root numeric
type (see 3.5.4 and 3.5.6).

Dynamic Semantics

The elaboration of a derived_type_definition creates the derived type and its first subtype, and consists of
the elaboration of the subtype_indication and the record_extension_part, if any. If the subtype -
indication depends on a discriminant, then only those expressions that do not depend on a discriminant are
evaluated.

For the execution of a call on an inherited subprogram, a call on the corresponding primitive subprogram
of the parent or progenitor type is performed; the normal conversion of each actual parameter to the
subtype of the corresponding formal parameter (see 6.4.1) performs any necessary type conversion as
well. If the result type of the inherited subprogram is the derived type, the result of calling the subprogram
of the parent or progenitor is converted to the derived type, or in the case of a null extension, extended to
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the derived type using the equivalent of an extension_aggregate with the original result as the
ancestor_part and null record as the record_component_association_list.
NOTES

13 Classes are closed under derivation — any class that contains a type also contains its derivatives. Operations available
for a given class of types are available for the derived types in that class.

14 Evaluating an inherited enumeration literal is equivalent to evaluating the corresponding enumeration literal of the
parent type, and then converting the result to the derived type. This follows from their equivalence to parameterless
functions.

15 A generic subprogram is not a subprogram, and hence cannot be a primitive subprogram and cannot be inherited by a
derived type. On the other hand, an instance of a generic subprogram can be a primitive subprogram, and hence can be
inherited.

16 If the parent type is an access type, then the parent and the derived type share the same storage pool; there is a null
access value for the derived type and it is the implicit initial value for the type. See 3.10.

17 If the parent type is a boolean type, the predefined relational operators of the derived type deliver a result of the
predefined type Boolean (see 4.5.2). If the parent type is an integer type, the right operand of the predefined
exponentiation operator is of the predefined type Integer (see 4.5.6).

18 Any discriminants of the parent type are either all inherited, or completely replaced with a new set of discriminants.

19 For an inherited subprogram, the subtype of a formal parameter of the derived type need not have any value in
common with the first subtype of the derived type.

20 If the reserved word abstract is given in the declaration of a type, the type is abstract (see 3.9.3).

21 An interface type that has a progenitor type “is derived from” that type. A derived_type_definition, however, never
defines an interface type.

22 Ttis illegal for the parent type of a derived_type_definition to be a synchronized tagged type.

Examples
Examples of derived type declarations:
type Local Coordinate is new Coordinate; - - two different types
type Midweek is new Day range Tue .. Thu; -- see3.5.]
type Counter is new Positive; - - same range as Positive
type Special Key is new Key Manager.Key; -- see7.3.1

- - the inherited subprograms have the following specifications:
-- procedure Get_Key(K : out Special Key);
-- Sfunction "<"(X,Y : Special_Key) return Boolean,

3.4.1 Derivation Classes

In addition to the various language-defined classes of types, types can be grouped into derivation classes.

Static Semantics

A derived type is derived from its parent type directly; it is derived indirectly from any type from which its
parent type is derived. A derived type, interface type, type extension, task type, protected type, or formal
derived type is also derived from every ancestor of each of its progenitor types, if any. The derivation
class of types for a type T (also called the class rooted at T) is the set consisting of T (the root type of the
class) and all types derived from T (directly or indirectly) plus any associated universal or class-wide types
(defined below).

Every type is either a specific type, a class-wide type, or a universal type. A specific type is one defined
by a type_declaration, a formal_type_declaration, or a full type definition embedded in another construct.
Class-wide and universal types are implicitly defined, to act as representatives for an entire class of types,
as follows:
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Class-wide types
Class-wide types are defined for (and belong to) each derivation class rooted at a tagged
type (see 3.9). Given a subtype S of a tagged type 7, S'Class is the subtype_mark for a
corresponding subtype of the tagged class-wide type 7'Class. Such types are called “class-
wide” because when a formal parameter is defined to be of a class-wide type 7'Class, an
actual parameter of any type in the derivation class rooted at 7 is acceptable (see 8.6).

The set of values for a class-wide type T'Class is the discriminated union of the set of
values of each specific type in the derivation class rooted at 7 (the tag acts as the implicit
discriminant — see 3.9). Class-wide types have no primitive subprograms of their own.
However, as explained in 3.9.2, operands of a class-wide type 7'Class can be used as part of
a dispatching call on a primitive subprogram of the type 7. The only components (including
discriminants) of 7'Class that are visible are those of T. If S is a first subtype, then S'Class
is a first subtype.

Universal types

Universal types are defined for (and belong to) the integer, real, fixed point, and access
classes, and are referred to in this standard as respectively, universal integer,
universal_real, universal_fixed, and universal access. These are analogous to class-wide
types for these language-defined elementary classes. As with class-wide types, if a formal
parameter is of a universal type, then an actual parameter of any type in the corresponding
class is acceptable. In addition, a value of a universal type (including an integer or real
numeric_literal, or the literal null) is “universal” in that it is acceptable where some
particular type in the class is expected (see 8.6).

The set of values of a universal type is the undiscriminated union of the set of values
possible for any definable type in the associated class. Like class-wide types, universal
types have no primitive subprograms of their own. However, their “universality” allows
them to be used as operands with the primitive subprograms of any type in the
corresponding class.

The integer and real numeric classes each have a specific root type in addition to their universal type,
named respectively root_integer and root_real.

A class-wide or universal type is said to cover all of the types in its class. A specific type covers only
itself.

A specific type 72 is defined to be a descendant of a type T1 if T2 is the same as T/, or if 72 is derived
(directly or indirectly) from 7'/. A class-wide type 72'Class is defined to be a descendant of type 77 if 72
is a descendant of 7/. Similarly, the numeric universal types are defined to be descendants of the root
types of their classes. If a type 72 is a descendant of a type T/, then T/ is called an ancestor of T2. An
ultimate ancestor of a type is an ancestor of that type that is not itself a descendant of any other type.
Every untagged type has a unique ultimate ancestor.

An inherited component (including an inherited discriminant) of a derived type is inherited from a given
ancestor of the type if the corresponding component was inherited by each derived type in the chain of
derivations going back to the given ancestor.

NOTES

23 Because operands of a universal type are acceptable to the predefined operators of any type in their class, ambiguity
can result. For universal_integer and universal_real, this potential ambiguity is resolved by giving a preference (see 8.6)
to the predefined operators of the corresponding root types (root integer and root real, respectively). Hence, in an
apparently ambiguous expression like

1+4<7

where each of the literals is of type universal integer, the predefined operators of root integer will be preferred over
those of other specific integer types, thereby resolving the ambiguity.
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3.5 Scalar Types

Scalar types comprise enumeration types, integer types, and real types. Enumeration types and integer
types are called discrete types; each value of a discrete type has a position number which is an integer
value. Integer types and real types are called numeric types. All scalar types are ordered, that is, all
relational operators are predefined for their values.

Syntax
range_constraint ::= range range

range ::= range_attribute_reference

| simple_expression .. simple_expression
A range has a lower bound and an upper bound and specifies a subset of the values of some scalar type
(the type of the range). A range with lower bound L and upper bound R is described by “L .. R”. If R is
less than L, then the range is a null range, and specifies an empty set of values. Otherwise, the range
specifies the values of the type from the lower bound to the upper bound, inclusive. A value belongs to a
range if it is of the type of the range, and is in the subset of values specified by the range. A value satisfies
a range constraint if it belongs to the associated range. One range is included in another if all values that
belong to the first range also belong to the second.

Name Resolution Rules

For a subtype_indication containing a range_constraint, either directly or as part of some other
scalar_constraint, the type of the range shall resolve to that of the type determined by the subtype_mark
of the subtype_indication. For a range of a given type, the simple_expressions of the range (likewise,
the simple_expressions of the equivalent range for a range_attribute_reference) are expected to be of
the type of the range.

Static Semantics

The base range of a scalar type is the range of finite values of the type that can be represented in every
unconstrained object of the type; it is also the range supported at a minimum for intermediate values
during the evaluation of expressions involving predefined operators of the type.

A constrained scalar subtype is one to which a range constraint applies. The range of a constrained scalar
subtype is the range associated with the range constraint of the subtype. The range of an unconstrained
scalar subtype is the base range of its type.

Dynamic Semantics
A range is compatible with a scalar subtype if and only if it is either a null range or each bound of the

range belongs to the range of the subtype. A range_constraint is compatible with a scalar subtype if and
only if its range is compatible with the subtype.

The elaboration of a range_constraint consists of the evaluation of the range. The evaluation of a range
determines a lower bound and an upper bound. If simple_expressions are given to specify bounds, the
evaluation of the range evaluates these simple_expressions in an arbitrary order, and converts them to the
type of the range. If a range_attribute_reference is given, the evaluation of the range consists of the
evaluation of the range_attribute_reference.
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Attributes

For every scalar subtype S, the following attributes are defined:

S'First

S'Last

S'Range
S'Base

S'Min

S'Max

S'Succ

S'Pred

S'First denotes the lower bound of the range of S. The value of this attribute is of the type
of S.

S'Last denotes the upper bound of the range of S. The value of this attribute is of the type of
S.

S'Range is equivalent to the range S'First .. S'Last.

S'Base denotes an unconstrained subtype of the type of S. This unconstrained subtype is
called the base subtype of the type.

S'Min denotes a function with the following specification:

function S'Min (Left, Right : S'Base)
return S'Base

The function returns the lesser of the values of the two parameters.

S'Max denotes a function with the following specification:

function S'Max (Left, Right : S'Base)
return S'Base

The function returns the greater of the values of the two parameters.

S'Succ denotes a function with the following specification:
function S'Succ(d4rg : S'Base)
return S'Base

For an enumeration type, the function returns the value whose position number is one more
than that of the value of Arg; Constraint Error is raised if there is no such value of the type.
For an integer type, the function returns the result of adding one to the value of Arg. For a
fixed point type, the function returns the result of adding small to the value of Arg. For a
floating point type, the function returns the machine number (as defined in 3.5.7)
immediately above the value of Arg; Constraint Error is raised if there is no such machine
number.

S'Pred denotes a function with the following specification:

function S'Pred(4rg : S'Base)
return S'Base

For an enumeration type, the function returns the value whose position number is one less
than that of the value of Arg; Constraint Error is raised if there is no such value of the type.
For an integer type, the function returns the result of subtracting one from the value of Arg.
For a fixed point type, the function returns the result of subtracting small from the value of
Arg. For a floating point type, the function returns the machine number (as defined in 3.5.7)
immediately below the value of 4rg; Constraint_Error is raised if there is no such machine
number.

S'Wide Wide Image

S'Wide Wide Image denotes a function with the following specification:
function S'Wide Wide Image (4drg : S'Base)
return Wide_ Wide_String
The function returns an image of the value of Arg, that is, a sequence of characters
representing the value in display form. The lower bound of the result is one.

The image of an integer value is the corresponding decimal literal, without underlines,
leading zeros, exponent, or trailing spaces, but with a single leading character that is either
a minus sign or a space.
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The image of an enumeration value is either the corresponding identifier in upper case or
the corresponding character literal (including the two apostrophes); neither leading nor
trailing spaces are included. For a nongraphic character (a value of a character type that
has no enumeration literal associated with it), the result is a corresponding language-
defined name in upper case (for example, the image of the nongraphic character identified
as nul is “NUL” — the quotes are not part of the image).

The image of a floating point value is a decimal real literal best approximating the value
(rounded away from zero if halfway between) with a single leading character that is either a
minus sign or a space, a single digit (that is nonzero unless the value is zero), a decimal
point, S'Digits—1 (see 3.5.8) digits after the decimal point (but one if S'Digits is one), an
upper case E, the sign of the exponent (either + or —), and two or more digits (with leading
zeros if necessary) representing the exponent. If S'Signed Zeros is True, then the leading
character is a minus sign for a negatively signed zero.

The image of a fixed point value is a decimal real literal best approximating the value
(rounded away from zero if halfway between) with a single leading character that is either a
minus sign or a space, one or more digits before the decimal point (with no redundant
leading zeros), a decimal point, and S'Aft (see 3.5.10) digits after the decimal point.

S'Wide ImageS'Wide Image denotes a function with the following specification:
function S'Wide Image(4rg : S'Base)
return Wide_ String
The function returns an image of the value of Arg as a Wide_String. The lower bound of the
result is one. The image has the same sequence of graphic characters as defined for
S'Wide Wide Image if all the graphic characters are defined in Wide Character;
otherwise, the sequence of characters is implementation defined (but no shorter than that of
S'Wide_Wide_Image for the same value of Arg).

Paragraphs 31 through 34 were moved to Wide_Wide Image.

S'Image S'Image denotes a function with the following specification:
function S'Image (4rg : S'Base)
return String

The function returns an image of the value of 4rg as a String. The lower bound of the result
is one. The image has the same sequence of graphic characters as that defined for
S'Wide Wide Image if all the graphic characters are defined in Character; otherwise, the
sequence of characters is implementation defined (but no shorter than that of
S'Wide Wide Image for the same value of Arg).

S'Wide Wide Width
S'Wide Wide Width denotes the maximum length of a Wide Wide_ String returned by
S'Wide Wide Image over all values of the subtype S. It denotes zero for a subtype that has
a null range. Its type is universal_integer-.

S'Wide_Width
S'Wide Width denotes the maximum length of a Wide_String returned by S'Wide Image
over all values of the subtype S. It denotes zero for a subtype that has a null range. Its type
is universal_integer.

S'Width S'Width denotes the maximum length of a String returned by S'Image over all values of the
subtype S. It denotes zero for a subtype that has a null range. Its type is universal_integer.
S'Wide Wide Value
S'Wide Wide Value denotes a function with the following specification:

function S'Wide Wide Value(4rg : Wide Wide_ String)
return S'Base
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S'Wide Value

S'Value

This function returns a value given an image of the value as a Wide_ Wide_String, ignoring
any leading or trailing spaces.

For the evaluation of a call on S'Wide Wide Value for an enumeration subtype S, if the
sequence of characters of the parameter (ignoring leading and trailing spaces) has the
syntax of an enumeration literal and if it corresponds to a literal of the type of S (or
corresponds to the result of S'Wide Wide Image for a nongraphic character of the type),
the result is the corresponding enumeration value; otherwise, Constraint_Error is raised.

For the evaluation of a call on S'Wide Wide Value for an integer subtype S, if the
sequence of characters of the parameter (ignoring leading and trailing spaces) has the
syntax of an integer literal, with an optional leading sign character (plus or minus for a
signed type; only plus for a modular type), and the corresponding numeric value belongs to
the base range of the type of S, then that value is the result; otherwise, Constraint_Error is
raised.

For the evaluation of a call on S'Wide Wide Value for a real subtype S, if the sequence of
characters of the parameter (ignoring leading and trailing spaces) has the syntax of one of
the following:

e numeric_literal

e numeral.[exponent]

e _numeral[exponent]

e baset#tbased_numeral.#[exponent]
e basetf.based_numeral#[exponent]

with an optional leading sign character (plus or minus), and if the corresponding numeric
value belongs to the base range of the type of S, then that value is the result; otherwise,
Constraint_Error is raised. The sign of a zero value is preserved (positive if none has been
specified) if S'Signed Zeros is True.

S'Wide Value denotes a function with the following specification:
function S'Wide Value (4drg : Wide_ String)
return S'Base
This function returns a value given an image of the value as a Wide String, ignoring any
leading or trailing spaces.

For the evaluation of a call on S'Wide Value for an enumeration subtype S, if the sequence
of characters of the parameter (ignoring leading and trailing spaces) has the syntax of an
enumeration literal and if it corresponds to a literal of the type of S (or corresponds to the
result of S'Wide Image for a value of the type), the result is the corresponding enumeration
value; otherwise, Constraint_Error is raised. For a numeric subtype S, the evaluation of a
call on S'Wide Value with Arg of type Wide String is equivalent to a call on
S'Wide Wide Value for a corresponding Arg of type Wide Wide String.

Paragraphs 44 through 51 were moved to Wide Wide Value.

S'Value denotes a function with the following specification:

function S'vValue(4rg : String)
return S'Base

This function returns a value given an image of the value as a String, ignoring any leading
or trailing spaces.

For the evaluation of a call on S'Value for an enumeration subtype S, if the sequence of
characters of the parameter (ignoring leading and trailing spaces) has the syntax of an
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enumeration literal and if it corresponds to a literal of the type of S (or corresponds to the
result of S'Image for a value of the type), the result is the corresponding enumeration value;
otherwise, Constraint_Error is raised. For a numeric subtype S, the evaluation of a call on
S'Value with Arg of type String is equivalent to a call on S'Wide Wide Value for a
corresponding Arg of type Wide Wide String.

Implementation Permissions

An implementation may extend the Wide Wide Value, Wide Value, Value, Wide Wide Image,
Wide Image, and Image attributes of a floating point type to support special values such as infinities and
NaNs.

An implementation may extend the Wide Wide Value, Wide_Value, and Value attributes of a character
type to accept strings of the form “Hex_hhhhhhhh” (ignoring case) for any character (not just the ones for
which Wide Wide Image would produce that form — see 3.5.2), as well as three-character strings of the
form “'X™, where X is any character, including nongraphic characters.

Static Semantics

For a scalar type, the following language-defined representation aspect may be specified with an
aspect_specification (see 13.1.1):

Default Value
This aspect shall be specified by a static expression, and that expression shall be explicit,
even if the aspect has a boolean type. Default Value shall be specified only on a
full_type_declaration.

If a derived type with no primitive subprograms inherits a boolean Default Value aspect, the aspect may
be specified to have any value for the derived type.

Name Resolution Rules

The expected type for the expression specified for the Default Value aspect is the type defined by the
full_type_declaration on which it appears.

NOTES
24 The evaluation of S'First or S'Last never raises an exception. If a scalar subtype S has a nonnull range, S'First and
S'Last belong to this range. These values can, for example, always be assigned to a variable of subtype S.

25 For a subtype of a scalar type, the result delivered by the attributes Succ, Pred, and Value might not belong to the
subtype; similarly, the actual parameters of the attributes Succ, Pred, and Image need not belong to the subtype.

26 For any value V (including any nongraphic character) of an enumeration subtype S, S'Value(S'Image(V)) equals V, as
do S'Wide Value(S'Wide Image(V)) and S'Wide Wide Value(S'Wide Wide Image(V)). None of these expressions ever
raise Constraint_Error.

Examples

Examples of ranges:

-10 .. 10

X .. X+ 1

0.0 .. 2.0*Pi

Red .. Green --see3.5.1

1 ..0 - - a null range

Table'Range - - a range attribute reference (see 3.6)

Examples of range constraints:

range -999.0 .. +999.0
range S'First+l .. S'Last-1
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3.5.1 Enumeration Types

An enumeration_type_definition defines an enumeration type.

Syntax
enumeration_type_definition ::=
(enumeration_literal_specification {, enumeration_literal_specification})
enumeration_literal_specification ::= defining_identifier | defining_character_literal

defining_character_literal ::= character_literal

Legality Rules

The defining_identifiers in upper case and the defining_character_literals listed in an
enumeration_type_definition shall be distinct.

Static Semantics

Each enumeration_literal_specification is the explicit declaration of the corresponding enumeration
literal: it declares a parameterless function, whose defining name is the defining_identifier or defining_-
character_literal, and whose result subtype is the base subtype of the enumeration type.

Each enumeration literal corresponds to a distinct value of the enumeration type, and to a distinct position
number. The position number of the value of the first listed enumeration literal is zero; the position
number of the value of each subsequent enumeration literal is one more than that of its predecessor in the
list.

The predefined order relations between values of the enumeration type follow the order of corresponding
position numbers.

If the same defining_identifier or defining_character_literal is specified in more than one enumeration_-
type_definition, the corresponding enumeration literals are said to be overloaded. At any place where an
overloaded enumeration literal occurs in the text of a program, the type of the enumeration literal has to be
determinable from the context (see 8.6).

Dynamic Semantics
The elaboration of an enumeration_type_definition creates the enumeration type and its first subtype,
which is constrained to the base range of the type.

When called, the parameterless function associated with an enumeration literal returns the corresponding
value of the enumeration type.
NOTES

27 If an enumeration literal occurs in a context that does not otherwise suffice to determine the type of the literal, then
qualification by the name of the enumeration type is one way to resolve the ambiguity (see 4.7).

Examples
Examples of enumeration types and subtypes:

type Day is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

type Suit is (Clubs, Diamonds, Hearts, Spades);

type Gender is (M, F);

type Level 1is (Low, Medium, Urgent) ;

type Color is (White, Red, Yellow, Green, Blue, Brown, Black);
type Light is (Red, Amber, Green); -- Redand Green are overloaded
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type Hexa is ('a', 'B', 'c', 'D', 'E', 'F');

type Mixed 1is ('A', 'B', '*', B, None, '?', '%');

subtype Weekday is Day range Mon .. Fri;

subtype Major is Suit range Hearts .. Spades;

subtype Rainbow is Color range Red .. Blue; -- the Color Red, not the Light

3.5.2 Character Types

Static Semantics

An enumeration type is said to be a character type if at least one of its enumeration literals is a
character_literal.

The predefined type Character is a character type whose values correspond to the 256 code points of Row
00 (also known as Latin-1) of the ISO/IEC 10646:2011 Basic Multilingual Plane (BMP). Each of the
graphic characters of Row 00 of the BMP has a corresponding character_literal in Character. Each of the
nongraphic characters of Row 00 has a corresponding language-defined name, which is not usable as an
enumeration literal, but which is usable with the attributes Image, Wide Image, Wide Wide Image,
Value, Wide Value, and Wide_Wide_Value; these names are given in the definition of type Character in
A.1, “The Package Standard”, but are set in italics.

The predefined type Wide Character is a character type whose values correspond to the 65536 code points
of the ISO/IEC 10646:2011 Basic Multilingual Plane (BMP). Each of the graphic characters of the BMP
has a corresponding character_literal in Wide Character. The first 256 values of Wide Character have the
same character_literal or language-defined name as defined for Character. Each of the graphic_characters
has a corresponding character_literal.

The predefined type Wide Wide Character is a character type whose values correspond to the
2147483648 code points of the ISO/IEC 10646:2011 character set. Each of the graphic_characters has a
corresponding  character_literal in  Wide Wide Character. The first 65536 values of
Wide Wide Character have the same character_literal or language-defined name as defined for
Wide Character.

The characters whose code point is larger than 16#FF# and which are not graphic_characters have
language-defined names which are formed by appending to the string "Hex " the representation of their
code point in hexadecimal as eight extended digits. As with other language-defined names, these names
are usable only with the attributes (Wide )Wide Image and (Wide )Wide Value; they are not usable as
enumeration literals.

Paragraphs 6 and 7 were deleted.

NOTES
28 The language-defined library package Characters.Latin 1 (see A.3.3) includes the declaration of constants denoting
control characters, lower case characters, and special characters of the predefined type Character.

29 A conventional character set such as EBCDIC can be declared as a character type; the internal codes of the characters
can be specified by an enumeration_representation_clause as explained in subclause 13.4.
Examples
Example of a character type:
type Roman Digit is ('I', 'V', 'X', 'L', 'C', 'D', 'M');
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3.5.3 Boolean Types

Static Semantics
There is a predefined enumeration type named Boolean, declared in the visible part of package Standard. It

has the two enumeration literals False and True ordered with the relation False < True. Any descendant of
the predefined type Boolean is called a boolean type.

3.5.4 Integer Types

An integer_type_definition defines an integer type; it defines either a signed integer type, or a modular
integer type. The base range of a signed integer type includes at least the values of the specified range. A
modular type is an integer type with all arithmetic modulo a specified positive modulus; such a type
corresponds to an unsigned type with wrap-around semantics.

Syntax
integer_type_definition ::= signed_integer_type_definition | modular_type_definition
signed_integer_type_definition ::= range static_simple_expression .. static_simple_expression
modular_type_definition ::= mod static_expression

Name Resolution Rules

Each simple_expression in a signed_integer_type_definition is expected to be of any integer type; they
need not be of the same type. The expression in a modular_type_definition is likewise expected to be of
any integer type.

Legality Rules

The simple_expressions of a signed_integer_type_definition shall be static, and their values shall be in
the range System.Min_Int .. System.Max_Int.

The expression of a modular_type_definition shall be static, and its value (the modulus) shall be positive,
and shall be no greater than System.Max Binary Modulus if a power of 2, or no greater than
System.Max_Nonbinary Modulus if not.

Static Semantics

The set of values for a signed integer type is the (infinite) set of mathematical integers, though only values
of the base range of the type are fully supported for run-time operations. The set of values for a modular
integer type are the values from 0 to one less than the modulus, inclusive.

A signed_integer_type_definition defines an integer type whose base range includes at least the values of
the simple_expressions and is symmetric about zero, excepting possibly an extra negative value. A
signed_integer_type_definition also defines a constrained first subtype of the type, with a range whose
bounds are given by the values of the simple_expressions, converted to the type being defined.

A modular_type_definition defines a modular type whose base range is from zero to one less than the
given modulus. A modular_type_definition also defines a constrained first subtype of the type with a
range that is the same as the base range of the type.

There is a predefined signed integer subtype named Integer, declared in the visible part of package
Standard. It is constrained to the base range of its type.
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Integer has two predefined subtypes, declared in the visible part of package Standard:

subtype Natural is Integer range 0 .. Integer'Last;

subtype Positive is Integer range 1 .. Integer'Last;
A type defined by an integer_type_definition is implicitly derived from root integer, an anonymous
predefined (specific) integer type, whose base range is System.Min_Int .. System.Max_Int. However, the
base range of the new type is not inherited from root _integer, but is instead determined by the range or
modulus specified by the integer_type_definition. Integer literals are all of the type universal_integer, the
universal type (see 3.4.1) for the class rooted at root_integer, allowing their use with the operations of any
integer type.

The position number of an integer value is equal to the value.

For every modular subtype S, the following attributes are defined:

S'Mod S'"Mod denotes a function with the following specification:

function S'Mod (4rg : universal integer)
return S'Base

This function returns Arg mod S'Modulus, as a value of the type of S.

S'Modulus  S'"Modulus yields the modulus of the type of S, as a value of the type universal_integer.

Dynamic Semantics

The elaboration of an integer_type_definition creates the integer type and its first subtype.

For a modular type, if the result of the execution of a predefined operator (see 4.5) is outside the base
range of the type, the result is reduced modulo the modulus of the type to a value that is within the base
range of the type.

For a signed integer type, the exception Constraint Error is raised by the execution of an operation that
cannot deliver the correct result because it is outside the base range of the type. For any integer type,
Constraint_Error is raised by the operators "/", "rem", and "mod" if the right operand is zero.

Implementation Requirements

In an implementation, the range of Integer shall include the range —2**15+1 .. +2*%*15-1.

If Long_Integer is predefined for an implementation, then its range shall include the range —2**31+1 ..
+2%*31-1.

System.Max_Binary Modulus shall be at least 2**16.

Implementation Permissions

For the execution of a predefined operation of a signed integer type, the implementation need not raise
Constraint_Error if the result is outside the base range of the type, so long as the correct result is produced.

An implementation may provide additional predefined signed integer types, declared in the visible part of
Standard, whose first subtypes have names of the form Short Integer, Long_ Integer, Short Short Integer,
Long_Long Integer, etc. Different predefined integer types are allowed to have the same base range.
However, the range of Integer should be no wider than that of Long Integer. Similarly, the range of
Short_Integer (if provided) should be no wider than Integer. Corresponding recommendations apply to any
other predefined integer types. There need not be a named integer type corresponding to each distinct base
range supported by an implementation. The range of each first subtype should be the base range of its

type.
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An implementation may provide nonstandard integer types, descendants of root_integer that are declared
outside of the specification of package Standard, which need not have all the standard characteristics of a
type defined by an integer_type_definition. For example, a nonstandard integer type might have an
asymmetric base range or it might not be allowed as an array or loop index (a very long integer). Any type
descended from a nonstandard integer type is also nonstandard. An implementation may place arbitrary
restrictions on the use of such types; it is implementation defined whether operators that are predefined for
“any integer type” are defined for a particular nonstandard integer type. In any case, such types are not
permitted as explicit_generic_actual_parameters for formal scalar types — see 12.5.2.

For a one's complement machine, the high bound of the base range of a modular type whose modulus is
one less than a power of 2 may be equal to the modulus, rather than one less than the modulus. It is
implementation defined for which powers of 2, if any, this permission is exercised.

For a one's complement machine, implementations may support nonbinary modulus values greater than
System.Max_Nonbinary Modulus. It is implementation defined which specific values greater than
System.Max_Nonbinary Modulus, if any, are supported.

Implementation Advice

An implementation should support Long_Integer in addition to Integer if the target machine supports 32-
bit (or longer) arithmetic. No other named integer subtypes are recommended for package Standard.
Instead, appropriate named integer subtypes should be provided in the library package Interfaces (see B.2).

An implementation for a two's complement machine should support modular types with a binary modulus
up to System.Max_Int*2+2. An implementation should support a nonbinary modulus up to Integer'Last.

NOTES

30 Integer literals are of the anonymous predefined integer type universal integer. Other integer types have no literals.
However, the overload resolution rules (see 8.6, “The Context of Overload Resolution™) allow expressions of the type
universal_integer whenever an integer type is expected.

31 The same arithmetic operators are predefined for all signed integer types defined by a signed_integer_type_definition
(see 4.5, “Operators and Expression Evaluation”). For modular types, these same operators are predefined, plus bit-wise
logical operators (and, or, xor, and not). In addition, for the unsigned types declared in the language-defined package
Interfaces (see B.2), functions are defined that provide bit-wise shifting and rotating.

32 Modular types match a generic_formal_parameter_declaration of the form "type T is mod <>;"; signed integer types
match "type T is range <>;" (see 12.5.2).

Examples

Examples of integer types and subtypes:
type Page Num is range 1 .. 2_000;
type Line Size is range 1 .. Max Line Size;
subtype Small_ Int is Integer range -10 .. 10;
subtype Column Ptr is Line Size range 1 .. 10;
subtype Buffer Size is Integer range 0 .. Max;
type Byte is mod 256; -- an unsigned byte
type Hash Index is mod 97; -- modulusis prime
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3.5.5 Operations of Discrete Types

Static Semantics
For every discrete subtype S, the following attributes are defined:

S'Pos S'Pos denotes a function with the following specification:
function S'Pos (4rg : S'Base)
return universal_integer

This function returns the position number of the value of Arg, as a value of type
universal_integer.

S'Val S'Val denotes a function with the following specification:
function S'Val (4rg : universal integer)
return S'Base
This function returns a value of the type of S whose position number equals the value of
Arg. For the evaluation of a call on S'Val, if there is no value in the base range of its type
with the given position number, Constraint_Error is raised.

For every static discrete subtype S for which there exists at least one value belonging to S that satisfies any
predicate of S, the following attributes are defined:
S'First Valid
S'First_Valid denotes the smallest value that belongs to S and satisfies the predicate of S.
The value of this attribute is of the type of S.

S'Last_Valid
S'Last_Valid denotes the largest value that belongs to S and satisfies the predicate of S. The
value of this attribute is of the type of S.

First_Valid and Last Valid attribute_references are always static expressions. Any explicit predicate of S
can only have been specified by a Static_Predicate aspect.

Implementation Advice

For the evaluation of a call on S'Pos for an enumeration subtype, if the value of the operand does not
correspond to the internal code for any enumeration literal of its type (perhaps due to an uninitialized
variable), then the implementation should raise Program Error. This is particularly important for
enumeration types with noncontiguous internal codes specified by an enumeration_representation_-
clause.

NOTES
33 Indexing and loop iteration use values of discrete types.

34 The predefined operations of a discrete type include the assignment operation, qualification, the membership tests, and
the relational operators; for a boolean type they include the short-circuit control forms and the logical operators; for an
integer type they include type conversion to and from other numeric types, as well as the binary and unary adding
operators — and +, the multiplying operators, the unary operator abs, and the exponentiation operator. The assignment
operation is described in 5.2. The other predefined operations are described in Clause 4.

35 As for all types, objects of a discrete type have Size and Address attributes (see 13.3).

36 For a subtype of a discrete type, the result delivered by the attribute Val might not belong to the subtype; similarly, the
actual parameter of the attribute Pos need not belong to the subtype. The following relations are satisfied (in the absence
of an exception) by these attributes:

S'Val (S'Pos (X)) X
S'Pos (S'Val (N)) N
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Examples
Examples of attributes of discrete subtypes:
- - For the types and subtypes declared in subclause 3.5.1 the following hold:

-- Color'First = White, Color'Last = Black
-- Rainbow'First = Red, Rainbow'Last = Blue
-- Color'Succ(Blue) = Rainbow'Succ(Blue) = Brown
-- Color'Pos (Blue) = Rainbow'Pos (Blue) = 4

-- Color'val(0) = Rainbow'Val (0) = White

3.5.6 Real Types

Real types provide approximations to the real numbers, with relative bounds on errors for floating point
types, and with absolute bounds for fixed point types.

Syntax
real_type_definition ::=
floating_point_definition | fixed_point_definition

Static Semantics

A type defined by a real_type_definition is implicitly derived from root real, an anonymous predefined
(specific) real type. Hence, all real types, whether floating point or fixed point, are in the derivation class
rooted at root_real.

Real literals are all of the type universal real, the universal type (see 3.4.1) for the class rooted at
root_real, allowing their use with the operations of any real type. Certain multiplying operators have a
result type of universal fixed (see 4.5.5), the universal type for the class of fixed point types, allowing the
result of the multiplication or division to be used where any specific fixed point type is expected.

Dynamic Semantics
The elaboration of a real_type_definition consists of the elaboration of the floating_point_definition or the
fixed_point_definition.

Implementation Requirements

An implementation shall perform the run-time evaluation of a use of a predefined operator of root real
with an accuracy at least as great as that of any floating point type definable by a floating_point_definition.

Implementation Permissions

For the execution of a predefined operation of a real type, the implementation need not raise
Constraint_Error if the result is outside the base range of the type, so long as the correct result is produced,
or the Machine_Overflows attribute of the type is False (see G.2).

An implementation may provide nonstandard real types, descendants of root real that are declared
outside of the specification of package Standard, which need not have all the standard characteristics of a
type defined by a real_type_definition. For example, a nonstandard real type might have an asymmetric or
unsigned base range, or its predefined operations might wrap around or “saturate” rather than overflow
(modular or saturating arithmetic), or it might not conform to the accuracy model (see G.2). Any type
descended from a nonstandard real type is also nonstandard. An implementation may place arbitrary
restrictions on the use of such types; it is implementation defined whether operators that are predefined for
“any real type” are defined for a particular nonstandard real type. In any case, such types are not permitted
as explicit_generic_actual_parameters for formal scalar types — see 12.5.2.
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NOTES

37 As stated, real literals are of the anonymous predefined real type universal real. Other real types have no literals.
However, the overload resolution rules (see 8.6) allow expressions of the type universal_real whenever a real type is
expected.

3.5.7 Floating Point Types

For floating point types, the error bound is specified as a relative precision by giving the required
minimum number of significant decimal digits.

Syntax
floating_point_definition ::=
digits static_expression [real_range_specification]
real_range_specification ::=
range static_simple_expression .. static_simple_expression

Name Resolution Rules

The requested decimal precision, which is the minimum number of significant decimal digits required for
the floating point type, is specified by the value of the expression given after the reserved word digits.
This expression is expected to be of any integer type.

Each simple_expression of a real_range_specification is expected to be of any real type; the types need
not be the same.

Legality Rules

The requested decimal precision shall be specified by a static expression whose value is positive and no
greater than System.Max_Base Digits. Each simple_expression of a real_range_specification shall also
be static. If the real_range_specification is omitted, the requested decimal precision shall be no greater
than System.Max_Digits.

A floating_point_definition is illegal if the implementation does not support a floating point type that
satisfies the requested decimal precision and range.

Static Semantics

The set of values for a floating point type is the (infinite) set of rational numbers. The machine numbers of
a floating point type are the values of the type that can be represented exactly in every unconstrained
variable of the type. The base range (see 3.5) of a floating point type is symmetric around zero, except that
it can include some extra negative values in some implementations.

The base decimal precision of a floating point type is the number of decimal digits of precision
representable in objects of the type. The safe range of a floating point type is that part of its base range for
which the accuracy corresponding to the base decimal precision is preserved by all predefined operations.

A floating_point_definition defines a floating point type whose base decimal precision is no less than the
requested decimal precision. If a real_range_specification is given, the safe range of the floating point
type (and hence, also its base range) includes at least the values of the simple expressions given in the
real_range_specification. If a real_range_specification is not given, the safe (and base) range of the type
includes at least the values of the range —10.0**(4*D) .. +10.0**(4*D) where D is the requested decimal
precision. The safe range might include other values as well. The attributes Safe First and Safe Last give
the actual bounds of the safe range.
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A floating_point_definition also defines a first subtype of the type. If a real_range_specification is given,
then the subtype is constrained to a range whose bounds are given by a conversion of the values of the
simple_expressions of the real_range_specification to the type being defined. Otherwise, the subtype is
unconstrained.

There is a predefined, unconstrained, floating point subtype named Float, declared in the visible part of
package Standard.

Dynamic Semantics

The elaboration of a floating_point_definition creates the floating point type and its first subtype.

Implementation Requirements

In an implementation that supports floating point types with 6 or more digits of precision, the requested
decimal precision for Float shall be at least 6.

If Long_Float is predefined for an implementation, then its requested decimal precision shall be at least
11.

Implementation Permissions

An implementation is allowed to provide additional predefined floating point types, declared in the visible
part of Standard, whose (unconstrained) first subtypes have names of the form Short Float, Long_ Float,
Short_Short Float, Long_Long_Float, etc. Different predefined floating point types are allowed to have
the same base decimal precision. However, the precision of Float should be no greater than that of
Long_ Float. Similarly, the precision of Short Float (if provided) should be no greater than Float.
Corresponding recommendations apply to any other predefined floating point types. There need not be a
named floating point type corresponding to each distinct base decimal precision supported by an
implementation.

Implementation Advice
An implementation should support Long_Float in addition to Float if the target machine supports 11 or
more digits of precision. No other named floating point subtypes are recommended for package Standard.
Instead, appropriate named floating point subtypes should be provided in the library package Interfaces
(see B.2).

NOTES
38 If a floating point subtype is unconstrained, then assignments to variables of the subtype involve only
Overflow_Checks, never Range Checks.

Examples
Examples of floating point types and subtypes:

type Coefficient is digits 10 range -1.0 .. 1.0;

type Real is digits 8;
type Mass is digits 7 range 0.0 .. 1.0E35;

subtype Probability is Real range 0.0 .. 1.0; - - a subtype with a smaller range
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3.5.8 Operations of Floating Point Types

Static Semantics
The following attribute is defined for every floating point subtype S:

S'Digits S'Digits denotes the requested decimal precision for the subtype S. The value of this
attribute is of the type universal integer. The requested decimal precision of the base
subtype of a floating point type 7 is defined to be the largest value of d for which
ceiling(d * log(10) / log(T'Machine Radix)) + g <= T'Model Mantissa
where g is 0 if Machine Radix is a positive power of 10 and 1 otherwise.

NOTES

39 The predefined operations of a floating point type include the assignment operation, qualification, the membership
tests, and explicit conversion to and from other numeric types. They also include the relational operators and the following
predefined arithmetic operators: the binary and unary adding operators — and +, certain multiplying operators, the unary
operator abs, and the exponentiation operator.

40 As for all types, objects of a floating point type have Size and Address attributes (see 13.3). Other attributes of floating
point types are defined in A.5.3.

3.5.9 Fixed Point Types

A fixed point type is either an ordinary fixed point type, or a decimal fixed point type. The error bound of
a fixed point type is specified as an absolute value, called the delta of the fixed point type.

Syntax

fixed_point_definition ::= ordinary_fixed_point_definition | decimal_fixed_point_definition
ordinary_fixed_point_definition ::=

delta static_expression real_range_specification
decimal_fixed_point_definition ::=

delta static_expression digits static_expression [real_range_specification]
digits_constraint ::=

digits static_expression [range_constraint]

Name Resolution Rules

For a type defined by a fixed_point_definition, the delta of the type is specified by the value of the
expression given after the reserved word delta; this expression is expected to be of any real type. For a
type defined by a decimal_fixed_point_definition (a decimal fixed point type), the number of significant
decimal digits for its first subtype (the digits of the first subtype) is specified by the expression given after
the reserved word digits; this expression is expected to be of any integer type.

Legality Rules

In a fixed_point_definition or digits_constraint, the expressions given after the reserved words delta and
digits shall be static; their values shall be positive.

The set of values of a fixed point type comprise the integral multiples of a number called the small of the
type. The machine numbers of a fixed point type are the values of the type that can be represented exactly
in every unconstrained variable of the type. For a type defined by an ordinary_fixed_point_definition (an
ordinary fixed point type), the small may be specified by an attribute_definition_clause (see 13.3); if so
specified, it shall be no greater than the delta of the type. If not specified, the small of an ordinary fixed
point type is an implementation-defined power of two less than or equal to the delta.
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For a decimal fixed point type, the small equals the delta; the delta shall be a power of 10. If a
real_range_specification is given, both bounds of the range shall be in the range —(10**digits—1)*delta ..
+(10**digits—1)*delta.

A fixed_point_definition is illegal if the implementation does not support a fixed point type with the given
small and specified range or digits.

For a subtype_indication with a digits_constraint, the subtype_mark shall denote a decimal fixed point
subtype.

Static Semantics

The base range (see 3.5) of a fixed point type is symmetric around zero, except possibly for an extra
negative value in some implementations.

An ordinary_fixed_point_definition defines an ordinary fixed point type whose base range includes at least
all multiples of small that are between the bounds specified in the real_range_specification. The base
range of the type does not necessarily include the specified bounds themselves. An ordinary_fixed_point_-
definition also defines a constrained first subtype of the type, with each bound of its range given by the
closer to zero of:

e the value of the conversion to the fixed point type of the corresponding expression of the
real_range_specification;

e the corresponding bound of the base range.

A decimal_fixed_point_definition defines a decimal fixed point type whose base range includes at least
the range —(10**digits—1)*delta .. +(10**digits—1)*delta. A decimal_fixed_point_definition also defines a
constrained first subtype of the type. If a real_range_specification is given, the bounds of the first subtype
are given by a conversion of the values of the expressions of the real_range_specification. Otherwise, the
range of the first subtype is —(10**digits—1)*delta .. +(10**digits—1)*delta.

Dynamic Semantics

The elaboration of a fixed_point_definition creates the fixed point type and its first subtype.

For a digits_constraint on a decimal fixed point subtype with a given delta, if it does not have a
range_constraint, then it specifies an implicit range —(10**D-1)*delta .. +(10**D-1)*delta, where D is
the value of the expression. A digits_constraint is compatible with a decimal fixed point subtype if the
value of the expression is no greater than the digits of the subtype, and if it specifies (explicitly or
implicitly) a range that is compatible with the subtype.

The elaboration of a digits_constraint consists of the elaboration of the range_constraint, if any. If a
range_constraint is given, a check is made that the bounds of the range are both in the range —(10**D-
D*delta .. +(10**D-1)*delta, where D is the value of the (static) expression given after the reserved
word digits. If this check fails, Constraint Error is raised.

Implementation Requirements

The implementation shall support at least 24 bits of precision (including the sign bit) for fixed point types.

Implementation Permissions
Implementations are permitted to support only smalls that are a power of two. In particular, all decimal
fixed point type declarations can be disallowed. Note however that conformance with the Information
Systems Annex requires support for decimal smalls, and decimal fixed point type declarations with digits
up to at least 18.
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41 The base range of an ordinary fixed point type need not include the specified bounds themselves so that the range
specification can be given in a natural way, such as:

type Fraction is delta 2.0**(-15) range -1.0 .. 1.0;

With 2's complement hardware, such a type could have a signed 16-bit representation, using 1 bit for the sign and 15 bits
for fraction, resulting in a base range of —1.0 .. 1.0-2.0%*(-15).

Examples

Examples of fixed point types and subtypes:

type

Volt is delta 0.125 range 0.0 .. 255.0;

- - A pure fraction which requires all the available

type

type

space in a word can be declared as the type Fraction:
Fraction is delta System.Fine Delta range -1.0 .. 1.0;
Fraction'Last = 1.0 — System.Fine_Delta

Money is delta 0.01 digits 15; -- decimal fixed point

subtype Salary is Money digits 10;
-- Money'Last = 10.0%*13 — 0.01, Salary'Last = 10.0**8 — 0.01

3.5.10 Operations of Fixed Point Types

Static Semantics

The following attributes are defined for every fixed point subtype S:

S'Small

S'Delta

S'Fore

S'Aft

S'Small denotes the small of the type of S. The value of this attribute is of the type
universal_real. Small may be specified for nonderived ordinary fixed point types via an
attribute_definition_clause (see 13.3); the expression of such a clause shall be static.

S'Delta denotes the delta of the fixed point subtype S. The value of this attribute is of the
type universal_real.

S'Fore yields the minimum number of characters needed before the decimal point for the
decimal representation of any value of the subtype S, assuming that the representation does
not include an exponent, but includes a one-character prefix that is either a minus sign or a
space. (This minimum number does not include superfluous zeros or underlines, and is at
least 2.) The value of this attribute is of the type universal integer.

S'Aft yields the number of decimal digits needed after the decimal point to accommodate
the delta of the subtype S, unless the delta of the subtype S is greater than 0.1, in which
case the attribute yields the value one. (S'Aft is the smallest positive integer N for which
(10**N)*S'Delta is greater than or equal to one.) The value of this attribute is of the type
universal_integer.

The following additional attributes are defined for every decimal fixed point subtype S:

S'Digits

S'Digits denotes the digits of the decimal fixed point subtype S, which corresponds to the
number of decimal digits that are representable in objects of the subtype. The value of this
attribute is of the type universal_integer. Its value is determined as follows:

e For a first subtype or a subtype defined by a subtype_indication with a
digits_constraint, the digits is the value of the expression given after the reserved
word digits;

e For a subtype defined by a subtype_indication without a digits_constraint, the
digits of the subtype is the same as that of the subtype denoted by the
subtype_mark in the subtype_indication.
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o The digits of a base subtype is the largest integer D such that the range —(10**D—
D)*delta .. +(10¥*D—1)*delta is included in the base range of the type.

S'Scale S'Scale denotes the scale of the subtype S, defined as the value N such that S'Delta =
10.0**(-N). The scale indicates the position of the point relative to the rightmost significant
digits of values of subtype S. The value of this attribute is of the type universal_integer.

S'Round S'Round denotes a function with the following specification:
function S'Round (X : universal real)
return S'Base
The function returns the value obtained by rounding X (away from 0, if X is midway
between two values of the type of S).
NOTES

42 All subtypes of a fixed point type will have the same value for the Delta attribute, in the absence of delta_constraints
(see J.3).

43 S'Scale is not always the same as S'Aft for a decimal subtype; for example, if S'Delta = 1.0 then S'Aft is 1 while
S'Scale is 0.

44 The predefined operations of a fixed point type include the assignment operation, qualification, the membership tests,
and explicit conversion to and from other numeric types. They also include the relational operators and the following
predefined arithmetic operators: the binary and unary adding operators — and +, multiplying operators, and the unary
operator abs.

45 As for all types, objects of a fixed point type have Size and Address attributes (see 13.3). Other attributes of fixed
point types are defined in A.5.4.

3.6 Array Types

An array object is a composite object consisting of components which all have the same subtype. The
name for a component of an array uses one or more index values belonging to specified discrete types. The
value of an array object is a composite value consisting of the values of the components.

Syntax
array_type_definition ::=
unconstrained_array_definition | constrained_array_definition

unconstrained_array_definition ::=
array(index_subtype_definition {, index_subtype_definition}) of component_definition

index_subtype_definition ::= subtype_mark range <>
constrained_array_definition ::=
array (discrete_subtype_definition {, discrete_subtype_definition}) of component_definition
discrete_subtype_definition ::= discrete_subtype_indication | range
component_definition ::=
[aliased] subtype_indication
| [aliased] access_definition

Name Resolution Rules

For a discrete_subtype_definition that is a range, the range shall resolve to be of some specific discrete
type; which discrete type shall be determined without using any context other than the bounds of the range
itself (plus the preference for root_integer — see 8.6).
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Legality Rules

Each index_subtype_definition or discrete_subtype_definition in an array_type_definition defines an
index subtype; its type (the index type) shall be discrete.

The subtype defined by the subtype_indication of a component_definition (the component subtype) shall
be a definite subtype.

This paragraph was deleted.

Static Semantics

An array is characterized by the number of indices (the dimensionality of the array), the type and position
of each index, the lower and upper bounds for each index, and the subtype of the components. The order
of the indices is significant.

A one-dimensional array has a distinct component for each possible index value. A multidimensional array
has a distinct component for each possible sequence of index values that can be formed by selecting one
value for each index position (in the given order). The possible values for a given index are all the values
between the lower and upper bounds, inclusive; this range of values is called the index range. The bounds
of an array are the bounds of its index ranges. The length of a dimension of an array is the number of
values of the index range of the dimension (zero for a null range). The length of a one-dimensional array is
the length of its only dimension.

An array_type_definition defines an array type and its first subtype. For each object of this array type, the
number of indices, the type and position of each index, and the subtype of the components are as in the
type definition; the values of the lower and upper bounds for each index belong to the corresponding index
subtype of its type, except for null arrays (see 3.6.1).

An unconstrained_array_definition defines an array type with an unconstrained first subtype. Each
index_subtype_definition defines the corresponding index subtype to be the subtype denoted by the
subtype_mark. The compound delimiter <> (called a box) of an index_subtype_definition stands for an
undefined range (different objects of the type need not have the same bounds).

A constrained_array_definition defines an array type with a constrained first subtype. Each discrete_-
subtype_definition defines the corresponding index subtype, as well as the corresponding index range for
the constrained first subtype. The constraint of the first subtype consists of the bounds of the index ranges.

The discrete subtype defined by a discrete_subtype_definition is either that defined by the subtype_-
indication, or a subtype determined by the range as follows:
o [If the type of the range resolves to root_integer, then the discrete_subtype_definition defines a

subtype of the predefined type Integer with bounds given by a conversion to Integer of the
bounds of the range;

e Otherwise, the discrete_subtype_definition defines a subtype of the type of the range, with the
bounds given by the range.

The component_definition of an array_type_definition defines the nominal subtype of the components. If
the reserved word aliased appears in the component_definition, then each component of the array is
aliased (see 3.10).

Dynamic Semantics

The elaboration of an array_type_definition creates the array type and its first subtype, and consists of the
claboration of any discrete_subtype_definitions and the component_definition.
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The elaboration of a discrete_subtype_definition that does not contain any per-object expressions creates
the discrete subtype, and consists of the elaboration of the subtype_indication or the evaluation of the
range. The elaboration of a discrete_subtype_definition that contains one or more per-object expressions
is defined in 3.8. The elaboration of a component_definition in an array_type_definition consists of the
elaboration of the subtype_indication or access_definition. The elaboration of any discrete_subtype_-
definitions and the elaboration of the component_definition are performed in an arbitrary order.

Static Semantics
For an array type with a scalar component type, the following language-defined representation aspect may
be specified with an aspect_specification (see 13.1.1):

Default Component Value
This aspect shall be specified by a static expression, and that expression shall be explicit,
even if the aspect has a boolean type. Default Component Value shall be specified only on
a full_type_declaration.

If a derived type with no primitive subprograms inherits a boolean Default Component Value aspect, the
aspect may be specified to have any value for the derived type.

Name Resolution Rules
The expected type for the expression specified for the Default Component Value aspect is the
component type of the array type defined by the full_type_declaration on which it appears.

NOTES
46 All components of an array have the same subtype. In particular, for an array of components that are one-dimensional
arrays, this means that all components have the same bounds and hence the same length.

47 Each elaboration of an array_type_definition creates a distinct array type. A consequence of this is that each object
whose object_declaration contains an array_type_definition is of its own unique type.
Examples

Examples of type declarations with unconstrained array definitions:

type Vector is array(Integer range <>) of Real;

type Matrix is array(Integer range <>, Integer range <>) of Real;
type Bit_ Vector is array(Integer range <>) of Boolean;

type Roman is array(Positive range <>) of Roman Digit; --see3.5.2

Examples of type declarations with constrained array definitions:

type Table is array(l .. 10) of Integer;
type Schedule is array(Day) of Boolean;
type Line is array(l .. Max_Line Size) of Character;

Examples of object declarations with array type definitions:

Grid : array(l .. 80, 1 .. 100) of Boolean;
Mix : array (Color range Red .. Green) of Boolean;
Msg Table : constant array (Error Code) of access constant String :=
(Too_Big => new String' ("Result too big"), Too Small => ...);
Page : array(Positive range <>) of Line := -- anarrayofarrays
(1 | 50 => Line'(1 Line'Last => '+', others => '-'), --see4.33
2 .. 49 => Line' (1 Line'Last => '\', others => ' '));

- - Page is constrained by its initial value to (1..50)
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3.6.1 Index Constraints and Discrete Ranges

An index_constraint determines the range of possible values for every index of an array subtype, and
thereby the corresponding array bounds.

Syntax
index_constraint ::= (discrete_range {, discrete_range})

discrete_range ::= discrete_subtype_indication | range

Name Resolution Rules

The type of a discrete_range is the type of the subtype defined by the subtype_indication, or the type of
the range. For an index_constraint, each discrete_range shall resolve to be of the type of the
corresponding index.

Legality Rules

An index_constraint shall appear only in a subtype_indication whose subtype_mark denotes either an
unconstrained array subtype, or an unconstrained access subtype whose designated subtype is an
unconstrained array subtype; in either case, the index_constraint shall provide a discrete_range for each
index of the array type.

Static Semantics

A discrete_range defines a range whose bounds are given by the range, or by the range of the subtype
defined by the subtype_indication.

Dynamic Semantics

An index_constraint is compatible with an unconstrained array subtype if and only if the index range
defined by each discrete_range is compatible (see 3.5) with the corresponding index subtype. If any of
the discrete_ranges defines a null range, any array thus constrained is a null array, having no
components. An array value satisfies an index_constraint if at each index position the array value and the
index_constraint have the same index bounds.

The elaboration of an index_constraint consists of the evaluation of the discrete_range(s), in an arbitrary
order. The evaluation of a discrete_range consists of the elaboration of the subtype_indication or the
evaluation of the range.

NOTES
48 The elaboration of a subtype_indication consisting of a subtype_mark followed by an index_constraint checks the
compatibility of the index_constraint with the subtype_mark (see 3.2.2).

49 Even if an array value does not satisfy the index constraint of an array subtype, Constraint_Error is not raised on
conversion to the array subtype, so long as the length of each dimension of the array value and the array subtype match.
See 4.6.

Examples

Examples of array declarations including an index constraint:

Board : Matrix(1 .. 8, 1 .. 8); -- seel6
Rectangle : Matrix(1 .. 20, 1 .. 30);

Inverse : Matrix(1 .. N, 1 N); -- N need not be static
Filter : Bit Vector (0 .. 31);
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Example of array declaration with a constrained array subtype:

My Schedule : Schedule; -- all arrays of type Schedule have the same bounds

Example of record type with a component that is an array:

type Var Line(Length : Natural) is
record
Image : String(l .. Length);
end record;

Null Line : Var Line(0); -- Null Line.Image is a null array

3.6.2 Operations of Array Types

Legality Rules

The argument N used in the attribute_designators for the N-th dimension of an array shall be a static
expression of some integer type. The value of N shall be positive (nonzero) and no greater than the
dimensionality of the array.

Static Semantics

The following attributes are defined for a prefix A that is of an array type (after any implicit dereference),
or denotes a constrained array subtype:

A'First A'First denotes the lower bound of the first index range; its type is the corresponding index
type.

A'First(N) A'First(N) denotes the lower bound of the N-th index range; its type is the corresponding
index type.

A'Last A'Last denotes the upper bound of the first index range; its type is the corresponding index
type.

A'Last(N) A'Last(N) denotes the upper bound of the N-th index range; its type is the corresponding
index type.

A'Range A'Range is equivalent to the range A'First .. A'Last, except that the prefix A is only

evaluated once.

A'Range(N) A'Range(N) is equivalent to the range A'First(N) .. A'Last(N), except that the prefix A is
only evaluated once.

A'Length A'Length denotes the number of values of the first index range (zero for a null range); its
type is universal_integer-.

A'Length(N) A'Length(N) denotes the number of values of the N-th index range (zero for a null range);
its type is universal_integer.

Implementation Advice

An implementation should normally represent multidimensional arrays in row-major order, consistent with
the notation used for multidimensional array aggregates (see 4.3.3). However, if convention Fortran is
specified for a multidimensional array type, then column-major order should be used instead (see B.S,
“Interfacing with Fortran”).

NOTES

50 The attribute_references A'First and A'First(1) denote the same value. A similar relation exists for the
attribute_references A'Last, A'Range, and A'Length. The following relation is satisfied (except for a null array) by the
above attributes if the index type is an integer type:

A'Length(N) = A'Last(N) - A'First(N) + 1
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51 An array type is limited if its component type is limited (see 7.5).

52 The predefined operations of an array type include the membership tests, qualification, and explicit conversion. If the
array type is not limited, they also include assignment and the predefined equality operators. For a one-dimensional array
type, they include the predefined concatenation operators (if nonlimited) and, if the component type is discrete, the
predefined relational operators; if the component type is boolean, the predefined logical operators are also included.

53 A component of an array can be named with an indexed_component. A value of an array type can be specified with an
array_aggregate. For a one-dimensional array type, a slice of the array can be named; also, string literals are defined if the
component type is a character type.

Examples

Examples (using arrays declared in the examples of subclause 3.6.1):

0 Filter'Last
20 Rectangle'Last (2)

31 Filter'Length = 32
30

-- Filter'First
-- Rectangle'Last (1)

3.6.3 String Types

Static Semantics

A one-dimensional array type whose component type is a character type is called a string type.

There are three predefined string types, String, Wide String, and Wide Wide String, each indexed by
values of the predefined subtype Positive; these are declared in the visible part of package Standard:
subtype Positive is Integer range 1 .. Integer'lLast;
type String is array(Positive range <>) of Character;

type Wide String is array(Positive range <>) of Wide_ Character;
type Wide Wide String is array(Positive range <>) of Wide Wide_ Character;

NOTES

54 String literals (see 2.6 and 4.2) are defined for all string types. The concatenation operator & is predefined for string
types, as for all nonlimited one-dimensional array types. The ordering operators <, <=, >, and >= are predefined for string
types, as for all one-dimensional discrete array types; these ordering operators correspond to lexicographic order (see

4.5.2).
Examples
Examples of string objects:

Stars : String(l .. 120) := (1 .. 120 => '*' );

Question : constant String = "How many characters?";
- - Question'First = 1, Question'Last = 20
- - Question'Length = 20 (the number of

characters)

Ask Twice : String := Question & Question; - - constrained to (1..40)

Ninety Six : constant Roman := "XCVI"; --seel.5.2and3.6
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3.7 Discriminants

A composite type (other than an array or interface type) can have discriminants, which parameterize the
type. A known_discriminant_part specifies the discriminants of a composite type. A discriminant of an
object is a component of the object, and is either of a discrete type or an access type. An
unknown_discriminant_part in the declaration of a view of a type specifies that the discriminants of the
type are unknown for the given view; all subtypes of such a view are indefinite subtypes.

Syntax

discriminant_part ::= unknown_discriminant_part | known_discriminant_part
unknown_discriminant_part ::= (<>)
known_discriminant_part ::=

(discriminant_specification {; discriminant_specification})
discriminant_specification ::=

defining_identifier_list : [null_exclusion] subtype_mark [:= default_expression]
| defining_identifier_list : access_definition [:= default_expression]
default_expression ::= expression

Name Resolution Rules

The expected type for the default_expression of a discriminant_specification is that of the corresponding
discriminant.

Legality Rules

A discriminant_part is only permitted in a declaration for a composite type that is not an array or interface
type (this includes generic formal types). A type declared with a known_discriminant_part is called a
discriminated type, as is a type that inherits (known) discriminants.

The subtype of a discriminant may be defined by an optional null_exclusion and a subtype mark, in
which case the subtype_mark shall denote a discrete or access subtype, or it may be defined by an
access_definition. A discriminant that is defined by an access_definition is called an access discriminant
and is of an anonymous access type.

Default_expressions shall be provided either for all or for none of the discriminants of a known_-
discriminant_part. No default_expressions are permitted in a known_discriminant_part in a declaration
of a nonlimited tagged type or a generic formal type.

A discriminant_specification for an access discriminant may have a default_expression only in the
declaration for an immutably limited type (see 7.5). In addition to the places where Legality Rules
normally apply (see 12.3), this rule applies also in the private part of an instance of a generic unit.

This paragraph was deleted.

For a type defined by a derived_type_definition, if a known_discriminant_part is provided in its
declaration, then:

e The parent subtype shall be constrained;

e If the parent type is not a tagged type, then each discriminant of the derived type shall be used in
the constraint defining the parent subtype;
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e I[f a discriminant is used in the constraint defining the parent subtype, the subtype of the
discriminant shall be statically compatible (see 4.9.1) with the subtype of the corresponding
parent discriminant.

This paragraph was deleted.

Static Semantics

A discriminant_specification declares a discriminant; the subtype_mark denotes its subtype unless it is an
access discriminant, in which case the discriminant's subtype is the anonymous access-to-variable subtype
defined by the access_definition.

For a type defined by a derived_type_definition, each discriminant of the parent type is either inherited,
constrained to equal some new discriminant of the derived type, or constrained to the value of an
expression. When inherited or constrained to equal some new discriminant, the parent discriminant and the
discriminant of the derived type are said to correspond. Two discriminants also correspond if there is some
common discriminant to which they both correspond. A discriminant corresponds to itself as well. If a
discriminant of a parent type is constrained to a specific value by a derived_type_definition, then that
discriminant is said to be specified by that derived_type_definition.

A constraint that appears within the definition of a discriminated type depends on a discriminant of the
type if it names the discriminant as a bound or discriminant value. A component_definition depends on a
discriminant if its constraint depends on the discriminant, or on a discriminant that corresponds to it.

A component depends on a discriminant if:
e Its component_definition depends on the discriminant; or
e [tis declared in a variant_part that is governed by the discriminant; or

e [t is a component inherited as part of a derived_type_definition, and the constraint of the
parent_subtype_indication depends on the discriminant; or

e [tis a subcomponent of a component that depends on the discriminant.

Each value of a discriminated type includes a value for each component of the type that does not depend
on a discriminant; this includes the discriminants themselves. The values of discriminants determine which
other component values are present in the value of the discriminated type.

A type declared with a known_discriminant_part is said to have known discriminants; its first subtype is
unconstrained. A type declared with an unknown_discriminant_part is said to have wumnknown
discriminants. A type declared without a discriminant_part has no discriminants, unless it is a derived
type; if derived, such a type has the same sort of discriminants (known, unknown, or none) as its parent (or
ancestor) type. A tagged class-wide type also has unknown discriminants. Any subtype of a type with
unknown discriminants is an unconstrained and indefinite subtype (see 3.2 and 3.3).

Dynamic Semantics

For an access discriminant, its access_definition is elaborated when the value of the access discriminant is
defined: by evaluation of its default_expression, by elaboration of a discriminant_constraint, or by an
assignment that initializes the enclosing object.

NOTES

55 If a discriminated type has default_expressions for its discriminants, then unconstrained variables of the type are
permitted, and the values of the discriminants can be changed by an assignment to such a variable. If defaults are not
provided for the discriminants, then all variables of the type are constrained, either by explicit constraint or by their initial
value; the values of the discriminants of such a variable cannot be changed after initialization.
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29 56 The default_expression for a discriminant of a type is evaluated when an object of an unconstrained subtype of the
type is created.

30 57 Assignment to a discriminant of an object (after its initialization) is not allowed, since the name of a discriminant is a
constant; neither assignment_statements nor assignments inherent in passing as an in out or out parameter are allowed.
Note however that the value of a discriminant can be changed by assigning to the enclosing object, presuming it is an
unconstrained variable.

31 58 A discriminant that is of a named access type is not called an access discriminant; that term is used only for
discriminants defined by an access_definition.

Examples
32 Examples of discriminated types:
33 type Buffer(Size : Buffer Size := 100) is --see3.54
record
Pos : Buffer Size := 0;
Value : String(l .. Size);
end record;
34 type Matrix Rec(Rows, Columns : Integer) is
record
Mat : Matrix(l .. Rows, 1 .. Columns) ; --see 3.6
end record;
35 type Square (Side : Integer) is new
Matrix Rec(Rows => Side, Columns => Side) ;
36 type Double Square (Number : Integer) is
record
Left : Square (Number)

Right : Square (Number) ;
end record;

37/3 task type Worker (Prio : System.Priority; Buf : access Buffer)
with Priority => Prio is --seeD.]
- - discriminants used to parameterize the task type (see 9.1)
entry Fill;

entry Drain;
end Worker;

3.7.1 Discriminant Constraints

1 A discriminant_constraint specifies the values of the discriminants for a given discriminated type.

Syntax
2 discriminant_constraint ::=
(discriminant_association {, discriminant_association})
3 discriminant_association ::=
[discriminant_selector_name {| discriminant_selector_name} =>] expression

4 A discriminant_association is said to be named if it has one or more discriminant_selector_names;
it is otherwise said to be positional. In a discriminant_constraint, any positional associations shall
precede any named associations.

Name Resolution Rules

5 Each selector_name of a named discriminant_association shall resolve to denote a discriminant of the
subtype being constrained; the discriminants so named are the associated discriminants of the named
association. For a positional association, the associated discriminant is the one whose discriminant_-
specification occurred in the corresponding position in the known_discriminant_part that defined the
discriminants of the subtype being constrained.
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The expected type for the expression in a discriminant_association is that of the associated
discriminant(s).

Legality Rules
A discriminant_constraint is only allowed in a subtype_indication whose subtype_mark denotes either an
unconstrained discriminated subtype, or an unconstrained access subtype whose designated subtype is an
unconstrained discriminated subtype. However, in the case of an access subtype, a discriminant_constraint
is legal only if any dereference of a value of the access type is known to be constrained (see 3.3). In
addition to the places where Legality Rules normally apply (see 12.3), these rules apply also in the private
part of an instance of a generic unit.

A named discriminant_association with more than one selector_name is allowed only if the named
discriminants are all of the same type. A discriminant_constraint shall provide exactly one value for each
discriminant of the subtype being constrained.

This paragraph was deleted.

Dynamic Semantics
A discriminant_constraint is compatible with an unconstrained discriminated subtype if each discriminant
value belongs to the subtype of the corresponding discriminant.

A composite value satisfies a discriminant constraint if and only if each discriminant of the composite
value has the value imposed by the discriminant constraint.

For the elaboration of a discriminant_constraint, the expressions in the discriminant_associations are
evaluated in an arbitrary order and converted to the type of the associated discriminant (which might raise
Constraint Error — see 4.6); the expression of a named association is evaluated (and converted) once for
each associated discriminant. The result of each evaluation and conversion is the value imposed by the
constraint for the associated discriminant.

NOTES
59 The rules of the language ensure that a discriminant of an object always has a value, either from explicit or implicit
initialization.

Examples

Examples (using types declared above in subclause 3.7):

Large : Buffer(200); -- constrained, always 200 characters
- - (explicit discriminant value)
Message : Buffer; - - unconstrained, initially 100 characters
-~ (default discriminant value)
Basis : Square (5) ; - - constrained, always 5 by 5
Illegal : Square; - - illegal, a Square has to be constrained

3.7.2 Operations of Discriminated Types

If a discriminated type has default_expressions for its discriminants, then unconstrained variables of the
type are permitted, and the discriminants of such a variable can be changed by assignment to the variable.
For a formal parameter of such a type, an attribute is provided to determine whether the corresponding
actual parameter is constrained or unconstrained.
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Static Semantics

For a prefix A that is of a discriminated type (after any implicit dereference), the following attribute is
defined:

A'Constrained
Yields the value True if A denotes a constant, a value, a tagged object, or a constrained
variable, and False otherwise.

Erroneous Execution

The execution of a construct is erroneous if the construct has a constituent that is a name denoting a
subcomponent that depends on discriminants, and the value of any of these discriminants is changed by
this execution between evaluating the name and the last use (within this execution) of the subcomponent
denoted by the name.

3.8 Record Types

A record object is a composite object consisting of named components. The value of a record object is a
composite value consisting of the values of the components.

Syntax
record_type_definition ::= [[abstract] tagged] [limited] record_definition
record_definition ::=

record
component_list
end record
| null record
component_list ::=
component_item {component_item}
| {component_item} variant_part
| null;
component_item ::= component_declaration | aspect_clause
component_declaration ::=
defining_identifier_list : component_definition [:= default_expression]
[aspect_specification];

Name Resolution Rules

The expected type for the default_expression, if any, in a component_declaration is the type of the
component.

Legality Rules
This paragraph was deleted.
Each component_declaration declares a component of the record type. Besides components declared by
component_declarations, the components of a record type include any components declared by

discriminant_specifications of the record type declaration. The identifiers of all components of a record
type shall be distinct.

Within a type_declaration, a name that denotes a component, protected subprogram, or entry of the type
is allowed only in the following cases:
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e A name that denotes any component, protected subprogram, or entry is allowed within an
aspect_specification, an operational item, or a representation item that occurs within the
declaration of the composite type.

e A name that denotes a noninherited discriminant is allowed within the declaration of the type,
but not within the discriminant_part. If the discriminant is used to define the constraint of a
component, the bounds of an entry family, or the constraint of the parent subtype in a
derived_type_definition, then its name shall appear alone as a direct_name (not as part of a
larger expression or expanded name). A discriminant shall not be used to define the constraint of
a scalar component.

If the name of the current instance of a type (see 8.6) is used to define the constraint of a component, then
it shall appear as a direct_name that is the prefix of an attribute_reference whose result is of an access
type, and the attribute_reference shall appear alone.

Static Semantics

If a record_type_definition includes the reserved word limited, the type is called an explicitly limited
record type.

The component_definition of a component_declaration defines the (nominal) subtype of the component.
If the reserved word aliased appears in the component_definition, then the component is aliased (see
3.10).

If the component_list of a record type is defined by the reserved word null and there are no discriminants,
then the record type has no components and all records of the type are null records. A record_definition of
null record is equivalent to record null; end record.

Dynamic Semantics

The elaboration of a record_type_definition creates the record type and its first subtype, and consists of
the elaboration of the record_definition. The elaboration of a record_definition consists of the elaboration
of its component_list, if any.

The elaboration of a component_list consists of the elaboration of the component_items and variant_part,
if any, in the order in which they appear. The elaboration of a component_declaration consists of the
elaboration of the component_definition.

Within the definition of a composite type, if a component_definition or discrete_subtype_definition (see
9.5.2) includes a name that denotes a discriminant of the type, or that is an attribute_reference whose
prefix denotes the current instance of the type, the expression containing the name is called a per-object
expression, and the constraint or range being defined is called a per-object constraint. For the elaboration
of a component_definition of a component_declaration or the discrete_subtype_definition of an entry_-
declaration for an entry family (see 9.5.2), if the component subtype is defined by an access_definition or
if the constraint or range of the subtype_indication or discrete_subtype_definition is not a per-object
constraint, then the access_definition, subtype_indication, or discrete_subtype_definition is elaborated.
On the other hand, if the constraint or range is a per-object constraint, then the elaboration consists of the
evaluation of any included expression that is not part of a per-object expression. Each such expression is
evaluated once unless it is part of a named association in a discriminant constraint, in which case it is
evaluated once for each associated discriminant.

When a per-object constraint is elaborated (as part of creating an object), each per-object expression of the
constraint is evaluated. For other expressions, the values determined during the elaboration of the
component_definition or entry_declaration are used. Any checks associated with the enclosing
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subtype_indication or discrete_subtype_definition are performed, including the subtype compatibility
check (see 3.2.2), and the associated subtype is created.

NOTES
60 A component_declaration with several identifiers is equivalent to a sequence of single component_declarations, as
explained in 3.3.1.

61 The default_expression of a record component is only evaluated upon the creation of a default-initialized object of the
record type (presuming the object has the component, if it is in a variant_part — see 3.3.1).

62 The subtype defined by a component_definition (see 3.6) has to be a definite subtype.
63 If arecord type does not have a variant_part, then the same components are present in all values of the type.

64 A record type is limited if it has the reserved word limited in its definition, or if any of its components are limited (see
7.5).

65 The predefined operations of a record type include membership tests, qualification, and explicit conversion. If the
record type is nonlimited, they also include assignment and the predefined equality operators.

66 A component of a record can be named with a selected_component. A value of a record can be specified with a
record_aggregate.

Examples
Examples of record type declarations:
type Date is
record
Day : Integer range 1 .. 31;
Month : Month Name;
Year : Integer range 0 .. 4000;

end record;

type Complex is

record
Re : Real := 0.0;
Im : Real := 0.0;

end record;

Examples of record variables:

Tomorrow, Yesterday : Date;
A, B, C : Complex;

- - both components of A, B, and C are implicitly initialized to zero

3.8.1 Variant Parts and Discrete Choices

A record type with a variant_part specifies alternative lists of components. Each variant defines the
components for the value or values of the discriminant covered by its discrete_choice_list.

Syntax
variant_part ::=
case discriminant_direct_name is
variant
{variant}
end case;

variant ::=
when discrete_choice_list =>
component_list

discrete_choice_list ::= discrete_choice {| discrete_choice}
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discrete_choice ::= choice_expression | discrete_subtype_indication | range | others

Name Resolution Rules

The discriminant direct_name shall resolve to denote a discriminant (called the discriminant of the
variant_part) specified in the known_discriminant_part of the full_type_declaration that contains the
variant_part. The expected type for each discrete_choice in a variant is the type of the discriminant of the
variant_part.

Legality Rules
The discriminant of the variant_part shall be of a discrete type.
The choice_expressions, subtype_indications, and ranges given as discrete_choices in a variant_part
shall be static. The discrete_choice others shall appear alone in a discrete_choice_list, and such a
discrete_choice_list, if it appears, shall be the last one in the enclosing construct.
A discrete_choice is defined to cover a value in the following cases:

e A discrete_choice that is a choice_expression covers a value if the value equals the value of
the choice_expression converted to the expected type.

e A discrete_choice that is a subtype_indication covers all values (possibly none) that belong to
the subtype and that satisfy the static predicate of the subtype (see 3.2.4).

e A discrete_choice that is a range covers all values (possibly none) that belong to the range.

e The discrete_choice others covers all values of its expected type that are not covered by
previous discrete_choice_lists of the same construct.

A discrete_choice_list covers a value if one of its discrete_choices covers the value.

The possible values of the discriminant of a variant_part shall be covered as follows:

o [f the discriminant is of a static constrained scalar subtype then, except within an instance of a
generic unit, each non-others discrete_choice shall cover only values in that subtype that satisfy
its predicate, and each value of that subtype that satisfies its predicate shall be covered by some
discrete_choice (either explicitly or by others);

e If the type of the discriminant is a descendant of a generic formal scalar type, then the
variant_part shall have an others discrete_choice;

e Otherwise, each value of the base range of the type of the discriminant shall be covered (either
explicitly or by others).

Two distinct discrete_choices of a variant_part shall not cover the same value.

Static Semantics

If the component_list of a variant is specified by null, the variant has no components.

The discriminant of a variant_part is said to govern the variant_part and its variants. In addition, the
discriminant of a derived type governs a variant_part and its variants if it corresponds (see 3.7) to the
discriminant of the variant_part.

Dynamic Semantics
A record value contains the values of the components of a particular variant only if the value of the

discriminant governing the variant is covered by the discrete_choice_list of the variant. This rule applies
in turn to any further variant that is, itself, included in the component_list of the given variant.
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When an object of a discriminated type 7 is initialized by default, Constraint Error is raised if no
discrete_choice_list of any variant of a variant_part of 7 covers the value of the discriminant that governs
the variant_part. When a variant_part appears in the component_list of another variant V, this test is only
applied if the value of the discriminant governing V is covered by the discrete_choice_list of V.

The elaboration of a variant_part consists of the elaboration of the component_list of each variant in the
order in which they appear.

Examples
Example of record type with a variant part:

type Device is (Printer, Disk, Drum);
type State 1is (Open, Closed);

type Peripheral (Unit : Device := Disk) is
record
Status : State;
case Unit is
when Printer =>

Line Count : Integer range 1 .. Page_ Size;
when others =>

Cylinder : Cylinder Index;

Track : Track_Number;
end case;

end record;

Examples of record subtypes:

subtype Drum Unit is Peripheral (Drum) ;
subtype Disk Unit is Peripheral (Disk) ;

Examples of constrained record variables:

Writer : Peripheral (Unit => Printer);
Archive : Disk Unit;

3.9 Tagged Types and Type Extensions

Tagged types and type extensions support object-oriented programming, based on inheritance with
extension and run-time polymorphism via dispatching operations.

Static Semantics

A record type or private type that has the reserved word tagged in its declaration is called a fagged type.
In addition, an interface type is a tagged type, as is a task or protected type derived from an interface (see
3.9.4). When deriving from a tagged type, as for any derived type, additional primitive subprograms may
be defined, and inherited primitive subprograms may be overridden. The derived type is called an
extension of its ancestor types, or simply a type extension.

Every type extension is also a tagged type, and is a record extension or a private extension of some other
tagged type, or a noninterface synchronized tagged type (see 3.9.4). A record extension is defined by a
derived_type_definition with a record_extension_part (see 3.9.1), which may include the definition of
additional components. A private extension, which is a partial view of a record extension or of a
synchronized tagged type, can be declared in the visible part of a package (see 7.3) or in a generic formal
part (see 12.5.1).

An object of a tagged type has an associated (run-time) fag that identifies the specific tagged type used to
create the object originally. The tag of an operand of a class-wide tagged type T'Class controls which
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subprogram body is to be executed when a primitive subprogram of type 7T is applied to the operand (see
3.9.2); using a tag to control which body to execute is called dispatching.

The tag of a specific tagged type identifies the full_type declaration of the type, and for a type extension,
is sufficient to uniquely identify the type among all descendants of the same ancestor. If a declaration for a
tagged type occurs within a generic_package_declaration, then the corresponding type declarations in
distinct instances of the generic package are associated with distinct tags. For a tagged type that is local to
a generic package body and with all of its ancestors (if any) also local to the generic body, the language
does not specify whether repeated instantiations of the generic body result in distinct tags.

The following language-defined library package exists:

package Ada.Tags is
pragma Preelaborate (Tags) ;
type Tag is private;
pragma Preelaborable Initialization(Tag);

No_Tag : constant Tag;

function Expanded Name (T : Tag) return String;

function Wide Expanded Name (T : Tag) return Wide String;

function Wide Wide Expanded Name (T : Tag) return Wide Wide_ String;
function External Tag(T : Tag) return String;

function Internal Tag(External : String) return Tag;

function Descendant Tag(External : String; Ancestor : Tag) return Tag;
function Is Descendant At Same Level (Descendant, Ancestor : Tag)
return Boolean;

function Parent_Tag (T : Tag) return Tag;

type Tag Array is array (Positive range <>) of Tag;

function Interface Ancestor Tags (T : Tag) return Tag Array;
function Is_Abstract (T : Tag) return Boolean;

Tag_Error : exception;

private
... -- not specified by the language
end Ada.Tags;

No_Tag is the default initial value of type Tag.

The function Wide Wide Expanded Name returns the full expanded name of the first subtype of the
specific type identified by the tag, in upper case, starting with a root library unit. The result is
implementation defined if the type is declared within an unnamed block_statement.

The function Expanded Name (respectively, Wide Expanded Name) returns the same sequence of
graphic characters as that defined for Wide Wide Expanded Name, if all the graphic characters are
defined in Character (respectively, Wide Character); otherwise, the sequence of characters is
implementation defined, but no shorter than that returned by Wide Wide Expanded Name for the same
value of the argument.

The function External Tag returns a string to be used in an external representation for the given tag. The
call External Tag(S'Tag) is equivalent to the attribute_reference S'External_Tag (see 13.3).

The string returned by the functions Expanded Name, Wide Expanded Name, Wide Wide Expanded -
Name, and External Tag has lower bound 1.

The function Internal Tag returns a tag that corresponds to the given external tag, or raises Tag Error if
the given string is not the external tag for any specific type of the partition. Tag_ Error is also raised if the
specific type identified is a library-level type whose tag has not yet been created (see 13.14).
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The function Descendant Tag returns the (internal) tag for the type that corresponds to the given external
tag and is both a descendant of the type identified by the Ancestor tag and has the same accessibility level
as the identified ancestor. Tag_Error is raised if External is not the external tag for such a type. Tag_Error
is also raised if the specific type identified is a library-level type whose tag has not yet been created, or if
the given external tag identifies more than one type that has the appropriate Ancestor and accessibility
level.

The function Is Descendant At Same Level returns True if the Descendant tag identifies a type that is
both a descendant of the type identified by Ancestor and at the same accessibility level. If not, it returns
False.

For the purposes of the dynamic semantics of functions Descendant Tag and
Is_Descendant At _Same Level, a tagged type T2 is a descendant of a type T1 if it is the same as T1, or if
its parent type or one of its progenitor types is a descendant of type T1 by this rule, even if at the point of
the declaration of T2, one of the derivations in the chain is not visible.

The function Parent Tag returns the tag of the parent type of the type whose tag is T. If the type does not
have a parent type (that is, it was not declared by a derived type declaration), then No_Tag is returned.

The function Interface_Ancestor Tags returns an array containing the tag of each interface ancestor type
of the type whose tag is T, other than T itself. The lower bound of the returned array is 1, and the order of
the returned tags is unspecified. Each tag appears in the result exactly once. If the type whose tag is T has
no interface ancestors, a null array is returned.

The function Is_Abstract returns True if the type whose tag is T is abstract, and False otherwise.
For every subtype S of a tagged type T (specific or class-wide), the following attributes are defined:

S'Class S'Class denotes a subtype of the class-wide type (called 7'Class in this International
Standard) for the class rooted at T (or if S already denotes a class-wide subtype, then
S'Class is the same as S).

S'Class is unconstrained. However, if S is constrained, then the values of S'Class are only
those that when converted to the type 7 belong to S.

S'Tag S'Tag denotes the tag of the type T (or if 7T is class-wide, the tag of the root type of the
corresponding class). The value of this attribute is of type Tag.

Given a prefix X that is of a class-wide tagged type (after any implicit dereference), the following attribute
is defined:

X'Tag X'Tag denotes the tag of X. The value of this attribute is of type Tag.

The following language-defined generic function exists:

generic
type T (<>) is abstract tagged limited private;
type Parameters (<>) is limited private;
with function Constructor (Params : not null access Parameters)
return T is abstract;
function Ada.Tags.Generic_Dispatching Constructor
(The Tag : Tag;
Params : not null access Parameters) return T'Class
with Convention => Intrinsic;
pragma Preelaborate (Generic Dispatching Constructor) ;

Tags.Generic_Dispatching_Constructor provides a mechanism to create an object of an appropriate type
from just a tag value. The function Constructor is expected to create the object given a reference to an
object of type Parameters.

3.9 Tagged Types and Type Extensions 13 December 2012 72



ISO/IEC 8652:2012(E) — Ada Reference Manual

Dynamic Semantics
The tag associated with an object of a tagged type is determined as follows:

e The tag of a stand-alone object, a component, or an aggregate of a specific tagged type T
identifies 7.

e The tag of an object created by an allocator for an access type with a specific designated tagged
type 7, identifies 7.

¢ The tag of an object of a class-wide tagged type is that of its initialization expression.

e The tag of the result returned by a function whose result type is a specific tagged type T
identifies 7.

e The tag of the result returned by a function with a class-wide result type is that of the return
object.

The tag is preserved by type conversion and by parameter passing. The tag of a value is the tag of the
associated object (see 6.2).

Tag_Error is raised by a call of Descendant Tag, Expanded Name, External Tag, Interface Ancestor -
Tags, Is Abstract, Is Descendant At Same Level, Parent Tag, Wide Expanded Name, or
Wide Wide Expanded Name if any tag passed is No_Tag.

An instance of Tags.Generic_Dispatching_Constructor raises Tag_Error if The Tag does not represent a
concrete descendant of T or if the innermost master (see 7.6.1) of this descendant is not also a master of
the instance. Otherwise, it dispatches to the primitive function denoted by the formal Constructor for the
type identified by The Tag, passing Params, and returns the result. Any exception raised by the function is
propagated.

Erroneous Execution

If an internal tag provided to an instance of Tags.Generic_Dispatching_Constructor or to any subprogram
declared in package Tags identifies either a type that is not library-level and whose tag has not been
created (see 13.14), or a type that does not exist in the partition at the time of the call, then execution is
erroneous.

Implementation Permissions

The implementation of Internal Tag and Descendant Tag may raise Tag Error if no specific type
corresponding to the string External passed as a parameter exists in the partition at the time the function is
called, or if there is no such type whose innermost master is a master of the point of the function call.

Implementation Advice
Internal Tag should return the tag of a type, if one exists, whose innermost master is a master of the point
of the function call.

NOTES
67 A type declared with the reserved word tagged should normally be declared in a package_specification, so that new
primitive subprograms can be declared for it.

68 Once an object has been created, its tag never changes.

69 Class-wide types are defined to have unknown discriminants (see 3.7). This means that objects of a class-wide type
have to be explicitly initialized (whether created by an object_declaration or an allocator), and that aggregates have to be
explicitly qualified with a specific type when their expected type is class-wide.

70 The capability provided by Tags.Generic_Dispatching_Constructor is sometimes known as a factory.
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Examples
Examples of tagged record types:

type Point is tagged
record
X, Y : Real := 0.0;
end record;

type Expression is tagged null record;
- - Components will be added by each extension

3.9.1 Type Extensions

Every type extension is a tagged type, and is a record extension or a private extension of some other
tagged type, or a noninterface synchronized tagged type.

Syntax
record_extension_part ::= with record_definition

Legality Rules

The parent type of a record extension shall not be a class-wide type nor shall it be a synchronized tagged
type (see 3.9.4). If the parent type or any progenitor is nonlimited, then each of the components of the
record_extension_part shall be nonlimited. In addition to the places where Legality Rules normally apply
(see 12.3), these rules apply also in the private part of an instance of a generic unit.

Within the body of a generic unit, or the body of any of its descendant library units, a tagged type shall not
be declared as a descendant of a formal type declared within the formal part of the generic unit.

Static Semantics

A record extension is a null extension if its declaration has no known_discriminant_part and its
record_extension_part includes no component_declarations.

Dynamic Semantics

The elaboration of a record_extension_part consists of the elaboration of the record_definition.

NOTES
71 The term “type extension” refers to a type as a whole. The term “extension part” refers to the piece of text that defines
the additional components (if any) the type extension has relative to its specified ancestor type.

72 When an extension is declared immediately within a body, primitive subprograms are inherited and are overridable,
but new primitive subprograms cannot be added.

73 A name that denotes a component (including a discriminant) of the parent type is not allowed within the
record_extension_part. Similarly, a name that denotes a component defined within the record_extension_part is not
allowed within the record_extension_part. It is permissible to use a name that denotes a discriminant of the record
extension, providing there is a new known_discriminant_part in the enclosing type declaration. (The full rule is given in
3.8.)

74 Each visible component of a record extension has to have a unique name, whether the component is (visibly) inherited
from the parent type or declared in the record_extension_part (see 8.3).

Examples
Examples of record extensions (of types defined above in 3.9):

type Painted Point is new Point with
record
Paint : Color := White;
end record;
- - Components X and Y are inherited
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Origin : comnstant Painted Point := (X | Y => 0.0, Paint => Black);

type Literal is new Expression with
record - - a leaf'in an Expression tree
Value : Real;
end record;

type Expr Ptr is access all Expression'Class;

--see3.10
type Binary Operation is new Expression with
record - - an internal node in an Expression tree

Left, Right : Expr Ptr;
end record;
type Addition is new Binary Operation with null record;

type Subtraction is new Binary Operation with null record;
- - No additional components needed for these extensions

Tree : Expr Ptr := - - A tree representation of “5.0 + (13.0-7.0)”
new Addition' (
Left => new Literal' (Value => 5.0),

Right => new Subtraction' (
Left => new Literal' (Value => 13.0),
Right => new Literal' (Value => 7.0)));

3.9.2 Dispatching Operations of Tagged Types

The primitive subprograms of a tagged type, the subprograms declared by formal_abstract_subprogram_-
declarations, and the stream attributes of a specific tagged type that are available (see 13.13.2) at the end
of the declaration list where the type is declared are called dispatching operations. A dispatching operation
can be called using a statically determined controlling tag, in which case the body to be executed is
determined at compile time. Alternatively, the controlling tag can be dynamically determined, in which
case the call dispatches to a body that is determined at run time; such a call is termed a dispatching call.
As explained below, the properties of the operands and the context of a particular call on a dispatching
operation determine how the controlling tag is determined, and hence whether or not the call is a
dispatching call. Run-time polymorphism is achieved when a dispatching operation is called by a
dispatching call.

Static Semantics

A call on a dispatching operation is a call whose name or prefix denotes the declaration of a dispatching
operation. A controlling operand in a call on a dispatching operation of a tagged type 7T is one whose
corresponding formal parameter is of type 7 or is of an anonymous access type with designated type T; the
corresponding formal parameter is called a controlling formal parameter. 1f the controlling formal
parameter is an access parameter, the controlling operand is the object designated by the actual parameter,
rather than the actual parameter itself. If the call is to a (primitive) function with result type T (a function
with a controlling result), then the call has a controlling result — the context of the call can control the
dispatching. Similarly, if the call is to a function with an access result type designating 7 (a function with a
controlling access result), then the call has a controlling access result, and the context can similarly
control dispatching.

A name or expression of a tagged type is either statically tagged, dynamically tagged, or tag
indeterminate, according to whether, when used as a controlling operand, the tag that controls dispatching
is determined statically by the operand's (specific) type, dynamically by its tag at run time, or from
context. A qualified_expression or parenthesized expression is statically, dynamically, or indeterminately
tagged according to its operand. For other kinds of names and expressions, this is determined as follows:
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e The name or expression is statically tagged if it is of a specific tagged type and, if it is a call
with a controlling result or controlling access result, it has at least one statically tagged
controlling operand,;

e The name or expression is dynamically tagged if it is of a class-wide type, or it is a call with a
controlling result or controlling access result and at least one dynamically tagged controlling
operand;

e The name or expression is fag indeterminate if it is a call with a controlling result or controlling
access result, all of whose controlling operands (if any) are tag indeterminate.

A type_conversion is statically or dynamically tagged according to whether the type determined by the
subtype_mark is specific or class-wide, respectively. For an object that is designated by an expression
whose expected type is an anonymous access-to-specific tagged type, the object is dynamically tagged if
the expression, ignoring enclosing parentheses, is of the form X'Access, where X is of a class-wide type,
or is of the form new T'(...), where T denotes a class-wide subtype. Otherwise, the object is statically or
dynamically tagged according to whether the designated type of the type of the expression is specific or
class-wide, respectively.

Legality Rules
A call on a dispatching operation shall not have both dynamically tagged and statically tagged controlling
operands.

If the expected type for an expression or name is some specific tagged type, then the expression or name
shall not be dynamically tagged unless it is a controlling operand in a call on a dispatching operation.
Similarly, if the expected type for an expression is an anonymous access-to-specific tagged type, then the
object designated by the expression shall not be dynamically tagged unless it is a controlling operand in a
call on a dispatching operation.

In the declaration of a dispatching operation of a tagged type, everywhere a subtype of the tagged type
appears as a subtype of the profile (see 6.1), it shall statically match the first subtype of the tagged type. If
the dispatching operation overrides an inherited subprogram, it shall be subtype conformant with the
inherited subprogram. The convention of an inherited dispatching operation is the convention of the
corresponding primitive operation of the parent or progenitor type. The default convention of a dispatching
operation that overrides an inherited primitive operation is the convention of the inherited operation; if the
operation overrides multiple inherited operations, then they shall all have the same convention. An
explicitly declared dispatching operation shall not be of convention Intrinsic.

The default_expression for a controlling formal parameter of a dispatching operation shall be tag indeter-
minate.

If a dispatching operation is defined by a subprogram_renaming_declaration or the instantiation of a
generic subprogram, any access parameter of the renamed subprogram or the generic subprogram that
corresponds to a controlling access parameter of the dispatching operation, shall have a subtype that
excludes null.

A given subprogram shall not be a dispatching operation of two or more distinct tagged types.

The explicit declaration of a primitive subprogram of a tagged type shall occur before the type is frozen
(see 13.14). For example, new dispatching operations cannot be added after objects or values of the type
exist, nor after deriving a record extension from it, nor after a body.
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Dynamic Semantics

which subprogram body is executed. The controlling tag value is defined as follows:

For the execution of a call on a dispatching operation, the action performed is determined by the properties

If one or more controlling operands are statically tagged, then the controlling tag value is
statically determined to be the tag of T.

If one or more controlling operands are dynamically tagged, then the controlling tag value is not
statically determined, but is rather determined by the tags of the controlling operands. If there is
more than one dynamically tagged controlling operand, a check is made that they all have the
same tag. If this check fails, Constraint Error is raised unless the call is a function_call whose
name denotes the declaration of an equality operator (predefined or user defined) that returns
Boolean, in which case the result of the call is defined to indicate inequality, and no
subprogram_body is executed. This check is performed prior to evaluating any tag-
indeterminate controlling operands.

If all of the controlling operands (if any) are tag-indeterminate, then:

o If the call has a controlling result or controlling access result and is itself, or designates, a
(possibly parenthesized or qualified) controlling operand of an enclosing call on a
dispatching operation of a descendant of type 7, then its controlling tag value is determined
by the controlling tag value of this enclosing call;

o If the call has a controlling result or controlling access result and (possibly parenthesized,
qualified, or dereferenced) is the expression of an assignment_statement whose target is
of a class-wide type, then its controlling tag value is determined by the target;

« Otherwise, the controlling tag value is statically determined to be the tag of type T.

of the corresponding dispatching operation of the specific type identified by the controlling tag value:

77

if the corresponding operation is explicitly declared for this type, even if the declaration occurs
in a private part, then the action comprises an invocation of the explicit body for the operation;

if the corresponding operation is implicitly declared for this type and is implemented by an entry
or protected subprogram (see 9.1 and 9.4), then the action comprises a call on this entry or
protected subprogram, with the target object being given by the first actual parameter of the call,
and the actual parameters of the entry or protected subprogram being given by the remaining
actual parameters of the call, if any;

if the corresponding operation is a predefined operator then the action comprises an invocation
of that operator;

otherwise, the action is the same as the action for the corresponding operation of the parent type
or progenitor type from which the operation was inherited except that additional invariant checks
(see 7.3.2) and class-wide postcondition checks (see 6.1.1) may apply. If there is more than one
such corresponding operation, the action is that for the operation that is not a null procedure, if
any; otherwise, the action is that of an arbitrary one of the operations.

NOTES

75 The body to be executed for a call on a dispatching operation is determined by the tag; it does not matter whether that
tag is determined statically or dynamically, and it does not matter whether the subprogram's declaration is visible at the

place of the call.

76 This subclause covers calls on dispatching subprograms of a tagged type. Rules for tagged type membership tests are

described in 4.5.2. Controlling tag determination for an assignment_statement is described in 5.2.

77 A dispatching call can dispatch to a body whose declaration is not visible at the place of the call.
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78 A call through an access-to-subprogram value is never a dispatching call, even if the access value designates a
dispatching operation. Similarly a call whose prefix denotes a subprogram_renaming_declaration cannot be a dispatching
call unless the renaming itself is the declaration of a primitive subprogram.

3.9.3 Abstract Types and Subprograms

An abstract type is a tagged type intended for use as an ancestor of other types, but which is not allowed to
have objects of its own. An abstract subprogram is a subprogram that has no body, but is intended to be
overridden at some point when inherited. Because objects of an abstract type cannot be created, a
dispatching call to an abstract subprogram always dispatches to some overriding body.

Syntax
abstract_subprogram_declaration ::=
[overriding_indicator]
subprogram_specification is abstract
[aspect_specification];

Static Semantics

Interface types (see 3.9.4) are abstract types. In addition, a tagged type that has the reserved word abstract
in its declaration is an abstract type. The class-wide type (see 3.4.1) rooted at an abstract type is not itself
an abstract type.

Legality Rules
Only a tagged type shall have the reserved word abstract in its declaration.

A subprogram declared by an abstract_subprogram_declaration or a formal_abstract_subprogram_-
declaration (see 12.6) is an abstract subprogram. If it is a primitive subprogram of a tagged type, then the
tagged type shall be abstract.

If a type has an implicitly declared primitive subprogram that is inherited or is a predefined operator, and
the corresponding primitive subprogram of the parent or ancestor type is abstract or is a function with a
controlling access result, or if a type other than a nonabstract null extension inherits a function with a
controlling result, then:

o Ifthe type is abstract or untagged, the implicitly declared subprogram is abstract.

e Otherwise, the subprogram shall be overridden with a nonabstract subprogram or, in the case of
a private extension inheriting a function with a controlling result, have a full type that is a null
extension; for a type declared in the visible part of a package, the overriding may be either in the
visible or the private part. Such a subprogram is said to require overriding. However, if the type
is a generic formal type, the subprogram need not be overridden for the formal type itself; a
nonabstract version will necessarily be provided by the actual type.

A call on an abstract subprogram shall be a dispatching call; nondispatching calls to an abstract
subprogram are not allowed.

The type of an aggregate, or of an object created by an object_declaration or an allocator, or a generic
formal object of mode in, shall not be abstract. The type of the target of an assignment operation (see 5.2)
shall not be abstract. The type of a component shall not be abstract. If the result type of a function is
abstract, then the function shall be abstract. If a function has an access result type designating an abstract
type, then the function shall be abstract. The type denoted by a return_subtype_indication (see 6.5) shall
not be abstract. A generic function shall not have an abstract result type or an access result type
designating an abstract type.
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If a partial view is not abstract, the corresponding full view shall not be abstract. If a generic formal type is
abstract, then for each primitive subprogram of the formal that is not abstract, the corresponding primitive
subprogram of the actual shall not be abstract.

For an abstract type declared in a visible part, an abstract primitive subprogram shall not be declared in the
private part, unless it is overriding an abstract subprogram implicitly declared in the visible part. For a
tagged type declared in a visible part, a primitive function with a controlling result or a controlling access
result shall not be declared in the private part, unless it is overriding a function implicitly declared in the
visible part.

A generic actual subprogram shall not be an abstract subprogram unless the generic formal subprogram is
declared by a formal_abstract_subprogram_declaration. The prefix of an attribute_reference for the
Access, Unchecked Access, or Address attributes shall not denote an abstract subprogram.

Dynamic Semantics

The elaboration of an abstract_subprogram_declaration has no effect.

NOTES
79 Abstractness is not inherited; to declare an abstract type, the reserved word abstract has to be used in the declaration
of the type extension.

80 A class-wide type is never abstract. Even if a class is rooted at an abstract type, the class-wide type for the class is not
abstract, and an object of the class-wide type can be created; the tag of such an object will identify some nonabstract type
in the class.

Examples

Example of an abstract type representing a set of natural numbers:

package Sets is
subtype Element Type is Natural;
type Set is abstract tagged null record;
function Empty return Set is abstract;

function Union(Left, Right : Set) return Set is abstract;
function Intersection(Left, Right : Set) return Set is abstract;
function Unit Set (Element : Element Type) return Set is abstract;

procedure Take (Element : out Element Type;
From : in out Set) is abstract;
end Sets;

NOTES

81 Notes on the example: Given the above abstract type, one could then derive various (nonabstract) extensions of the
type, representing alternative implementations of a set. One might use a bit vector, but impose an upper bound on the
largest element representable, while another might use a hash table, trading off space for flexibility.

3.9.4 Interface Types

An interface type is an abstract tagged type that provides a restricted form of multiple inheritance. A
tagged type, task type, or protected type may have one or more interface types as ancestors.

Syntax
interface_type_definition ::=
[limited | task | protected | synchronized] interface [and interface_list]

interface_list ::= interface_subtype_mark {and interface subtype_mark}

Static Semantics

An interface type (also called an inferface) is a specific abstract tagged type that is defined by an
interface_type_definition.
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An interface with the reserved word limited, task, protected, or synchronized in its definition is termed,
respectively, a limited interface, a task interface, a protected interface, or a synchronized interface. In
addition, all task and protected interfaces are synchronized interfaces, and all synchronized interfaces are
limited interfaces.

A task or protected type derived from an interface is a tagged type. Such a tagged type is called a
synchronized tagged type, as are synchronized interfaces and private extensions whose declaration
includes the reserved word synchronized.

A task interface is an abstract task type. A protected interface is an abstract protected type.
An interface type has no components.

An interface_subtype_mark in an interface_list names a progenitor subtype; its type is the progenitor
type. An interface type inherits user-defined primitive subprograms from each progenitor type in the same
way that a derived type inherits user-defined primitive subprograms from its progenitor types (see 3.4).

Legality Rules

All user-defined primitive subprograms of an interface type shall be abstract subprograms or null
procedures.

The type of a subtype named in an interface_list shall be an interface type.
A type derived from a nonlimited interface shall be nonlimited.

An interface derived from a task interface shall include the reserved word task in its definition; any other
type derived from a task interface shall be a private extension or a task type declared by a task declaration
(see 9.1).

An interface derived from a protected interface shall include the reserved word protected in its definition;
any other type derived from a protected interface shall be a private extension or a protected type declared
by a protected declaration (see 9.4).

An interface derived from a synchronized interface shall include one of the reserved words task,
protected, or synchronized in its definition; any other type derived from a synchronized interface shall be
a private extension, a task type declared by a task declaration, or a protected type declared by a protected
declaration.

No type shall be derived from both a task interface and a protected interface.

In addition to the places where Legality Rules normally apply (see 12.3), these rules apply also in the
private part of an instance of a generic unit.

Dynamic Semantics

The elaboration of an interface_type_definition creates the interface type and its first subtype.

NOTES

82 Nonlimited interface types have predefined nonabstract equality operators. These may be overridden with user-defined
abstract equality operators. Such operators will then require an explicit overriding for any nonabstract descendant of the
interface.

Examples

Example of a limited interface and a synchronized interface extending it:
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type Queue is limited interface;
procedure Append(Q : in out Queue; Person : in Person Name) is abstract;
procedure Remove_ First (Q : in out Queue;
Person : out Person Name) is abstract;
function Cur Count (Q : in Queue) return Natural is abstract;
function Max Count (Q : in Queue) return Natural is abstract;
-- See 3.10.1 for Person_Name.

Queue_ Error : exception;
- - Append raises Queue Error if Cur_Count(Q) = Max_Count(Q)
- - Remove_First raises Queue_Error if Cur_Count(Q) = 0

type Synchronized Queue is synchronized interface and Queue; --see9./]
procedure Append Wait (Q : in out Synchronized Queue;

Person : in Person_Name) is abstract;
procedure Remove First Wait (Q : in out Synchronized Queue;

Person : out Person Name) is abstract;

procedure Transfer (From : in out Queue'Class;
To : in out Queue'Class;
Number : in Natural := 1) is
Person : Person Name;
begin

for I in 1..Number loop
Remove First (From, Person) ;
Append (To, Person) ;
end loop;
end Transfer;
This defines a Queue interface defining a queue of people. (A similar design could be created to define
any kind of queue simply by replacing Person Name by an appropriate type.) The Queue interface has
four dispatching operations, Append, Remove First, Cur_Count, and Max_Count. The body of a class-
wide operation, Transfer is also shown. Every nonabstract extension of Queue must provide
implementations for at least its four dispatching operations, as they are abstract. Any object of a type
derived from Queue may be passed to Transfer as either the From or the To operand. The two operands
need not be of the same type in any given call.

The Synchronized Queue interface inherits the four dispatching operations from Queue and adds two
additional dispatching operations, which wait if necessary rather than raising the Queue Error exception.
This synchronized interface may only be implemented by a task or protected type, and as such ensures
safe concurrent access.

Example use of the interface:

type Fast_Food Queue is new Queue with record ...;

procedure Append(Q : in out Fast_ Food Queue; Person : in Person Name) ;
procedure Remove First(Q : in out Fast Food Queue; Person : out
Person_Name) ;

function Cur_ Count (Q : in Fast_ Food_ Queue) return Natural;

function Max Count (Q : in Fast Food Queue) return Natural;

Cashier, Counter : Fast Food Queue;

-- Add George (see 3.10.1) to the cashier's queue:

Append (Cashier, George);

-~ After payment, move George to the sandwich counter queue:
Transfer (Cashier, Counter) ;

An interface such as Queue can be used directly as the parent of a new type (as shown here), or can be

used as a progenitor when a type is derived. In either case, the primitive operations of the interface are
inherited. For Queue, the implementation of the four inherited routines must be provided. Inside the call of
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Transfer, calls will dispatch to the implementations of Append and Remove First for type
Fast Food Queue.

Example of a task interface:

type Serial Device is task interface; --see9.]
procedure Read (Dev : in Serial Device; C : out Character) is abstract;
procedure Write(Dev : in Serial Device; C : in Character) is abstract;
The Serial Device interface has two dispatching operations which are intended to be implemented by task
entries (see 9.1).

3.10 Access Types

A value of an access type (an access value) provides indirect access to the object or subprogram it
designates. Depending on its type, an access value can designate either subprograms, objects created by
allocators (see 4.8), or more generally aliased objects of an appropriate type.

Syntax
access_type_definition ::=
[null_exclusion] access_to_object_definition
| [null_exclusion] access_to_subprogram_definition
access_to_object_definition ::=
access [general_access_modifier] subtype_indication

general_access_modifier ::= all | constant
access_to_subprogram_definition ::=
access [protected] procedure parameter_profile
| access [protected] function parameter_and_result_profile

null_exclusion ::= not null

access_definition ::=
[null_exclusion] access [constant] subtype mark
| [null_exclusion] access [protected] procedure parameter_profile
| [null_exclusion] access [protected] function parameter_and_result_profile

Static Semantics

There are two kinds of access types, access-to-object types, whose values designate objects, and access-to-
subprogram types, whose values designate subprograms. Associated with an access-to-object type is a
storage pool; several access types may share the same storage pool. All descendants of an access type
share the same storage pool. A storage pool is an area of storage used to hold dynamically allocated
objects (called pool elements) created by allocators; storage pools are described further in 13.11, “Storage
Management”.

Access-to-object types are further subdivided into pool-specific access types, whose values can designate
only the elements of their associated storage pool, and general access types, whose values can designate
the elements of any storage pool, as well as aliased objects created by declarations rather than allocators,
and aliased subcomponents of other objects.

A view of an object is defined to be aliased if it is defined by an object declaration, component_-
definition, parameter_specification, or extended_return_object_declaration with the reserved word
aliased, or by a renaming of an aliased view. In addition, the dereference of an access-to-object value
denotes an aliased view, as does a view conversion (see 4.6) of an aliased view. The current instance of an
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immutably limited type (see 7.5) is defined to be aliased. Finally, a formal parameter or generic formal
object of a tagged type is defined to be aliased. Aliased views are the ones that can be designated by an
access value.

An access_to_object_definition defines an access-to-object type and its first subtype; the subtype_-
indication defines the designated subtype of the access type. If a general_access_modifier appears, then
the access type is a general access type. If the modifier is the reserved word constant, then the type is an
access-to-constant type; a designated object cannot be updated through a value of such a type. If the
modifier is the reserved word all, then the type is an access-to-variable type; a designated object can be
both read and updated through a value of such a type. If no general_access_modifier appears in the
access_to_object_definition, the access type is a pool-specific access-to-variable type.

An access_to_subprogram_definition defines an access-to-subprogram type and its first subtype; the
parameter_profile or parameter_and_result_profile defines the designated profile of the access type.
There is a calling convention associated with the designated profile; only subprograms with this calling
convention can be designated by values of the access type. By default, the calling convention is
“protected” if the reserved word protected appears, and “Ada” otherwise. See Annex B for how to
override this default.

An access_definition defines an anonymous general access type or an anonymous access-to-subprogram
type. For a general access type, the subtype_mark denotes its designated subtype; if the general_-
access_modifier constant appears, the type is an access-to-constant type; otherwise, it is an access-to-
variable type. For an access-to-subprogram type, the parameter_profile or parameter_and_result_profile
denotes its designated profile.

For each access type, there is a null access value designating no entity at all, which can be obtained by
(implicitly) converting the literal null to the access type. The null value of an access type is the default
initial value of the type. Nonnull values of an access-to-object type are obtained by evaluating an
allocator, which returns an access value designating a newly created object (see 3.10.2), or in the case of a
general access-to-object type, evaluating an attribute_reference for the Access or Unchecked Access
attribute of an aliased view of an object. Nonnull values of an access-to-subprogram type are obtained by
evaluating an attribute_reference for the Access attribute of a nonintrinsic subprogram.

A null_exclusion in a construct specifies that the null value does not belong to the access subtype defined
by the construct, that is, the access subtype excludes null. In addition, the anonymous access subtype
defined by the access_definition for a controlling access parameter (see 3.9.2) excludes null. Finally, for a
subtype_indication without a null_exclusion, the subtype denoted by the subtype_indication excludes null
if and only if the subtype denoted by the subtype_mark in the subtype_indication excludes null.

All subtypes of an access-to-subprogram type are constrained. The first subtype of a type defined by an
access_definition or an access_to_object_definition is unconstrained if the designated subtype is an
unconstrained array or discriminated subtype; otherwise, it is constrained.

Legality Rules

If a subtype_indication, discriminant_specification, parameter_specification, parameter_and_result_-
profile, object_renaming_declaration, or formal_object_declaration has a null_exclusion, the subtype_-
mark in that construct shall denote an access subtype that does not exclude null.

Dynamic Semantics

A composite_constraint is compatible with an unconstrained access subtype if it is compatible with the
designated subtype. A null_exclusion is compatible with any access subtype that does not exclude null. An
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access value satisfies a composite_constraint of an access subtype if it equals the null value of its type or
if it designates an object whose value satisfies the constraint. An access value satisfies an exclusion of the
null value if it does not equal the null value of its type.

The elaboration of an access_type_definition creates the access type and its first subtype. For an access-
to-object type, this elaboration includes the elaboration of the subtype_indication, which creates the
designated subtype.

The elaboration of an access_definition creates an anonymous access type.

NOTES
83 Access values are called “pointers” or “references” in some other languages.

84 Each access-to-object type has an associated storage pool; several access types can share the same pool. An object can
be created in the storage pool of an access type by an allocator (see 4.8) for the access type. A storage pool (roughly)
corresponds to what some other languages call a “heap.” See 13.11 for a discussion of pools.

85 Only index_constraints and discriminant_constraints can be applied to access types (see 3.6.1 and 3.7.1).

Examples
Examples of access-to-object types:

type Peripheral Ref is not null access Peripheral; -- see3.8./
type Binop Ptr is access all Binary Operation'Class;
- - general access-to-class-wide, see 3.9.1

Example of an access subtype:

subtype Drum Ref is Peripheral Ref (Drum); -- see3.8.]

Example of an access-to-subprogram type:

type Message Procedure is access procedure (M : in String := "Error!");
procedure Default Message Procedure(M : in String) ;
Give_Message : Message Procedure := Default Message Procedure'Access;

procedure Other Procedure(M : in String);

Give_Message := Other Procedure'Access;
Give Message ("File not found."); -- call with parameter (.all is optional)
Give Message.all; - - call with no parameters

3.10.1 Incomplete Type Declarations

There are no particular limitations on the designated type of an access type. In particular, the type of a
component of the designated type can be another access type, or even the same access type. This permits
mutually dependent and recursive access types. An incomplete_type_declaration can be used to introduce
a type to be used as a designated type, while deferring its full definition to a subsequent
full_type_declaration.

Syntax
incomplete_type_declaration ::= type defining_identifier [discriminant_part] [is tagged];

Static Semantics
An incomplete_type_declaration declares an incomplete view of a type and its first subtype; the first
subtype is unconstrained if a discriminant_part appears. If the incomplete_type_declaration includes the
reserved word tagged, it declares a fagged incomplete view. An incomplete view of a type is a limited
view of the type (see 7.5).
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Given an access type 4 whose designated type T is an incomplete view, a dereference of a value of type 4
also has this incomplete view except when:

e it occurs within the immediate scope of the completion of 7, or

e it occurs within the scope of a nonlimited_with_clause that mentions a library package in whose
visible part the completion of 7 is declared, or

e it occurs within the scope of the completion of 7 and T is an incomplete view declared by an
incomplete_type_declaration.

In these cases, the dereference has the view of 7 visible at the point of the dereference.

Similarly, if a subtype_mark denotes a subtype_declaration defining a subtype of an incomplete view 7,
the subtype_mark denotes an incomplete view except under the same three circumstances given above, in
which case it denotes the view of T visible at the point of the subtype_mark.

Legality Rules

An incomplete_type_declaration requires a completion, which shall be a type_declaration other than an
incomplete_type_declaration. If the incomplete_type_declaration occurs immediately within either the
visible part of a package_specification or a declarative_part, then the type_declaration shall occur later
and immediately within this visible part or declarative_part. If the incomplete_type_declaration occurs
immediately within the private part of a given package_specification, then the type declaration shall
occur later and immediately within either the private part itself, or the declarative_part of the
corresponding package_body.

If an incomplete_type_declaration includes the reserved word tagged, then a type_declaration that
completes it shall declare a tagged type. If an incomplete_type_declaration has a known_discriminant_-
part, then a type_declaration that completes it shall have a fully conforming (explicit) known_-
discriminant_part (see 6.3.1). If an incomplete_type_declaration has no discriminant_part (or an
unknown_discriminant_part), then a corresponding type_declaration is nevertheless allowed to have
discriminants, either explicitly, or inherited via derivation.

A name that denotes an incomplete view of a type may be used as follows:

e as the subtype_mark in the subtype_indication of an access_to_object_definition; the only
form of constraint allowed in this subtype_indication is a discriminant_constraint (a
null_exclusion is not allowed);

e as the subtype _mark in the subtype_indication of a subtype_declaration; the subtype_-
indication shall not have a null_exclusion or a constraint;

e as the subtype_mark in an access_definition for an access-to-object type;

e as the subtype_mark defining the subtype of a parameter or result in a profile occurring within a
basic_declaration;

e as a generic actual parameter whose corresponding generic formal parameter is a formal
incomplete type (see 12.5.1).

If such a name denotes a tagged incomplete view, it may also be used:

e as the subtype_mark defining the subtype of a parameter in the profile for a subprogram_body,
entry_body, or accept_statement;

e as the prefix of an attribute_reference whose attribute_designator is Class; such an attribute_-
reference is restricted to the uses allowed here; it denotes a tagged incomplete view.

This paragraph was deleted.
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® This paragraph was deleted.

If any of the above uses occurs as part of the declaration of a primitive subprogram of the incomplete
view, and the declaration occurs immediately within the private part of a package, then the completion of
the incomplete view shall also occur immediately within the private part; it shall not be deferred to the
package body.

No other uses of a name that denotes an incomplete view of a type are allowed.

A prefix that denotes an object shall not be of an incomplete view. An actual parameter in a call shall not
be of an untagged incomplete view. The result object of a function call shall not be of an incomplete view.
A prefix shall not denote a subprogram having a formal parameter of an untagged incomplete view, nor a
return type that is an incomplete view.

Paragraph 11 was deleted.

Dynamic Semantics
The elaboration of an incomplete_type_declaration has no effect.
NOTES
86 Within a declarative_part, an incomplete_type_declaration and a corresponding full_type_declaration cannot be

separated by an intervening body. This is because a type has to be completely defined before it is frozen, and a body
freezes all types declared prior to it in the same declarative_part (see 13.14).

87 A name that denotes an object of an incomplete view is defined to be of a limited type. Hence, the target of an
assignment statement cannot be of an incomplete view.
Examples
Example of a recursive type:

type Cell; -- incomplete type declaration
type Link is access Cell;

type Cell is

record
Value : Integer;
Succ : Link;
Pred : Link;

end record;

Head : Link
Next : Link

new Cell' (0, null, null);
Head. Succ;

Examples of mutually dependent access types:

type Person(<>) ; - - incomplete type declaration
type Car is tagged; -- incomplete type declaration
type Person Name is access Person;
type Car_ Name is access all Car'Class;
type Car is tagged
record
Number : Integer;
Owner : Person Name;

end record;
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type Person(Sex : Gender) is

record
Name : String(l .. 20);
Birth : Date;
Age : Integer range 0 .. 130;
Vehicle : Car Name;
case Sex is
when M => Wife : Person_Name (Sex => F);
when F => Husband : Person Name (Sex => M) ;
end case;
end record;
My_Car, Your_Car, Next_Car : Car_Name := new Car; --see4.§
George : Person Name := new Person (M) ;
George.Vehicle := Your_ Car;

3.10.2 Operations of Access Types

The attribute Access is used to create access values designating aliased objects and nonintrinsic
subprograms. The “accessibility” rules prevent dangling references (in the absence of uses of certain
unchecked features — see Clause 13).

Name Resolution Rules

For an attribute_reference with attribute_designator Access (or Unchecked Access — see 13.10), the
expected type shall be a single access type 4 such that:

e A is an access-to-object type with designated type D and the type of the prefix is D'Class or is
covered by D, or

e A is an access-to-subprogram type whose designated profile is type conformant with that of the
prefix.

The prefix of such an attribute_reference is never interpreted as an implicit_dereference or a
parameterless function_call (see 4.1.4). The designated type or profile of the expected type of the
attribute_reference is the expected type or profile for the prefix.

Static Semantics

The accessibility rules, which prevent dangling references, are written in terms of accessibility levels,
which reflect the run-time nesting of masters. As explained in 7.6.1, a master is the execution of a certain
construct, such as a subprogram_body. An accessibility level is deeper than another if it is more deeply
nested at run time. For example, an object declared local to a called subprogram has a deeper accessibility
level than an object declared local to the calling subprogram. The accessibility rules for access types
require that the accessibility level of an object designated by an access value be no deeper than that of the
access type. This ensures that the object will live at least as long as the access type, which in turn ensures
that the access value cannot later designate an object that no longer exists. The Unchecked Access
attribute may be used to circumvent the accessibility rules.

A given accessibility level is said to be statically deeper than another if the given level is known at
compile time (as defined below) to be deeper than the other for all possible executions. In most cases,
accessibility is enforced at compile time by Legality Rules. Run-time accessibility checks are also used,
since the Legality Rules do not cover certain cases involving access parameters and generic packages.
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Each master, and each entity and view created by it, has an accessibility level:

The accessibility level of a given master is deeper than that of each dynamically enclosing
master, and deeper than that of each master upon which the task executing the given master
directly depends (see 9.3).

An entity or view defined by a declaration and created as part of its elaboration has the same
accessibility level as the innermost master of the declaration except in the cases of renaming and
derived access types described below. Other than for an explicitly aliased parameter, a formal
parameter of a callable entity has the same accessibility level as the master representing the
invocation of the entity.

The accessibility level of a view of an object or subprogram defined by a renaming_declaration
is the same as that of the renamed view.

The accessibility level of a view conversion, qualified_expression, or parenthesized expression,
is the same as that of the operand.

The accessibility level of a conditional_expression is the accessibility level of the evaluated
dependent expression.

The accessibility level of an aggregate that is used (in its entirety) to directly initialize part of
an object is that of the object being initialized. In other contexts, the accessibility level of an
aggregate is that of the innermost master that evaluates the aggregate.

The accessibility level of the result of a function call is that of the master of the function call,
which is determined by the point of call as follows:

o If the result is used (in its entirety) to directly initialize part of an object, the master is that
of the object being initialized. In the case where the initialized object is a coextension (see
below) that becomes a coextension of another object, the master is that of the eventual
object to which the coextension will be transferred.

o If the result is of an anonymous access type and is the operand of an explicit conversion,
the master is that of the target type of the conversion;

o If the result is of an anonymous access type and defines an access discriminant, the master
is the same as that for an object created by an anonymous allocator that defines an access
discriminant (even if the access result is of an access-to-subprogram type).

o If the call itself defines the result of a function to which one of the above rules applies,
these rules are applied recursively;

¢ In other cases, the master of the call is that of the innermost master that evaluates the
function call.

In the case of a call to a function whose result type is an anonymous access type, the
accessibility level of the type of the result of the function call is also determined by the point of
call as described above.

Within a return statement, the accessibility level of the return object is that of the execution of
the return statement. If the return statement completes normally by returning from the function,
then prior to leaving the function, the accessibility level of the return object changes to be a level
determined by the point of call, as does the level of any coextensions (see below) of the return
object.

The accessibility level of a derived access type is the same as that of its ultimate ancestor.

The accessibility level of the anonymous access type defined by an access_definition of an
object_renaming_declaration is the same as that of the renamed view.
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e The accessibility level of the anonymous access type of an access discriminant in the 1272
subtype_indication or qualified_expression of an allocator, or in the expression or return_-
subtype_indication of a return statement is determined as follows:

o If the value of the access discriminant is determined by a discriminant_association in a 12.1/2
subtype_indication, the accessibility level of the object or subprogram designated by the
associated value (or library level if the value is null);

o If the value of the access discriminant is determined by a default_expression in the 12.2/3
declaration of the discriminant, the level of the object or subprogram designated by the
associated value (or library level if null);

o If the value of the access discriminant is determined by a record_component_association 12.3/3
in an aggregate, the accessibility level of the object or subprogram designated by the
associated value (or library level if the value is null);

« In other cases, where the value of the access discriminant is determined by an object with 12.4/3
an unconstrained nominal subtype, the accessibility level of the object.

e The accessibility level of the anonymous access type of an access discriminant in any other 12.5/3
context is that of the enclosing object.

e The accessibility level of the anonymous access type of an access parameter specifying an 13/3
access-to-object type is the same as that of the view designated by the actual (or library-level if
the actual is null).

e The accessibility level of the anonymous access type of an access parameter specifying an 13.1/2
access-to-subprogram type is deeper than that of any master; all such anonymous access types
have this same level.

e The accessibility level of the type of a stand-alone object of an anonymous access-to-object type 13.2/3
is the same as the accessibility level of the type of the access value most recently assigned to the
object; accessibility checks ensure that this is never deeper than that of the declaration of the
stand-alone object.

e The accessibility level of an explicitly aliased (see 6.1) formal parameter in a function body is 13.3/3
determined by the point of call; it is the same level that the return object ultimately will have.

e The accessibility level of an object created by an allocator is the same as that of the access type, 14/3

except for an allocator of an anonymous access type (an anonymous allocator) in certain
contexts, as follows: For an anonymous allocator that defines the result of a function with an
access result, the accessibility level is determined as though the allocator were in place of the
call of the function; in the special case of a call that is the operand of a type conversion, the level
is that of the target access type of the conversion. For an anonymous allocator defining the value
of an access parameter, the accessibility level is that of the innermost master of the call. For an
anonymous allocator whose type is that of a stand-alone object of an anonymous access-to-
object type, the accessibility level is that of the declaration of the stand-alone object. For one
defining an access discriminant, the accessibility level is determined as follows:

« for an allocator used to define the discriminant of an object, the level of the object; 14.1/3

« for an allocator used to define the constraint in a subtype_indication in any other context, 14.2/3
the level of the master that elaborates the subtype_indication.

o This paragraph was deleted. 14.3/3

In the first case, the allocated object is said to be a coextension of the object whose discriminant 14.4/3

designates it, as well as of any object of which the discriminated object is itself a coextension or
subcomponent. If the allocated object is a coextension of an anonymous object representing the
result of an aggregate or function call that is used (in its entirety) to directly initialize a part of an
object, after the result is assigned, the coextension becomes a coextension of the object being
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initialized and is no longer considered a coextension of the anonymous object. All coextensions
of an object (which have not thus been transfered by such an initialization) are finalized when
the object is finalized (see 7.6.1).

e Within a return statement, the accessibility level of the anonymous access type of an access
result is that of the master of the call.

e The accessibility level of a view of an object or subprogram designated by an access value is the
same as that of the access type.

e The accessibility level of a component, protected subprogram, or entry of (a view of) a
composite object is the same as that of (the view of) the composite object.

In the above rules, the operand of a view conversion, parenthesized expression or qualified_expression is
considered to be used in a context if the view conversion, parenthesized expression or
qualified_expression itself is used in that context. Similarly, a dependent expression of a
conditional_expression is considered to be used in a context if the conditional_expression itself is used in
that context.

One accessibility level is defined to be statically deeper than another in the following cases:

e For a master that is statically nested within another master, the accessibility level of the inner
master is statically deeper than that of the outer master.

e The accessibility level of the anonymous access type of an access parameter specifying an
access-to-subprogram type is statically deeper than that of any master; all such anonymous
access types have this same level.

o The statically deeper relationship does not apply to the accessibility level of the anonymous type
of an access parameter specifying an access-to-object type nor does it apply to a descendant of a
generic formal type; that is, such an accessibility level is not considered to be statically deeper,
nor statically shallower, than any other.

e The statically deeper relationship does not apply to the accessibility level of the type of a stand-
alone object of an anonymous access-to-object type; that is, such an accessibility level is not
considered to be statically deeper, nor statically shallower, than any other.

e Inside a return statement that applies to a function F, when determining whether the accessibility
level of an explicitly aliased parameter of F is statically deeper than the level of the return object
of F, the level of the return object is considered to be the same as that of the level of the
explicitly aliased parameter; for statically comparing with the level of other entities, an
explicitly aliased parameter of F is considered to have the accessibility level of the body of F.

e For determining whether a level is statically deeper than the level of the anonymous access type
of an access result of a function, when within a return statement that applies to the function, the
level of the master of the call is presumed to be the same as that of the level of the master that
claborated the function body.

e For determining whether one level is statically deeper than another when within a generic
package body, the generic package is presumed to be instantiated at the same level as where it
was declared; run-time checks are needed in the case of more deeply nested instantiations.

e For determining whether one level is statically deeper than another when within the declarative
region of a type_declaration, the current instance of the type is presumed to be an object created
at a deeper level than that of the type.

The accessibility level of all library units is called the /ibrary level; a library-level declaration or entity is
one whose accessibility level is the library level.
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The following attribute is defined for a prefix X that denotes an aliased view of an object:

X'Access

X'Access yields an access value that designates the object denoted by X. The type of
X'Access is an access-to-object type, as determined by the expected type. The expected
type shall be a general access type. X shall denote an aliased view of an object, including
possibly the current instance (see 8.6) of a limited type within its definition, or a formal
parameter or generic formal object of a tagged type. The view denoted by the prefix X shall
satisfy the following additional requirements, presuming the expected type for X'Access is
the general access type 4 with designated type D:

e If 4 is an access-to-variable type, then the view shall be a variable; on the other
hand, if 4 is an access-to-constant type, the view may be either a constant or a
variable.

e The view shall not be a subcomponent that depends on discriminants of an object
unless the object is known to be constrained.

e If A4 isanamed access type and D is a tagged type, then the type of the view shall
be covered by D; if 4 is anonymous and D is tagged, then the type of the view
shall be either D'Class or a type covered by D; if D is untagged, then the type of
the view shall be D, and either:

« the designated subtype of 4 shall statically match the nominal subtype of the
view; or

o D shall be discriminated in its full view and unconstrained in any partial
view, and the designated subtype of A shall be unconstrained. For the
purposes of determining within a generic body whether D is unconstrained in
any partial view, a discriminated subtype is considered to have a constrained
partial view if it is a descendant of an untagged generic formal private or
derived type.

e The accessibility level of the view shall not be statically deeper than that of the
access type 4.

In addition to the places where Legality Rules normally apply (see 12.3), these
requirements apply also in the private part of an instance of a generic unit.

A check is made that the accessibility level of X is not deeper than that of the access type 4.
If this check fails, Program_Error is raised.

If the nominal subtype of X does not statically match the designated subtype of 4, a view
conversion of X to the designated subtype is evaluated (which might raise Constraint Error
— see 4.6) and the value of X'Access designates that view.

The following attribute is defined for a prefix P that denotes a subprogram:

P'Access

P'Access yields an access value that designates the subprogram denoted by P. The type of
P'Access is an access-to-subprogram type (S), as determined by the expected type. The
accessibility level of P shall not be statically deeper than that of S. In addition to the places
where Legality Rules normally apply (see 12.3), this rule applies also in the private part of
an instance of a generic unit. The profile of P shall be subtype conformant with the
designated profile of S, and shall not be Intrinsic. If the subprogram denoted by P is
declared within a generic unit, and the expression P'Access occurs within the body of that
generic unit or within the body of a generic unit declared within the declarative region of
the generic unit, then the ultimate ancestor of S shall be either a nonformal type declared
within the generic unit or an anonymous access type of an access parameter.
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Legality Rules
An expression is said to have distributed accessibility if it is
e a conditional_expression (see 4.5.7); or

e a view conversion, qualified_expression, or parenthesized expression whose operand has
distributed accessibility.

The statically deeper relationship does not apply to the accessibility level of an expression having
distributed accessibility; that is, such an accessibility level is not considered to be statically deeper, nor
statically shallower, than any other.

Any static accessibility requirement that is imposed on an expression that has distributed accessibility (or
on its type) is instead imposed on the dependent expressions of the underlying conditional_expression.
This rule is applied recursively if a dependent _expression also has distributed accessibility.

NOTES

88 The Unchecked Access attribute yields the same result as the Access attribute for objects, but has fewer restrictions
(see 13.10). There are other predefined operations that yield access values: an allocator can be used to create an object,
and return an access value that designates it (see 4.8); evaluating the literal null yields a null access value that designates
no entity at all (see 4.2).

89 The predefined operations of an access type also include the assignment operation, qualification, and membership
tests. Explicit conversion is allowed between general access types with matching designated subtypes; explicit conversion
is allowed between access-to-subprogram types with subtype conformant profiles (see 4.6). Named access types have
predefined equality operators; anonymous access types do not, but they can use the predefined equality operators for
universal _access (see 4.5.2).

90 The object or subprogram designated by an access value can be named with a dereference, either an explicit_-
dereference or an implicit_dereference. See 4.1.

91 A call through the dereference of an access-to-subprogram value is never a dispatching call.

92 The Access attribute for subprograms and parameters of an anonymous access-to-subprogram type may together be
used to implement “downward closures” — that is, to pass a more-nested subprogram as a parameter to a less-nested
subprogram, as might be appropriate for an iterator abstraction or numerical integration. Downward closures can also be
implemented using generic formal subprograms (see 12.6). Note that Unchecked Access is not allowed for subprograms.

93 Note that using an access-to-class-wide tagged type with a dispatching operation is a potentially more structured
alternative to using an access-to-subprogram type.

94 An implementation may consider two access-to-subprogram values to be unequal, even though they designate the
same subprogram. This might be because one points directly to the subprogram, while the other points to a special
prologue that performs an Elaboration_Check and then jumps to the subprogram. See 4.5.2.

Examples
Example of use of the Access attribute:
Martha : Person Name := new Person (F) ; --see3.10.1
Cars : array (1..2) of aliased Car;

Martha.Vehicle
George.Vehicle

Cars (1) 'Access;
Cars (2) 'Access;

3.10.2 Operations of Access Types 13 December 2012 92



ISO/IEC 8652:2012(E) — Ada Reference Manual

3.11 Declarative Parts

A declarative_part contains declarative_items (possibly none).

Syntax

declarative_part ::= {declarative_item}
declarative_item ::=

basic_declarative_item | body
basic_declarative_item ::=

basic_declaration | aspect_clause | use_clause
body ::= proper_body | body_stub
proper_body ::=

subprogram_body | package_body | task_body | protected_body

Static Semantics

The list of declarative_items of a declarative_part is called the declaration list of the declarative_part.

Dynamic Semantics

The elaboration of a declarative_part consists of the elaboration of the declarative_items, if any, in the
order in which they are given in the declarative_part.

An elaborable construct is in the elaborated state after the normal completion of its elaboration. Prior to
that, it is not yet elaborated.

For a construct that attempts to use a body, a check (Elaboration Check) is performed, as follows:

e For a call to a (non-protected) subprogram that has an explicit body, a check is made that the
body is already elaborated. This check and the evaluations of any actual parameters of the call
are done in an arbitrary order.

e For a call to a protected operation of a protected type (that has a body — no check is performed
if the protected type is imported — see B.1), a check is made that the protected_body is already
claborated. This check and the evaluations of any actual parameters of the call are done in an
arbitrary order.

e For the activation of a task, a check is made by the activator that the task_body is already
claborated. If two or more tasks are being activated together (see 9.2), as the result of the
elaboration of a declarative_part or the initialization for the object created by an allocator, this
check is done for all of them before activating any of them.

e For the instantiation of a generic unit that has a body, a check is made that this body is already
elaborated. This check and the evaluation of any explicit_generic_actual_parameters of the
instantiation are done in an arbitrary order.

The exception Program_Error is raised if any of these checks fails.

3.11.1 Completions of Declarations

Declarations sometimes come in two parts. A declaration that requires a second part is said to require
completion. The second part is called the completion of the declaration (and of the entity declared), and is
either another declaration, a body, or a pragma. A body is a body, an entry _body, a
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null_procedure_declaration or an expression_function_declaration that completes another declaration, or
a renaming-as-body (see 8.5.4).

Name Resolution Rules
A construct that can be a completion is interpreted as the completion of a prior declaration only if:
e The declaration and the completion occur immediately within the same declarative region;

e The defining name or defining_program_unit_name in the completion is the same as in the
declaration, or in the case of a pragma, the pragma applies to the declaration;

o If the declaration is overloadable, then the completion either has a type-conformant profile, or is
a pragma.

Legality Rules

An implicit declaration shall not have a completion. For any explicit declaration that is specified to require
completion, there shall be a corresponding explicit completion, unless the declared entity is imported (see
B.1).

At most one completion is allowed for a given declaration. Additional requirements on completions appear
where each kind of completion is defined.

A type is completely defined at a place that is after its full type definition (if it has one) and after all of its
subcomponent types are completely defined. A type shall be completely defined before it is frozen (see
13.14 and 7.3).

NOTES

95 Completions are in principle allowed for any kind of explicit declaration. However, for some kinds of declaration, the
only allowed completion is an implementation-defined pragma, and implementations are not required to have any such
pragmas.

96 There are rules that prevent premature uses of declarations that have a corresponding completion. The
Elaboration_Checks of 3.11 prevent such uses at run time for subprograms, protected operations, tasks, and generic units.
The rules of 13.14, “Freezing Rules” prevent, at compile time, premature uses of other entities such as private types and
deferred constants.
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4 Names and Expressions

The rules applicable to the different forms of name and expression, and to their evaluation, are given in
this clause.

4.1 Names

Names can denote declared entities, whether declared explicitly or implicitly (see 3.1). Names can also
denote objects or subprograms designated by access values; the results of type conversions or
function_calls; subcomponents and slices of objects and values; protected subprograms, single entries,
entry families, and entries in families of entries. Finally, names can denote attributes of any of the
foregoing.

Syntax
name ::=

direct_name | explicit_dereference
| indexed_component | slice
| selected_component | attribute_reference
| type_conversion | function_call
| character_literal | qualified_expression
| generalized_reference | generalized_indexing

direct_name ::= identifier | operator_symbol
prefix ::= name | implicit_dereference
explicit_dereference ::= name.all
implicit_dereference ::= name
Certain forms of name (indexed_components, selected_components, slices, and attribute_references)

include a prefix that is either itself a name that denotes some related entity, or an implicit_dereference of
an access value that designates some related entity.

Name Resolution Rules

The name in a dereference (either an implicit_dereference or an explicit_dereference) is expected to be
of any access type.

Static Semantics

If the type of the name in a dereference is some access-to-object type 7, then the dereference denotes a
view of an object, the nominal subtype of the view being the designated subtype of T. If the designated
subtype has unconstrained discriminants, the (actual) subtype of the view is constrained by the values of
the discriminants of the designated object, except when there is a partial view of the type of the designated
subtype that does not have discriminants, in which case the dereference is not constrained by its
discriminant values.

If the type of the name in a dereference is some access-to-subprogram type S, then the dereference
denotes a view of a subprogram, the profile of the view being the designated profile of S.

Dynamic Semantics
The evaluation of a name determines the entity denoted by the name. This evaluation has no other effect
for a name that is a direct_name or a character_literal.
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The evaluation of a name that has a prefix includes the evaluation of the prefix. The evaluation of a prefix
consists of the evaluation of the name or the implicit_dereference. The prefix denotes the entity denoted
by the name or the implicit_dereference.

The evaluation of a dereference consists of the evaluation of the name and the determination of the object
or subprogram that is designated by the value of the name. A check is made that the value of the name is
not the null access value. Constraint_Error is raised if this check fails. The dereference denotes the object
or subprogram designated by the value of the name.

Examples
Examples of direct names:
Pi -- the direct name of a number (see 3.3.2)
Limit  -- the direct name of a constant (see 3.3.1)
Count  -- the direct name of a scalar variable (see 3.3.1)
Board  --the direct name of an array variable (see 3.6.1)
Matrix --the direct name of a type (see 3.6)
Random -- the direct name of a function (see 6.1)
Error  -- the direct name of an exception (see 11.1)
Examples of dereferences:
Next Car.all - - explicit dereference denoting the object designated by
- - the access variable Next Car (see 3.10.1)
Next Car.Owner -- selected component with implicit dereference;

- - same as Next_Car.all. Owner

4.1.1 Indexed Components

An indexed_component denotes either a component of an array or an entry in a family of entries.

Syntax
indexed_component ::= prefix(expression {, expression})

Name Resolution Rules
The prefix of an indexed_component with a given number of expressions shall resolve to denote an array

(after any implicit dereference) with the corresponding number of index positions, or shall resolve to
denote an entry family of a task or protected object (in which case there shall be only one expression).

The expected type for each expression is the corresponding index type.

Static Semantics
When the prefix denotes an array, the indexed_component denotes the component of the array with the
specified index value(s). The nominal subtype of the indexed_component is the component subtype of the
array type.

When the prefix denotes an entry family, the indexed_component denotes the individual entry of the entry
family with the specified index value.

Dynamic Semantics
For the evaluation of an indexed_component, the prefix and the expressions are evaluated in an arbitrary
order. The value of each expression is converted to the corresponding index type. A check is made that
each index value belongs to the corresponding index range of the array or entry family denoted by the
prefix. Constraint_Error is raised if this check fails.
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Examples
Examples of indexed components:
My Schedule (Sat) - - a component of a one-dimensional array (see 3.6.1)
Page (10) - - a component of a one-dimensional array (see 3.6)
Board (M, J + 1) -- a component of a two-dimensional array (see 3.6.1)
Page (10) (20) -~ a component of a component (see 3.6)
Request (Medium) -- an entry in a family of entries (see 9.1)
Next Frame (L) (M, N) -- acomponent of a function call (see 6.1)

NOTES

1 Notes on the examples: Distinct notations are used for components of multidimensional arrays (such as Board) and
arrays of arrays (such as Page). The components of an array of arrays are arrays and can therefore be indexed. Thus
Page(10)(20) denotes the 20th component of Page(10). In the last example Next_Frame(L) is a function call returning an
access value that designates a two-dimensional array.

4.1.2 Slices

A slice denotes a one-dimensional array formed by a sequence of consecutive components of a one-
dimensional array. A slice of a variable is a variable; a slice of a constant is a constant; a slice of a value is
a value.

Syntax
slice ::= prefix(discrete_range)

Name Resolution Rules

The prefix of a slice shall resolve to denote a one-dimensional array (after any implicit dereference).

The expected type for the discrete_range of a slice is the index type of the array type.

Static Semantics

A slice denotes a one-dimensional array formed by the sequence of consecutive components of the array
denoted by the prefix, corresponding to the range of values of the index given by the discrete_range.

The type of the slice is that of the prefix. Its bounds are those defined by the discrete_range.

Dynamic Semantics

For the evaluation of a slice, the prefix and the discrete_range are evaluated in an arbitrary order. If the
slice is not a null slice (a slice where the discrete_range is a null range), then a check is made that the
bounds of the discrete_range belong to the index range of the array denoted by the prefix.
Constraint_Error is raised if this check fails.

NOTES
2 A slice is not permitted as the prefix of an Access attribute_reference, even if the components or the array as a whole
are aliased. See 3.10.2.

3 For a one-dimensional array A, the slice A(N .. N) denotes an array that has only one component; its type is the type of
A. On the other hand, A(N) denotes a component of the array A and has the corresponding component type.
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Examples
10 Examples of slices:
11 Stars(l .. 15) -- aslice of 15 characters (see 3.6.3)
Page (10 .. 10 + Size) -- asliceof ] + Size components (see 3.6)
Page (L) (A .. B) -- aslice of the array Page(L) (see 3.6)
Stars(l .. 0) -- anull slice (see 3.6.3)
My Schedule (Weekday) -- bounds given by subtype (see 3.6.1 and 3.5.1)
Stars(5 .. 15) (K) - - same as Stars(K) (see 3.6.3)

-- provided thatKisin5.. 15

4.1.3 Selected Components

1 Selected_components are used to denote components (including discriminants), entries, entry families,
and protected subprograms; they are also used as expanded names as described below.

Syntax
2 selected_component ::= prefix . selector_name
3 selector_name ::= identifier | character_literal | operator_symbol

Name Resolution Rules

4 A selected_component is called an expanded name if, according to the visibility rules, at least one
possible interpretation of its prefix denotes a package or an enclosing named construct (directly, not
through a subprogram_renaming_declaration or generic_renaming_declaration).

5 A selected_component that is not an expanded name shall resolve to denote one of the following:
6 e A component (including a discriminant):

7 The prefix shall resolve to denote an object or value of some non-array composite type (after any
implicit dereference). The selector_name shall resolve to denote a discriminant_specification of
the type, or, unless the type is a protected type, a component_declaration of the type. The
selected_component denotes the corresponding component of the object or value.

8 e A single entry, an entry family, or a protected subprogram:

9 The prefix shall resolve to denote an object or value of some task or protected type (after any
implicit dereference). The selector_name shall resolve to denote an entry_declaration or
subprogram_declaration occurring (implicitly or explicitly) within the visible part of that type.
The selected_component denotes the corresponding entry, entry family, or protected
subprogram.

9.1/2 e A view of a subprogram whose first formal parameter is of a tagged type or is an access
parameter whose designated type is tagged:

9.2/3 The prefix (after any implicit dereference) shall resolve to denote an object or value of a specific
tagged type T or class-wide type T'Class. The selector_name shall resolve to denote a view of a
subprogram declared immediately within the declarative region in which an ancestor of the type
T is declared. The first formal parameter of the subprogram shall be of type 7, or a class-wide
type that covers 7, or an access parameter designating one of these types. The designator of the
subprogram shall not be the same as that of a component of the tagged type visible at the point
of the selected_component. The subprogram shall not be an implicitly declared primitive
operation of type T that overrides an inherited subprogram implemented by an entry or protected
subprogram visible at the point of the selected_component. The selected_component denotes
a view of this subprogram that omits the first formal parameter. This view is called a prefixed
view of the subprogram, and the prefix of the selected_component (after any implicit
dereference) is called the prefix of the prefixed view.
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An expanded name shall resolve to denote a declaration that occurs immediately within a named 10
declarative region, as follows:

o The prefix shall resolve to denote either a package (including the current instance of a generic 11
package, or a rename of a package), or an enclosing named construct.

e The selector_name shall resolve to denote a declaration that occurs immediately within the 12
declarative region of the package or enclosing construct (the declaration shall be visible at the
place of the expanded name — see 8.3). The expanded name denotes that declaration.

o [If the prefix does not denote a package, then it shall be a direct_name or an expanded name, and 13
it shall resolve to denote a program unit (other than a package), the current instance of a type, a
block_statement, a loop_statement, or an accept_statement (in the case of an accept_-
statement or entry_body, no family index is allowed); the expanded name shall occur within the
declarative region of this construct. Further, if this construct is a callable construct and the prefix
denotes more than one such enclosing callable construct, then the expanded name is ambiguous,
independently of the selector_name.

Legality Rules
For a subprogram whose first parameter is an access parameter, the prefix of any prefixed view shall 13.12

denote an aliased view of an object.

For a subprogram whose first parameter is of mode in out or out, or of an anonymous access-to-variable 13.2/2
type, the prefix of any prefixed view shall denote a variable.

Dynamic Semantics
The evaluation of a selected_component includes the evaluation of the prefix. 14
For a selected_component that denotes a component of a variant, a check is made that the values of the 15

discriminants are such that the value or object denoted by the prefix has this component. The exception
Constraint_Error is raised if this check fails.

Examples
Examples of selected components: 16
Tomorrow.Month - - a record component (see 3.8) 1712
Next Car.Owner -~ arecord component (see 3.10.1)
Next Car.Owner.Age -- arecord component (see 3.10.1)
- - the previous two lines involve implicit dereferences
Writer.Unit - - a record component (a discriminant) (see 3.8.1)
Min Cell (H) .Value -- arecord component of the result (see 6.1)
- - of'the function call Min_Cell(H)
Cashier.Append - - a prefixed view of a procedure (see 3.9.4)
Control.Seize - - an entry of a protected object (see 9.4)
Pool (K) .Write - - an entry of the task Pool(K) (see 9.4)
Examples of expanded names: 18
Key Manager."<" - - an operator of the visible part of a package (see 7.3.1) 19
Dot _Product.Sum -~ avariable declared in a function body (see 6.1)
Buffer.Pool - - avariable declared in a protected unit (see 9.11)
Buffer.Read - - an entry of a protected unit (see 9.11)
Swap . Temp -~ avariable declared in a block statement (see 5.6)
Standard.Boolean -~ the name of a predefined type (see A.1)
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4.1.4 Attributes

An attribute is a characteristic of an entity that can be queried via an attribute_reference or a range_-
attribute_reference.

Syntax
attribute_reference ::= prefix'attribute_designator
attribute_designator ::=

identifier[(static_expression)]
| Access | Delta | Digits | Mod
range_attribute_reference ::= prefix'range_attribute_designator

range_attribute_designator ::= Range[(static_expression)]

Name Resolution Rules

In an attribute_reference, if the attribute_designator is for an attribute defined for (at least some) objects
of an access type, then the prefix is never interpreted as an implicit_dereference; otherwise (and for all
range_attribute_references), if the type of the name within the prefix is of an access type, the prefix is
interpreted as an implicit_dereference. Similarly, if the attribute_designator is for an attribute defined for
(at least some) functions, then the prefix is never interpreted as a parameterless function_call; otherwise
(and for all range_attribute_references), if the prefix consists of a name that denotes a function, it is
interpreted as a parameterless function_call.

The expression, if any, in an attribute_designator or range_attribute_designator is expected to be of any
integer type.

Legality Rules
The expression, if any, in an attribute_designator or range_attribute_designator shall be static.

Static Semantics

An attribute_reference denotes a value, an object, a subprogram, or some other kind of program entity.
For an attribute_reference that denotes a value or an object, if its type is scalar, then its nominal subtype
is the base subtype of the type; if its type is tagged, its nominal subtype is the first subtype of the type;
otherwise, its nominal subtype is a subtype of the type without any constraint or null_exclusion. Similarly,
unless explicitly specified otherwise, for an attribute_reference that denotes a function, when its result
type is scalar, its result subtype is the base subtype of the type, when its result type is tagged, the result
subtype is the first subtype of the type, and when the result type is some other type, the result subtype is a
subtype of the type without any constraint or null_exclusion.

A range_attribute_reference X'Range(N) is equivalent to the range X'First(N) .. X'Last(N), except that
the prefix is only evaluated once. Similarly, X'Range is equivalent to X'First .. X'Last, except that the
prefix is only evaluated once.

Dynamic Semantics
The evaluation of an attribute_reference (or range_attribute_reference) consists of the evaluation of the
prefix.
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Implementation Permissions

An implementation may provide implementation-defined attributes; the identifier for an implementation-
defined attribute shall differ from those of the language-defined attributes unless supplied for compatibility
with a previous edition of this International Standard.

NOTES
4 Attributes are defined throughout this International Standard, and are summarized in K.2.

5 In general, the name in a prefix of an attribute_reference (or a range_attribute_reference) has to be resolved without
using any context. However, in the case of the Access attribute, the expected type for the attribute_reference has to be a
single access type, and the resolution of the name can use the fact that the type of the object or the profile of the callable
entity denoted by the prefix has to match the designated type or be type conformant with the designated profile of the
access type.

Examples
Examples of attributes:
Color'First - - minimum value of the enumeration type Color (see 3.5.1)
Rainbow'Base'First -- same as Color'First (see 3.5.1)
Real'Digits - - precision of the type Real (see 3.5.7)
Board'Last (2) - - upper bound of the second dimension of Board (see 3.6.1)
Board'Range (1) - - index range of the first dimension of Board (see 3.6.1)
Pool (K) 'Terminated -- True if task Pool(K) is terminated (see 9.1)
Date'Size - - number of bits for records of type Date (see 3.8)
Message 'Address - - address of the record variable Message (see 3.7.1)

4.1.5 User-Defined References

Static Semantics
Given a discriminated type 7, the following type-related operational aspect may be specified:
Implicit_Dereference

This aspect is specified by a name that denotes an access discriminant declared for the type
T.

A (view of a) type with a specified Implicit Dereference aspect is a reference type. A reference object is
an object of a reference type. The discriminant named by the Implicit Dereference aspect is the reference
discriminant of the reference type or reference object. A generalized_reference is a name that identifies a
reference object, and denotes the object or subprogram designated by the reference discriminant of the
reference object.

Syntax
generalized_reference ::= reference_object name

Name Resolution Rules

The expected type for the reference_object name in a generalized_reference is any reference type.

Static Semantics

A generalized_reference denotes a view equivalent to that of a dereference of the reference discriminant
of the reference object.

Given a reference type 7, the Implicit Dereference aspect is inherited by descendants of type T if not
overridden. If a descendant type constrains the value of the reference discriminant of 7 by a new
discriminant, that new discriminant is the reference discriminant of the descendant. If the descendant type
constrains the value of the reference discriminant of 7 by an expression other than the name of a new

101 13 December 2012 Attributes 4.1.4

121

13

14/2

15

16

13

2/3

3/3

4/3

5/3

6/3

713



8/3

9/3
10/3

11/3

12/3
13/3
14/3
15/3

1/3

2/3

3/3

4/3

5/3

ISO/IEC 8652:2012(E) — Ada Reference Manual

discriminant, a generalized_reference that identifies an object of the descendant type denotes the object
or subprogram designated by the value of this constraining expression.

Dynamic Semantics
The evaluation of a generalized_reference consists of the evaluation of the reference_object name and a
determination of the object or subprogram designated by the reference discriminant of the named reference
object. A check is made that the value of the reference discriminant is not the null access value.
Constraint_Error is raised if this check fails. The generalized_reference denotes the object or subprogram
designated by the value of the reference discriminant of the named reference object.

Examples
type Barrel is tagged ... -- holds objects of type Element

type Ref Element (Data : access Element) is limited private
with Implicit Dereference => Data;
-~ This Ref Element type is a "reference” type.
"Data" is its reference discriminant.

function Find (B : aliased in out Barrel; Key : String) return Ref Element;
- - Return a reference to an element of a barrel.

B: aliased BRarrel;

Find (B, "grape") := Element'(...); -- Assignthrough a reference.

- - This is equivalent to:
Find (B, "grape").Data.all := Element'(...);

4.1.6 User-Defined Indexing

Static Semantics
Given a tagged type 7, the following type-related, operational aspects may be specified:

Constant_Indexing
This aspect shall be specified by a name that denotes one or more functions declared
immediately within the same declaration list in which 7 is declared. All such functions shall
have at least two parameters, the first of which is of type 7 or T'Class, or is an access-to-
constant parameter with designated type 7 or T'Class.

Variable Indexing
This aspect shall be specified by a name that denotes one or more functions declared
immediately within the same declaration list in which 7 is declared. All such functions shall
have at least two parameters, the first of which is of type T or T'Class, or is an access
parameter with designated type 7 or T"Class. All such functions shall have a return type that
is a reference type (see 4.1.5), whose reference discriminant is of an access-to-variable
type.

These aspects are inherited by descendants of 7' (including the class-wide type T'Class). The aspects shall
not be overridden, but the functions they denote may be.

An indexable container type is (a view of) a tagged type with at least one of the aspects Constant_Indexing
or Variable Indexing specified. An indexable container object is an object of an indexable container type.
A generalized_indexing is a name that denotes the result of calling a function named by a
Constant_Indexing or Variable Indexing aspect.
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Legality Rules
The Constant_Indexing or Variable Indexing aspect shall not be specified:
e on a derived type if the parent type has the corresponding aspect specified or inherited; or
e on a full_type_declaration if the type has a tagged partial view.

In addition to the places where Legality Rules normally apply (see 12.3), these rules apply also in the
private part of an instance of a generic unit.

Syntax
generalized_indexing ::= indexable container_object prefix actual_parameter_part

Name Resolution Rules

The expected type for the indexable container object prefix of a generalized_indexing is any indexable
container type.

If the Constant Indexing aspect is specified for the type of the indexable container object prefix of a
generalized_indexing, then the generalized_indexing is interpreted as a constant indexing under the
following circumstances:

e when the Variable Indexing aspect is not specified for the type of the
indexable_container_object prefix;

e when the indexable container_object prefix denotes a constant;

e when the generalized_indexing is used within a primary where a name denoting a constant is
permitted.

Otherwise, the generalized_indexing is interpreted as a variable indexing.

When a generalized_indexing is interpreted as a constant (or variable) indexing, it is equivalent to a call
on a prefixed view of one of the functions named by the Constant_Indexing (or Variable Indexing) aspect
of the type of the indexable_container_object prefix with the given actual_parameter_part, and with the
indexable _container_object prefix as the prefix of the prefixed view.

Examples

type Indexed Barrel is tagged ...
with Variable Indexing => Find;
-- Indexed Barrel is an indexable container type,
-- Find is the generalized indexing operation.

function Find (B : aliased in out Indexed Barrel; Key : String) return
Ref Element;
-- Return a reference to an element of a barrel (see 4.1.5).

IB: aliased Indexed_Barrel;

-~ All of the following calls are then equivalent:

Find (IB,"pear") .Data.all Element' - - Traditional call

= ( )i
IB.Find ("pear") .Data.all := Element'(...); -- Call of prefixed view
IB.Find ("pear") = Element' (...); -- Implicit dereference (see 4.1.5)
IB ("pear") = Element' ( ) ; -- Implicit indexing and dereference
IB ("pear") .Data.all := Element' ( ) ;i -- Implicit indexing only

103 13 December 2012 User-Defined Indexing 4.1.6

6/3

713

8/3

9/3

10/3

1173

12/3

13/3

14/3

15/3

16/3

1713

18/3

19/3

20/3
21/3



2/2

72

8/2

10

1"

12

13

14

ISO/IEC 8652:2012(E) — Ada Reference Manual

4.2 Literals

A literal represents a value literally, that is, by means of notation suited to its kind. A literal is either a
numeric_literal, a character_literal, the literal null, or a string_literal.

Name Resolution Rules
This paragraph was deleted.

For a name that consists of a character_literal, either its expected type shall be a single character type, in
which case it is interpreted as a parameterless function_call that yields the corresponding value of the
character type, or its expected profile shall correspond to a parameterless function with a character result
type, in which case it is interpreted as the name of the corresponding parameterless function declared as
part of the character type's definition (see 3.5.1). In either case, the character_literal denotes the
enumeration_literal_specification.

The expected type for a primary that is a string_literal shall be a single string type.

Legality Rules

A character_literal that is a name shall correspond to a defining_character_literal of the expected type, or
of the result type of the expected profile.

For each character of a string_literal with a given expected string type, there shall be a corresponding
defining_character_literal of the component type of the expected string type.

This paragraph was deleted.

Static Semantics
An integer literal is of type universal integer. A real literal is of type universal real. The literal null is of
type universal_access.

Dynamic Semantics

The evaluation of a numeric literal, or the literal null, yields the represented value.

The evaluation of a string_literal that is a primary yields an array value containing the value of each
character of the sequence of characters of the string_literal, as defined in 2.6. The bounds of this array
value are determined according to the rules for positional_array_aggregates (see 4.3.3), except that for a
null string literal, the upper bound is the predecessor of the lower bound.

For the evaluation of a string_literal of type 7, a check is made that the value of each character of the
string_literal belongs to the component subtype of 7. For the evaluation of a null string literal, a check is
made that its lower bound is greater than the lower bound of the base range of the index type. The
exception Constraint_Error is raised if either of these checks fails.

NOTES

6 Enumeration literals that are identifiers rather than character_literals follow the normal rules for identifiers when used in
a name (see 4.1 and 4.1.3). Character_literals used as selector_names follow the normal rules for expanded names (see
4.1.3).

Examples

Examples of literals:

3.14159 26536 -- areal literal
1 345 - - an integer literal
N -~ a character literal
"Some Text" -- astring literal
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4.3 Aggregates

An aggregate combines component values into a composite value of an array type, record type, or record
extension.

Syntax
aggregate ::= record_aggregate | extension_aggregate | array_aggregate

Name Resolution Rules

The expected type for an aggregate shall be a single array type, record type, or record extension.

Legality Rules
An aggregate shall not be of a class-wide type.

Dynamic Semantics
For the evaluation of an aggregate, an anonymous object is created and values for the components or
ancestor part are obtained (as described in the subsequent subclause for each kind of the aggregate) and
assigned into the corresponding components or ancestor part of the anonymous object. Obtaining the
values and the assignments occur in an arbitrary order. The value of the aggregate is the value of this
object.

If an aggregate is of a tagged type, a check is made that its value belongs to the first subtype of the type.
Constraint_Error is raised if this check fails.

4.3.1 Record Aggregates

In a record_aggregate, a value is specified for each component of the record or record extension value,
using either a named or a positional association.

Syntax
record_aggregate ::= (record_component_association_list)

record_component_association_list ::=
record_component_association {, record_component_association}
| null record

record_component_association ::=
[component_choice_list =>] expression
| component_choice_list => <>

component_choice_list ::=
component_selector_name {| component_selector_name}
| others

A record_component_association is a named component association if it has a
component_choice_list; otherwise, it is a positional component association. Any positional
component associations shall precede any named component associations. If there is a named
association with a component_choice_list of others, it shall come last.

In the record_component_association_list for a record_aggregate, if there is only one association,
it shall be a named association.
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Name Resolution Rules

The expected type for a record_aggregate shall be a single record type or record extension.

For the record_component_association_list of a record_aggregate, all components of the composite
value defined by the aggregate are needed; for the association list of an extension_aggregate, only those
components not determined by the ancestor expression or subtype are needed (see 4.3.2). Each selector_-
name in a record_component_association shall denote a needed component (including possibly a
discriminant).

The expected type for the expression of a record_component_association is the type of the associated
component(s); the associated component(s) are as follows:

e For a positional association, the component (including possibly a discriminant) in the
corresponding relative position (in the declarative region of the type), counting only the needed
components;

e For a named association with one or more component selector_names, the named
component(s);

e For a named association with the reserved word others, all needed components that are not
associated with some previous association.

Legality Rules

If the type of a record_aggregate is a record extension, then it shall be a descendant of a record type,
through one or more record extensions (and no private extensions).

The reserved words null record may appear only if there are no components needed in a given record_-
component_association_list.

Each record_component_association other than an others choice with a <> shall have at least one
associated component, and each needed component shall be associated with exactly one record_-
component_association. If a record_component_association with an expression has two or more
associated components, all of them shall be of the same type, or all of them shall be of anonymous access
types whose subtypes statically match.

The value of a discriminant that governs a variant_part P shall be given by a static expression, unless P is
nested within a variant 7 that is not selected by the discriminant value governing the variant_part
enclosing V.

A record_component_association for a discriminant without a default_expression shall have an
expression rather than <>,

Dynamic Semantics

The evaluation of a record_aggregate consists of the evaluation of the record_component_association_-
list.

For the evaluation of a record_component_association_list, any per-object constraints (see 3.8) for
components specified in the association list are elaborated and any expressions are evaluated and
converted to the subtype of the associated component. Any constraint elaborations and expression
evaluations (and conversions) occur in an arbitrary order, except that the expression for a discriminant is
evaluated (and converted) prior to the elaboration of any per-object constraint that depends on it, which in
turn occurs prior to the evaluation and conversion of the expression for the component with the per-object
constraint.
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For a record_component_association with an expression, the expression defines the value for the
associated component(s). For a record_component_association with <>, if the component_declaration
has a default_expression, that default_expression defines the value for the associated component(s);
otherwise, the associated component(s) are initialized by default as for a stand-alone object of the
component subtype (see 3.3.1).

The expression of a record_component_association is evaluated (and converted) once for each
associated component.

NOTES

7 For a record_aggregate with positional associations, expressions specifying discriminant values appear first since the
known_discriminant_part is given first in the declaration of the type; they have to be in the same order as in the
known_discriminant_part.

Examples

Example of a record aggregate with positional associations:
(4, July, 1776) -- see 3.8

Examples of record aggregates with named associations:

(Day => 4, Month => July, Year => 1776)
Month => July, Day => 4, Year => 1776)

(
(Disk, Closed, Track => 5, Cylinder => 12) -- see 3.8.1
(Unit => Disk, Status => Closed, Cylinder => 9, Track => 1)

Examples of component associations with several choices:

(Value => 0, Succ|Pred => new Cell' (0, null, null)) -- see 3.10.1
-~ The allocator is evaluated twice: Succ and Pred designate different cells
(Value => 0, Succ|Pred => <>) -- see 3.10.1

- - Succ and Pred will be set to null

Examples of record aggregates for tagged types (see 3.9 and 3.9.1):

Expression' (null record)
Literal' (Value => 0.0)
Painted Point' (0.0, Pi/2.0, Paint => Red)

4.3.2 Extension Aggregates

An extension_aggregate specifies a value for a type that is a record extension by specifying a value or
subtype for an ancestor of the type, followed by associations for any components not determined by the
ancestor_part.

Syntax

extension_aggregate ::=
(ancestor_part with record_component_association_list)

ancestor_part ::= expression | subtype_mark

Name Resolution Rules

The expected type for an extension_aggregate shall be a single type that is a record extension. If the
ancestor_part is an expression, it is expected to be of any tagged type.
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Legality Rules

If the ancestor_part is a subtype_mark, it shall denote a specific tagged subtype. If the ancestor_part is
an expression, it shall not be dynamically tagged. The type of the extension_aggregate shall be a
descendant of the type of the ancestor_part (the ancestor type), through one or more record extensions
(and no private extensions). If the ancestor_part is a subtype_mark, the view of the ancestor type from
which the type is descended (see 7.3.1) shall not have unknown discriminants.

If the type of the ancestor_part is limited and at least one component is needed in the
record_component_association_list, then the ancestor_part shall not be:

e acall to a function with an unconstrained result subtype; nor
e a parenthesized or qualified expression whose operand would violate this rule; nor

e a conditional_expression having at least one dependent_expression that would violate this rule.

Static Semantics

For the record_component_association_list of an extension_aggregate, the only components needed are
those of the composite value defined by the aggregate that are not inherited from the type of the
ancestor_part, plus any inherited discriminants if the ancestor_part is a subtype_mark that denotes an
unconstrained subtype.

Dynamic Semantics
For the evaluation of an extension_aggregate, the record_component_association_list is evaluated. If
the ancestor_part is an expression, it is also evaluated; if the ancestor_part is a subtype_mark, the
components of the value of the aggregate not given by the record_component_association_list are
initialized by default as for an object of the ancestor type. Any implicit initializations or evaluations are
performed in an arbitrary order, except that the expression for a discriminant is evaluated prior to any
other evaluation or initialization that depends on it.

If the type of the ancestor_part has discriminants and the ancestor_part is not a subtype _mark that
denotes an unconstrained subtype, then a check is made that each discriminant determined by the
ancestor_part has the value specified for a corresponding discriminant, if any, either in the record_-
component_association_list, or in the derived_type_definition for some ancestor of the type of the
extension_aggregate. Constraint_Error is raised if this check fails.

NOTES

8 If all components of the value of the extension_aggregate are determined by the ancestor_part, then the record_-
component_association_list is required to be simply null record.

9 If the ancestor_part is a subtype_mark, then its type can be abstract. If its type is controlled, then as the last step of
evaluating the aggregate, the Initialize procedure of the ancestor type is called, unless the Initialize procedure is abstract
(see 7.6).

Examples
Examples of extension aggregates (for types defined in 3.9.1):

Painted Point' (Point with Red)
(Point' (P) with Paint => Black)

(Expression with Left => 1.2, Right => 3.4)
Addition' (Binop with null record)
- - presuming Binop is of type Binary_Operation
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4.3.3 Array Aggregates

In an array_aggregate, a value is specified for each component of an array, either positionally or by its
index. For a positional_array_aggregate, the components are given in increasing-index order, with a final
others, if any, representing any remaining components. For a named_array_aggregate, the components
are identified by the values covered by the discrete_choices.

Syntax
array_aggregate ::=
positional_array_aggregate | named_array_aggregate
positional_array_aggregate ::=
(expression, expression {, expression})
| (expression {, expression}, others => expression)
| (expression {, expression}, others => <>)

named_array_aggregate ::=
(array_component_association {, array_component_association})
array_component_association ::=

discrete_choice_list => expression
| discrete_choice_list => <>

An n-dimensional array_aggregate is one that is written as n levels of nested array_aggregates (or at the
bottom level, equivalent string_literals). For the multidimensional case (n >= 2) the array_aggregates (or
equivalent string_literals) at the n—1 lower levels are called subaggregates of the enclosing n-dimensional
array_aggregate. The expressions of the bottom level subaggregates (or of the array_aggregate itself if
one-dimensional) are called the array component expressions of the enclosing n-dimensional
array_aggregate.

Name Resolution Rules

The expected type for an array_aggregate (that is not a subaggregate) shall be a single array type. The
component type of this array type is the expected type for each array component expression of the
array_aggregate.

The expected type for each discrete_choice in any discrete_choice_list of a named_array_aggregate is
the type of the corresponding index; the corresponding index for an array_aggregate that is not a
subaggregate is the first index of its type; for an (n—m)-dimensional subaggregate within an
array_aggregate of an n-dimensional type, the corresponding index is the index in position m+1.

Legality Rules

An array_aggregate of an n-dimensional array type shall be written as an n-dimensional
array_aggregate.

An others choice is allowed for an array_aggregate only if an applicable index constraint applies to the
array_aggregate. An applicable index constraint is a constraint provided by certain contexts where an
array_aggregate is permitted that can be used to determine the bounds of the array value specified by the
aggregate. Each of the following contexts (and none other) defines an applicable index constraint:

e For an explicit_actual_parameter, an explicit_generic_actual_parameter, the expression of a
return statement, the initialization expression in an object_declaration, or a default_expression
(for a parameter or a component), when the nominal subtype of the corresponding formal
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parameter, generic formal parameter, function return object, object, or component is a
constrained array subtype, the applicable index constraint is the constraint of the subtype;

e For the expression of an assignment_statement where the name denotes an array variable, the
applicable index constraint is the constraint of the array variable;

e For the operand of a qualified_expression whose subtype_mark denotes a constrained array
subtype, the applicable index constraint is the constraint of the subtype;

e For a component expression in an aggregate, if the component's nominal subtype is a
constrained array subtype, the applicable index constraint is the constraint of the subtype;

e For a parenthesized expression, the applicable index constraint is that, if any, defined for the
expression;

e For a conditional_expression, the applicable index constraint for each dependent expression is
that, if any, defined for the conditional_expression.

The applicable index constraint applies to an array_aggregate that appears in such a context, as well as to
any subaggregates thereof. In the case of an explicit_actual_parameter (or default_expression) for a call
on a generic formal subprogram, no applicable index constraint is defined.

The discrete_choice_list of an array_component_association is allowed to have a discrete_choice that is
a nonstatic choice_expression or that is a subtype_indication or range that defines a nonstatic or null
range, only if it is the single discrete_choice of its discrete_choice_list, and there is only one
array_component_association in the array_aggregate.

In a named_array_aggregate where all discrete_choices are static, no two discrete_choices are allowed
to cover the same value (see 3.8.1); if there is no others choice, the discrete_choices taken together shall
exactly cover a contiguous sequence of values of the corresponding index type.

A bottom level subaggregate of a multidimensional array_aggregate of a given array type is allowed to be
a string_literal only if the component type of the array type is a character type; each character of such a
string_literal shall correspond to a defining_character_literal of the component type.

Static Semantics

A subaggregate that is a string_literal is equivalent to one that is a positional_array_aggregate of the
same length, with each expression being the character_literal for the corresponding character of the
string_literal.

Dynamic Semantics
The evaluation of an array_aggregate of a given array type proceeds in two steps:
1. Any discrete_choices of this aggregate and of its subaggregates are evaluated in an arbitrary
order, and converted to the corresponding index type;

2. The array component expressions of the aggregate are evaluated in an arbitrary order and their
values are converted to the component subtype of the array type; an array component expression
is evaluated once for each associated component.

Each expression in an array_component_association defines the value for the associated component(s).
For an array_component_association with <>, the associated component(s) are initialized by default as
for a stand-alone object of the component subtype (see 3.3.1).

The bounds of the index range of an array_aggregate (including a subaggregate) are determined as
follows:
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e For an array_aggregate with an others choice, the bounds are those of the corresponding index
range from the applicable index constraint;

e For a positional_array_aggregate (or equivalent string_literal) without an others choice, the
lower bound is that of the corresponding index range in the applicable index constraint, if
defined, or that of the corresponding index subtype, if not; in either case, the upper bound is
determined from the lower bound and the number of expressions (or the length of the
string_literal);

e For a named_array_aggregate without an others choice, the bounds are determined by the
smallest and largest index values covered by any discrete_choice_list.

For an array_aggregate, a check is made that the index range defined by its bounds is compatible with the
corresponding index subtype.

For an array_aggregate with an others choice, a check is made that no expression or <> is specified for
an index value outside the bounds determined by the applicable index constraint.

For a multidimensional array_aggregate, a check is made that all subaggregates that correspond to the
same index have the same bounds.

The exception Constraint_Error is raised if any of the above checks fail.

NOTES

10 In an array_aggregate, positional notation may only be used with two or more expressions; a single expression in
parentheses is interpreted as a parenthesized expression. A named_array_aggregate, such as (1 => X), may be used to
specify an array with a single component.

Examples
Examples of array aggregates with positional associations:
(7, 9, 5,1, 3, 2, 4, 8, 6, 0)
Table' (5, 8, 4, 1, others => 0) -- see3.6

Examples of array aggregates with named associations:

(L .. 5=> (1L .. 8 =>0.0)) - - two-dimensional

(1 .. N => new Cell) -- Nnew cells, in particular for N = 0

Table'(2 | 4 | 10 => 1, others => 0)

Schedule' (Mon .. Fri => True, others => False) -- seel.6

Schedule' (Wed | Sun => False, others => True)

Vector' (1l => 2.5) - - single-component vector

Examples of two-dimensional array aggregates:

- - Three aggregates for the same value of subtype Matrix(1..2,1..3) (see 3.6):

((1.2, 1.2, 1.3), (2.1, 2.2, 2.3))
(1 => (1.1, 1.2, 1.3), 2 => (2.1, 2.2, 2.3))
(1 => (1L =>1.1, 2 =>1.2, 3 =>1.3), 2 => (1 => 2.1, 2 => 2.2, 3 => 2.3))

Examples of aggregates as initial values:

A : Table := (7, 9, 5, 1, 3, 2, 4, 8, 6, 0); -- A(1)=7, A(10)=0

B : Table := (2 | 4 | 10 => 1, others => 0); -- B(1)=0, B(10)=1

C constant Matrix := (1 5 => (1 .. 8 => 0.0)); --C'Last(l)=5, C'Last(2)=8
D : Bit_Vector(M .. N) := (M .. N => True); - - see 3.6

E : Bit Vector(M .. N) := (others => True);

F String (1 .. 1) := (1 => 'F'); -- aonecomponentaggregate: same as "F"
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Example of an array aggregate with defaulted others choice and with an applicable index constraint

provided by an enclosing record aggregate:

Buffer' (Size => 50, Pos => 1, Value => String'('x', others => <>)) --see 3.7

4.4 Expressions

An expression is a formula that defines the computation or retrieval of a value. In this International
Standard, the term “expression” refers to a construct of the syntactic category expression or of any of the
following categories: choice_expression, choice_relation, relation, simple_expression, term, factor,

primary, conditional_expression, quantified_expression.

Syntax
expression ::=
relation {and relation} |relation {and then relation}
| relation {or relation} | relation {or else relation}

| relation {xor relation}

choice_expression ::=
choice_relation {and choice_relation}
| choice_relation {or choice_relation}
| choice_relation {xor choice_relation}
| choice_relation {and then choice_relation}
| choice_relation {or else choice_relation}

choice_relation ::=
simple_expression [relational_operator simple_expression]

relation ::=
simple_expression [relational_operator simple_expression]
| simple_expression [not] in membership_choice_list

membership_choice_list ::= membership_choice {| membership_choice}
membership_choice ::= choice_expression | range | subtype_mark
simple_expression ::= [unary_adding_operator] term {binary_adding_operator term}
term ::= factor {multiplying_operator factor}
factor ::= primary [** primary] | abs primary | not primary
primary ::=

numeric_literal | null | string_literal | aggregate
| name | allocator | (expression)
| (conditional_expression) | (quantified_expression)

Name Resolution Rules

A name used as a primary shall resolve to denote an object or a value.

Static Semantics

Each expression has a type; it specifies the computation or retrieval of a value of that type.

Dynamic Semantics

The value of a primary that is a name denoting an object is the value of the object.
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Implementation Permissions
For the evaluation of a primary that is a name denoting an object of an unconstrained numeric subtype, if

the value of the object is outside the base range of its type, the implementation may either raise
Constraint_Error or return the value of the object.

Examples

Examples of primaries:

4.0 - - real literal

Pi - - named number

(1 .. 10 => 0) - - array aggregate

Sum -~ variable

Integer'Last - - attribute

Sine (X) - - function call

Color' (Blue) - - qualified expression

Real (M*N) -- conversion

(Line Count + 10) -- parenthesized expression
Examples of expressions:

Volume - - primary

not Destroyed - - factor

2*Line_ Count -~ term

-4.0 - - simple expression

-4.0 + A - - simple expression

B**2 - 4.0*A*C - - simple expression

R*Sin (6) *Cos (o) - - simple expression

Password(l .. 3) = "Bwv" - - relation

Count in Small Int - - relation

Count not in Small Int - - relation

Index = 0 or Item Hit - - expression

(Cold and Sunny) or Warm - - expression (parentheses are required)

A*x (Bx*() - - expression (parentheses are required)

4.5 Operators and Expression Evaluation

The language defines the following six categories of operators (given in order of increasing precedence).
The corresponding operator_symbols, and only those, can be used as designators in declarations of
functions for user-defined operators. See 6.6, “Overloading of Operators”.

Syntax
logical_operator ::= and | or | xor

relational_operator ::= /=< |<=|>|>=

binary_adding_operator ::= + |- | &
unary_adding_operator ::= + |-
multiplying_operator ::= * |/ | mod | rem
highest_precedence_operator ::= ** | abs | not

Static Semantics

For a sequence of operators of the same precedence level, the operators are associated with their operands
in textual order from left to right. Parentheses can be used to impose specific associations.

For each form of type definition, certain of the above operators are predefined; that is, they are implicitly
declared immediately after the type definition. For each such implicit operator declaration, the parameters
are called Left and Right for binary operators; the single parameter is called Right for unary operators. An
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expression of the form X op Y, where op is a binary operator, is equivalent to a function_call of the form
"op"(X, Y). An expression of the form op Y, where op is a unary operator, is equivalent to a function_call
of the form "op"(Y). The predefined operators and their effects are described in subclauses 4.5.1 through
4.5.6.

Dynamic Semantics

The predefined operations on integer types either yield the mathematically correct result or raise the
exception Constraint Error. For implementations that support the Numerics Annex, the predefined
operations on real types yield results whose accuracy is defined in Annex G, or raise the exception
Constraint_Error.

Implementation Requirements

The implementation of a predefined operator that delivers a result of an integer or fixed point type may
raise Constraint_Error only if the result is outside the base range of the result type.

The implementation of a predefined operator that delivers a result of a floating point type may raise
Constraint_Error only if the result is outside the safe range of the result type.

Implementation Permissions

For a sequence of predefined operators of the same precedence level (and in the absence of parentheses
imposing a specific association), an implementation may impose any association of the operators with
operands so long as the result produced is an allowed result for the left-to-right association, but ignoring
the potential for failure of language-defined checks in either the left-to-right or chosen order of
association.

NOTES
11 The two operands of an expression of the form X op Y, where op is a binary operator, are evaluated in an arbitrary
order, as for any function_call (see 6.4).

Examples
Examples of precedence:
not Sunny or Warm - - same as (not Sunny) or Warm
X > 4.0 and Y > 0.0 -- sameas (X>4.0)and (Y > 0.0)
-4 0*A**2 -- same as —(4.0 * (A**2))
abs (1 + A) + B -- sameas (abs (1 + A)) + B
Y** (-3) - - parentheses are necessary
A/ B *C -- same as (A/B)*C
A+ (B + Q) -- evaluate B + C before adding it to A

4.5.1 Logical Operators and Short-circuit Control Forms

Name Resolution Rules

An expression consisting of two relations connected by and then or or else (a short-circuit control form)
shall resolve to be of some boolean type; the expected type for both relations is that same boolean type.

Static Semantics
The following logical operators are predefined for every boolean type 7, for every modular type 7, and for
every one-dimensional array type 7 whose component type is a boolean type:

function "and" (Left, Right : 7) return T
function "or" (Left, Right : T) return T
function "xor" (Left, Right : T) return T
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For boolean types, the predefined logical operators and, or, and xor perform the conventional operations
of conjunction, inclusive disjunction, and exclusive disjunction, respectively.

For modular types, the predefined logical operators are defined on a bit-by-bit basis, using the binary
representation of the value of the operands to yield a binary representation for the result, where zero
represents False and one represents True. If this result is outside the base range of the type, a final
subtraction by the modulus is performed to bring the result into the base range of the type.

The logical operators on arrays are performed on a component-by-component basis on matching
components (as for equality — see 4.5.2), using the predefined logical operator for the component type.
The bounds of the resulting array are those of the left operand.

Dynamic Semantics

The short-circuit control forms and then and or else deliver the same result as the corresponding
predefined and and or operators for boolean types, except that the left operand is always evaluated first,
and the right operand is not evaluated if the value of the left operand determines the result.

For the logical operators on arrays, a check is made that for each component of the left operand there is a
matching component of the right operand, and vice versa. Also, a check is made that each component of
the result belongs to the component subtype. The exception Constraint Error is raised if either of the
above checks fails.

NOTES
12 The conventional meaning of the logical operators is given by the following truth table:
A B (A and B) (A or B) (A xor B)
True True True True False
True False False True True
False True False True True
False False False False False
Examples

Examples of logical operators:

Sunny or Warm
Filter (1 .. 10) and Filter (15 .. 24) -- see3.6.1

Examples of short-circuit control forms:

Next Car.Owner /= null and then Next Car.Owner.Age > 25 -- see3.10.1
N = 0 or else A(N) = Hit Value

4.5.2 Relational Operators and Membership Tests

The equality operators = (equals) and /= (not equals) are predefined for nonlimited types. The other
relational_operators are the ordering operators < (less than), <= (less than or equal), > (greater than), and
>= (greater than or equal). The ordering operators are predefined for scalar types, and for discrete array
types, that is, one-dimensional array types whose components are of a discrete type.

A membership test, using in or not in, determines whether or not a value belongs to any given subtype or
range, is equal to any given value, has a tag that identifies a type that is covered by a given type, or is
convertible to and has an accessibility level appropriate for a given access type. Membership tests are
allowed for all types.

115 13 December 2012 Logical Operators and Short-circuit Control Forms 4.5.1

10

1"

12

13

14

2/3



3/3

3.1/3

4.113

7.1/2

7.2/2

9.1/2

9.2/2

9.3/3

9.4/2

9.5/2

ISO/IEC 8652:2012(E) — Ada Reference Manual

Name Resolution Rules

The tested type of a membership test is determined by the membership_choices of the
membership_choice_list. Either all membership_choices of the membership_choice_list shall resolve to
the same type, which is the tested type; or each membership_choice shall be of an elementary type, and
the tested type shall be covered by each of these elementary types.

If the tested type is tagged, then the simple_expression shall resolve to be of a type that is convertible
(see 4.6) to the tested type; if untagged, the expected type for the simple_expression is the tested type.
The expected type of a choice_expression in a membership_choice, and of a simple_expression of a
range in a membership_choice, is the tested type of the membership operation.

Legality Rules

For a membership test, if the simple_expression is of a tagged class-wide type, then the tested type shall
be (visibly) tagged.

If a membership test includes one or more choice_expressions and the tested type of the membership test
is limited, then the tested type of the membership test shall have a visible primitive equality operator.

Static Semantics

The result type of a membership test is the predefined type Boolean.

The equality operators are predefined for every specific type T that is not limited, and not an anonymous
access type, with the following specifications:

function "=" (Left, Right : T) return Boolean

function "/="(Left, Right : 7T) return Boolean
The following additional equality operators for the universal access type are declared in package Standard
for use with anonymous access types:

function "=" (Left, Right : universal access) return Boolean
function "/="(Left, Right : universal access) return Boolean

The ordering operators are predefined for every specific scalar type 7, and for every discrete array type 7,
with the following specifications:

return Boolean
return Boolean
return Boolean
return Boolean

function "<" (Left, Right
function "<="(Left, Right
function ">" (Left, Right
function ">="(Left, Right

3333

Name Resolution Rules

At least one of the operands of an equality operator for universal_access shall be of a specific anonymous
access type. Unless the predefined equality operator is identified using an expanded name with prefix
denoting the package Standard, neither operand shall be of an access-to-object type whose designated type
is D or D'Class, where D has a user-defined primitive equality operator such that:

e its result type is Boolean;

e it is declared immediately within the same declaration list as D or any partial or incomplete view
of D; and

e at least one of its operands is an access parameter with designated type D.

Legality Rules

At least one of the operands of the equality operators for umiversal access shall be of type
universal_access, or both shall be of access-to-object types, or both shall be of access-to-subprogram
types. Further:
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e When both are of access-to-object types, the designated types shall be the same or one shall
cover the other, and if the designated types are elementary or array types, then the designated
subtypes shall statically match;

e When both are of access-to-subprogram types, the designated profiles shall be subtype
conformant.

If the profile of an explicitly declared primitive equality operator of an untagged record type is type
conformant with that of the corresponding predefined equality operator, the declaration shall occur before
the type is frozen. In addition, if the untagged record type has a nonlimited partial view, then the
declaration shall occur in the visible part of the enclosing package. In addition to the places where
Legality Rules normally apply (see 12.3), this rule applies also in the private part of an instance of a
generic unit.

Dynamic Semantics

For discrete types, the predefined relational operators are defined in terms of corresponding mathematical
operations on the position numbers of the values of the operands.

For real types, the predefined relational operators are defined in terms of the corresponding mathematical
operations on the values of the operands, subject to the accuracy of the type.

Two access-to-object values are equal if they designate the same object, or if both are equal to the null
value of the access type.

Two access-to-subprogram values are equal if they are the result of the same evaluation of an Access
attribute_reference, or if both are equal to the null value of the access type. Two access-to-subprogram
values are unequal if they designate different subprograms. It is unspecified whether two access values
that designate the same subprogram but are the result of distinct evaluations of Access
attribute_references are equal or unequal.

For a type extension, predefined equality is defined in terms of the primitive (possibly user-defined) equals
operator for the parent type and for any components that have a record type in the extension part, and
predefined equality for any other components not inherited from the parent type.

For a derived type whose parent is an untagged record type, predefined equality is defined in terms of the
primitive (possibly user-defined) equals operator of the parent type.

For a private type, if its full type is a record type, predefined equality is defined in terms of the primitive
equals operator of the full type; otherwise, predefined equality for the private type is that of its full type.

For other composite types, the predefined equality operators (and certain other predefined operations on
composite types — see 4.5.1 and 4.6) are defined in terms of the corresponding operation on matching
components, defined as follows:

e For two composite objects or values of the same non-array type, matching components are those
that correspond to the same component_declaration or discriminant_specification;

e For two one-dimensional arrays of the same type, matching components are those (if any) whose
index values match in the following sense: the lower bounds of the index ranges are defined to
match, and the successors of matching indices are defined to match;

e For two multidimensional arrays of the same type, matching components are those whose index
values match in successive index positions.

The analogous definitions apply if the types of the two objects or values are convertible, rather than being
the same.
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Given the above definition of matching components, the result of the predefined equals operator for
composite types (other than for those composite types covered earlier) is defined as follows:

e Ifthere are no components, the result is defined to be True;
e If there are unmatched components, the result is defined to be False;

e Otherwise, the result is defined in terms of the primitive equals operator for any matching
components that are records, and the predefined equals for any other matching components.

If the primitive equals operator for an untagged record type is abstract, then Program_Error is raised at the
point of any (implicit) call to that abstract subprogram.

For any composite type, the order in which "=" is called for components is unspecified. Furthermore, if the
result can be determined before calling "=" on some components, it is unspecified whether "=" is called on
those components.

The predefined "/=" operator gives the complementary result to the predefined "=" operator.

For a discrete array type, the predefined ordering operators correspond to lexicographic order using the
predefined order relation of the component type: A null array is lexicographically less than any array
having at least one component. In the case of nonnull arrays, the left operand is lexicographically less than
the right operand if the first component of the left operand is less than that of the right; otherwise, the left
operand is lexicographically less than the right operand only if their first components are equal and the tail
of the left operand is lexicographically less than that of the right (the tail consists of the remaining
components beyond the first and can be null).

An individual membership test is the membership test of a single membership_choice.

For the evaluation of a membership test using in whose membership_choice_list has a single
membership_choice, the simple_expression and the membership_choice are evaluated in an arbitrary
order; the result is the result of the individual membership test for the membership_choice.

For the evaluation of a membership test using in whose membership_choice_list has more than one
membership_choice, the simple_expression of the membership test is evaluated first and the result of the
operation is equivalent to that of a sequence consisting of an individual membership test on each
membership_choice combined with the short-circuit control form or else.

An individual membership test yields the result True if:

e The membership_choice is a choice_expression, and the simple_expression is equal to the
value of the membership_choice. If the tested type is a record type or a limited type, the test
uses the primitive equality for the type; otherwise, the test uses predefined equality.

e The membership_choice is a range and the value of the simple_expression belongs to the
given range.

e The membership_choice is a subtype_mark, the tested type is scalar, the value of the
simple_expression belongs to the range of the named subtype, and the predicate of the named
subtype evaluates to True.

e The membership_choice is a subtype_mark, the tested type is not scalar, the value of the
simple_expression satisfies any constraints of the named subtype, the predicate of the named
subtype evaluates to True, and:

« if the type of the simple_expression is class-wide, the value has a tag that identifies a type
covered by the tested type;
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« if the tested type is an access type and the named subtype excludes null, the value of the
simple_expression is not null;

« if the tested type is a general access-to-object type, the type of the simple_expression is
convertible to the tested type and its accessibility level is no deeper than that of the tested
type; further, if the designated type of the tested type is tagged and the simple_expression
is nonnull, the tag of the object designated by the value of the simple_expression is
covered by the designated type of the tested type.

Otherwise, the test yields the result False.

A membership test using not in gives the complementary result to the corresponding membership test
using in.

Implementation Requirements
For all nonlimited types declared in language-defined packages, the "=" and "/=" operators of the type
shall behave as if they were the predefined equality operators for the purposes of the equality of composite
types and generic formal types.

NOTES
This paragraph was deleted.

13 If a composite type has components that depend on discriminants, two values of this type have matching components
if and only if their discriminants are equal. Two nonnull arrays have matching components if and only if the length of
each dimension is the same for both.

Examples

Examples of expressions involving relational operators and membership tests:

X /= Y

nn < n A n and n A n < n Aa n - = True

n Aa n < n B n and "A n < "A n - = True

My Car = null -~ True if My_Car has been set to null (see 3.10.1)
My Car = Your_ Car - - True if we both share the same car
My Car.all = Your Car.all - - True if the two cars are identical

N not in 1 .. 10 - - range membership test

Today in Mon .. Fri - - range membership test

Today in Weekday - - subtype membership test (see 3.5.1)
Card in Clubs | Spades - - list membership test (see 3.5.1)
Archive in Disk Unit - - subtype membership test (see 3.8.1)
Tree.all in Addition'Class -- class membership test (see 3.9.1)

4.5.3 Binary Adding Operators

Static Semantics
The binary adding operators + (addition) and — (subtraction) are predefined for every specific numeric
type T with their conventional meaning. They have the following specifications:

function "+" (Left, Right : 7) return T
function "-"(Left, Right : 7) return T

The concatenation operators & are predefined for every nonlimited, one-dimensional array type 7 with
component type C. They have the following specifications:

function "&" (Left : 7; Right : T) return T
function "&" (Left T; Right : C) return T
function "&" (Left C; Right : T) return T
function "&" (Left C; Right : C) return T
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Dynamic Semantics

For the evaluation of a concatenation with result type 7, if both operands are of type 7, the result of the
concatenation is a one-dimensional array whose length is the sum of the lengths of its operands, and whose
components comprise the components of the left operand followed by the components of the right
operand. If the left operand is a null array, the result of the concatenation is the right operand. Otherwise,
the lower bound of the result is determined as follows:

o If the ultimate ancestor of the array type was defined by a constrained_array_definition, then
the lower bound of the result is that of the index subtype;

e If the ultimate ancestor of the array type was defined by an unconstrained_array_definition,
then the lower bound of the result is that of the left operand.

The upper bound is determined by the lower bound and the length. A check is made that the upper bound
of the result of the concatenation belongs to the range of the index subtype, unless the result is a null array.
Constraint_Error is raised if this check fails.

If either operand is of the component type C, the result of the concatenation is given by the above rules,
using in place of such an operand an array having this operand as its only component (converted to the
component subtype) and having the lower bound of the index subtype of the array type as its lower bound.

The result of a concatenation is defined in terms of an assignment to an anonymous object, as for any
function call (see 6.5).

NOTES
14 As for all predefined operators on modular types, the binary adding operators + and — on modular types include a final
reduction modulo the modulus if the result is outside the base range of the type.

Examples

Examples of expressions involving binary adding operators:

Z + 0.1 -~ Z has to be of a real type

"A" & "BCD" -- concatenation of two string literals

'A' & "BCD" -- concatenation of a character literal and a string literal
'A' & 'A' - - concatenation of two character literals

4.5.4 Unary Adding Operators

Static Semantics

The unary adding operators + (identity) and — (negation) are predefined for every specific numeric type T
with their conventional meaning. They have the following specifications:

function "+" (Right : 7) return T
function "-"(Right : 7) return T
NOTES

15 For modular integer types, the unary adding operator —, when given a nonzero operand, returns the result of
subtracting the value of the operand from the modulus; for a zero operand, the result is zero.

4.5.5 Multiplying Operators

Static Semantics

The multiplying operators * (multiplication), / (division), mod (modulus), and rem (remainder) are
predefined for every specific integer type 7:

4.5.3 Binary Adding Operators 13 December 2012 120



ISO/IEC 8652:2012(E) — Ada Reference Manual

function "*"
function "/"
function "mod"
function "rem"

Left, Right : 7T) return
Left, Right : 7) return
Left, Right : 7) return
Left, Right : 7) return

NSNS

(
(
(
(
Signed integer multiplication has its conventional meaning.

Signed integer division and remainder are defined by the relation:
A = (A/B)*B + (A rem B)

where (A rem B) has the sign of A and an absolute value less than the absolute value of B. Signed integer
division satisfies the identity:

(-A)/B = -(A/B) = A/(-B)

The signed integer modulus operator is defined such that the result of A mod B is either zero, or has the
sign of B and an absolute value less than the absolute value of B; in addition, for some signed integer
value N, this result satisfies the relation:

A = B*N + (A mod B)

The multiplying operators on modular types are defined in terms of the corresponding signed integer
operators, followed by a reduction modulo the modulus if the result is outside the base range of the type
(which is only possible for the "*" operator).

Multiplication and division operators are predefined for every specific floating point type 7:

function "*" (Left, Right : 7) return T

function "/" (Left, Right : 7) return T
The following multiplication and division operators, with an operand of the predefined type Integer, are
predefined for every specific fixed point type 7:

function "*" (Left : 7; Right : Integer) return T

function "*" (Left : Integer; Right : 7) return T

function "/"(Left : T; Right : Integer) return T
All of the above multiplying operators are usable with an operand of an appropriate universal numeric
type. The following additional multiplying operators for root real are predefined, and are usable when
both operands are of an appropriate universal or root numeric type, and the result is allowed to be of type
root_real, as in a number_declaration:

function "*" (Left, Right : root real) return root real
function "/"(Left, Right : root real) return root real

function "*" (Left : root integer; Right : root real) return root real

(
(
function "*" (Left : root real; Right : root integer) return root real
(
function "/" (Left : root real; Right : root_integer) return root real

Multiplication and division between any two fixed point types are provided by the following two
predefined operators:

function "*" (Left, Right : unmiversal fixed) return universal fixed
function "/" (Left, Right : unmiversal fixed) return universal fixed

Name Resolution Rules

The above two fixed-fixed multiplying operators shall not be used in a context where the expected type for
the result is itself universal fixed — the context has to identify some other numeric type to which the
result is to be converted, either explicitly or implicitly. Unless the predefined universal operator is
identified using an expanded name with prefix denoting the package Standard, an explicit conversion is
required on the result when using the above fixed-fixed multiplication operator if either operand is of a
type having a user-defined primitive multiplication operator such that:
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1923 o it is declared immediately within the same declaration list as the type or any partial or
incomplete view thereof; and

1932 o both of its formal parameters are of a fixed-point type.
19.422 A corresponding requirement applies to the universal fixed-fixed division operator.

Paragraph 20 was deleted.

Dynamic Semantics

21 The multiplication and division operators for real types have their conventional meaning. For floating
point types, the accuracy of the result is determined by the precision of the result type. For decimal fixed
point types, the result is truncated toward zero if the mathematical result is between two multiples of the
small of the specific result type (possibly determined by context); for ordinary fixed point types, if the
mathematical result is between two multiples of the small, it is unspecified which of the two is the result.

22 The exception Constraint_Error is raised by integer division, rem, and mod if the right operand is zero.
Similarly, for a real type T with 7"Machine Overflows True, division by zero raises Constraint Error.

NOTES
23 16 For positive A and B, A/B is the quotient and A rem B is the remainder when A is divided by B. The following
relations are satisfied by the rem operator:
24 A rem (-B) = A rem B
(-A) rem B = -(A rem B)
25 17 For any signed integer K, the following identity holds:
26 A mod B = (A + K*B) mod B
27 The relations between signed integer division, remainder, and modulus are illustrated by the following table:
28 A B A/B A rem B A mod B A B A/B A rem B A mod B
29 10 2 0 0 -10 5 -2 0 0
11 5 2 1 1 -11 5 -2 -1 4
12 5 2 2 2 -12 5 -2 -2 3
13 5 2 3 3 -13 5 -2 -3 2
14 5 2 4 4 -14 5 -2 -4 1
30 A B A/B A rem B A mod B A B A/B A rem B A mod B
10 -5 -2 0 0 -10 -5 2 0 0
11 -5 -2 1 -4 -11 -5 2 -1 -1
12 -5 -2 2 -3 -12 -5 2 -2 -2
13 -5 -2 3 -2 -13 -5 2 -3 -3
14 -5 -2 4 -1 -14 -5 2 -4 -4
Examples

31 Examples of expressions involving multiplying operators:
Integer :=
Integer := 2;
Integer :=

Real
Real

32

33 0; - see3.5.7
0

1.
2.

Fraction --  see3.59

Fraction

34

QM KX ROgH

mn
o
N
vl
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Expression Value Result Type
1*J 2 same as I and J, that is, Integer
K/ 1 same as K and J, that is, Integer

K mod]J 1 same as K and J, that is, Integer

XY 0.5 same as X and Y, that is, Real

F/2 0.125 same as F, that is, Fraction

3*F 0.75 same as F, that is, Fraction

0.75*G 0.375 universal_fixed, implicitly convertible
to any fixed point type

Fraction(F*G) 0.125 Fraction, as stated by the conversion

Real())*Y 4.0 Real, the type of both operands after

conversion of J

4.5.6 Highest Precedence Operators

Static Semantics

The highest precedence unary operator abs (absolute value) is predefined for every specific numeric type
T, with the following specification:

function "abs" (Right : 7) return T

The highest precedence unary operator not (logical negation) is predefined for every boolean type 7, every
modular type 7, and for every one-dimensional array type 7 whose components are of a boolean type, with
the following specification:

function "not" (Right : 7) return T

The result of the operator not for a modular type is defined as the difference between the high bound of
the base range of the type and the value of the operand. For a binary modulus, this corresponds to a bit-
wise complement of the binary representation of the value of the operand.

The operator not that applies to a one-dimensional array of boolean components yields a one-dimensional
boolean array with the same bounds; each component of the result is obtained by logical negation of the
corresponding component of the operand (that is, the component that has the same index value). A check
is made that each component of the result belongs to the component subtype; the exception
Constraint_Error is raised if this check fails.

The highest precedence exponentiation operator ** is predefined for every specific integer type 7 with the
following specification:

function "**" (Left : 7; Right : Natural) return T
Exponentiation is also predefined for every specific floating point type as well as root_real, with the
following specification (where 7 is root_real or the floating point type):

function "**" (Left : 7; Right : Integer'Base) return 7T
The right operand of an exponentiation is the exponent. The value of X**N with the value of the exponent
N positive is the same as the value of X*X*..X (with N-1 multiplications) except that the multiplications
are associated in an arbitrary order. With N equal to zero, the result is one. With the value of N negative
(only defined for a floating point operand), the result is the reciprocal of the result using the absolute value
of N as the exponent.

Implementation Permissions

The implementation of exponentiation for the case of a negative exponent is allowed to raise
Constraint_Error if the intermediate result of the repeated multiplications is outside the safe range of the
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type, even though the final result (after taking the reciprocal) would not be. (The best machine
approximation to the final result in this case would generally be 0.0.)

NOTES
18 As implied by the specification given above for exponentiation of an integer type, a check is made that the exponent is
not negative. Constraint_Error is raised if this check fails.

4.5.7 Conditional Expressions

A conditional_expression selects for evaluation at most one of the enclosed dependent expressions,
depending on a decision among the alternatives. One kind of conditional_expression is the if_expression,
which selects for evaluation a dependent expression depending on the value of one or more
corresponding conditions. The other kind of conditional_expression is the case_expression, which
selects for evaluation one of a number of alternative dependent expressions; the chosen alternative is
determined by the value of a selecting_expression.

Syntax
conditional_expression ::= if_expression | case_expression
if_expression ::=

if condition then dependent _expression

{elsif condition then dependent expression}
[else dependent expression]

condition ::= boolean_expression

case_expression ::=
case selecting expression is
case_expression_alternative {,
case_expression_alternative}

case_expression_alternative ::=
when discrete_choice_list =>
dependent _expression

Wherever the Syntax Rules allow an expression, a conditional_expression may be used in place of
the expression, so long as it is immediately surrounded by parentheses.
Name Resolution Rules

If a conditional_expression is expected to be of a type 7, then each dependent expression of the
conditional_expression is expected to be of type 7. Similarly, if a conditional_expression is expected to
be of some class of types, then each dependent expression of the conditional_expression is subject to the
same expectation. If a conditional_expression shall resolve to be of a type 7, then each
dependent_expression shall resolve to be of type T.

The possible types of a conditional_expression are further determined as follows:

e If the conditional_expression is the operand of a type conversion, the type of the
conditional_expression is the target type of the conversion; otherwise,

o Ifall of the dependent_expressions are of the same type, the type of the conditional_expression
is that type; otherwise,

e If a dependent _expression is of an elementary type, the type of the conditional_expression
shall be covered by that type; otherwise,

o If the conditional_expression is expected to be of type T or shall resolve to type 7, then the
conditional_expression is of type T.
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A condition is expected to be of any boolean type.

The expected type for the selecting expression and the discrete_choices are as for case statements (see
5.4).

Legality Rules
All of the dependent_expressions shall be convertible (see 4.6) to the type of the conditional_expression.

If the expected type of a conditional_expression is a specific tagged type, all of the
dependent_expressions of the conditional_expression shall be dynamically tagged, or none shall be
dynamically tagged. In this case, the conditional_expression is dynamically tagged if all of the
dependent_expressions are dynamically tagged, is tag-indeterminate if all of the dependent _expressions
are tag-indeterminate, and is statically tagged otherwise.

If there is no else dependent _expression, the if_expression shall be of a boolean type.

All Legality Rules that apply to the discrete_choices of a case_statement (see 5.4) also apply to the
discrete_choices of a case_expression except within an instance of a generic unit.

Dynamic Semantics
For the evaluation of an if_expression, the condition specified after if, and any conditions specified after
elsif, are evaluated in succession (treating a final else as elsif True then), until one evaluates to True or all
conditions are evaluated and yield False. If a condition evaluates to True, the associated
dependent_expression is evaluated, converted to the type of the if_expression, and the resulting value is
the value of the if_expression. Otherwise (when there is no else clause), the value of the if_expression is
True.

For the evaluation of a case_expression, the selecting expression is first evaluated. If the value of the
selecting expression is covered by the discrete_choice_list of some case_expression_alternative, then
the dependent _expression of the case_expression_alternative is evaluated, converted to the type of the
case_expression, and the resulting value is the value of the case_expression. Otherwise (the value is not
covered by any discrete_choice_list, perhaps due to being outside the base range), Constraint Error is
raised.

4.5.8 Quantified Expressions

Syntax

quantified_expression ::= for quantifier loop_parameter_specification => predicate
| for quantifier iterator_specification => predicate

quantifier ::= all | some
predicate ::= boolean_expression
Wherever the Syntax Rules allow an expression, a quantified_expression may be used in place of
the expression, so long as it is immediately surrounded by parentheses.
Name Resolution Rules

The expected type of a quantified_expression is any Boolean type. The predicate in a
quantified_expression is expected to be of the same type.
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Dynamic Semantics
For the evaluation of a quantified_expression, the loop_parameter_specification or iterator_specification
is first elaborated. The evaluation of a quantified_expression then evaluates the predicate for each value
of the loop parameter. These values are examined in the order specified by the
loop_parameter_specification (see 5.5) or iterator_specification (see 5.5.2).

The value of the quantified_expression is determined as follows:

o If the quantifier is all, the expression is True if the evaluation of the predicate yields True for
cach value of the loop parameter. It is False otherwise. Evaluation of the quantified_expression
stops when all values of the domain have been examined, or when the predicate yields False for
a given value. Any exception raised by evaluation of the predicate is propagated.

e If the quantifier is some, the expression is True if the evaluation of the predicate yields True for
some value of the loop parameter. It is False otherwise. Evaluation of the quantified_expression
stops when all values of the domain have been examined, or when the predicate yields True for
a given value. Any exception raised by evaluation of the predicate is propagated.

Examples
The postcondition for a sorting routine on an array A with an index subtype T can be written:

Post => (A'Length < 2 or else
(for all I in A'First .. T'Pred(A'Last) => A (I) <= A (T'Succ (I))))

The assertion that a positive number is composite (as opposed to prime) can be written:
pragma Assert (for some X in 2 .. N / 2 => N mod X = 0);

4.6 Type Conversions

Explicit type conversions, both value conversions and view conversions, are allowed between closely
related types as defined below. This subclause also defines rules for value and view conversions to a
particular subtype of a type, both explicit ones and those implicit in other constructs.

Syntax
type_conversion ::=
subtype_mark(expression)
| subtype_mark(name)
The target subtype of a type_conversion is the subtype denoted by the subtype_mark. The operand of a
type_conversion is the expression or name within the parentheses; its type is the operand type.

One type is convertible to a second type if a type_conversion with the first type as operand type and the
second type as target type is legal according to the rules of this subclause. Two types are convertible if
each is convertible to the other.

A type_conversion whose operand is the name of an object is called a view conversion if both its target
type and operand type are tagged, or if it appears in a call as an actual parameter of mode out or in out;
other type_conversions are called value conversions.

Name Resolution Rules

The operand of a type_conversion is expected to be of any type.

The operand of a view conversion is interpreted only as a name; the operand of a value conversion is
interpreted as an expression.
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Legality Rules
In a view conversion for an untagged type, the target type shall be convertible (back) to the operand type. 8/2

Paragraphs 9 through 20 were reorganized and moved below.

If there is a type (other than a root numeric type) that is an ancestor of both the target type and the operand 2113
type, or both types are class-wide types, then at least one of the following rules shall apply:

e The target type shall be untagged; or 21.1/2
e The operand type shall be covered by or descended from the target type; or 22

e The operand type shall be a class-wide type that covers the target type; or 23/2
e The operand and target types shall both be class-wide types and the specific type associated with 23.1/2

at least one of them shall be an interface type.

If there is no type (other than a root numeric type) that is the ancestor of both the target type and the 24/3
operand type, and they are not both class-wide types, one of the following rules shall apply:

o [fthe target type is a numeric type, then the operand type shall be a numeric type. 24.1/2
o [fthe target type is an array type, then the operand type shall be an array type. Further: 24.2/2
o The types shall have the same dimensionality; 24.3/2
« Corresponding index types shall be convertible; 24.4/2
o The component subtypes shall statically match; 24.5/2
« If the component types are anonymous access types, then the accessibility level of the 24.6/2
operand type shall not be statically deeper than that of the target type;
o Neither the target type nor the operand type shall be limited; 24.7/2
o If the target type of a view conversion has aliased components, then so shall the operand 24.8/2
type; and
o The operand type of a view conversion shall not have a tagged, private, or volatile 24.9/2
subcomponent.
o [fthe target type is universal access, then the operand type shall be an access type. 24.10/2
o [f the target type is a general access-to-object type, then the operand type shall be universal - 24.11/2
access or an access-to-object type. Further, if the operand type is not universal_access:
« If the target type is an access-to-variable type, then the operand type shall be an access-to- 24.12/2
variable type;
« If'the target designated type is tagged, then the operand designated type shall be convertible 24.13/2
to the target designated type;
o If the target designated type is not tagged, then the designated types shall be the same, and 24.14/2
either:
« the designated subtypes shall statically match; or 24.15/2
o the designated type shall be discriminated in its full view and unconstrained in any 24.16/2

partial view, and one of the designated subtypes shall be unconstrained;

o The accessibility level of the operand type shall not be statically deeper than that of the 24.17/3
target type, unless the target type is an anonymous access type of a stand-alone object. If
the target type is that of such a stand-alone object, the accessibility level of the operand
type shall not be statically deeper than that of the declaration of the stand-alone object. In
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addition to the places where Legality Rules normally apply (see 12.3), this rule applies also
in the private part of an instance of a generic unit.

e If the target type is a pool-specific access-to-object type, then the operand type shall be
universal_access.

e If the target type is an access-to-subprogram type, then the operand type shall be universal -
access or an access-to-subprogram type. Further, if the operand type is not universal_access:
o The designated profiles shall be subtype conformant.
o The accessibility level of the operand type shall not be statically deeper than that of the
target type. In addition to the places where Legality Rules normally apply (see 12.3), this

rule applies also in the private part of an instance of a generic unit. If the operand type is
declared within a generic body, the target type shall be declared within the generic body.

Static Semantics

A type_conversion that is a value conversion denotes the value that is the result of converting the value of
the operand to the target subtype.

A type_conversion that is a view conversion denotes a view of the object denoted by the operand. This
view is a variable of the target type if the operand denotes a variable; otherwise, it is a constant of the
target type.

The nominal subtype of a type_conversion is its target subtype.

Dynamic Semantics
For the evaluation of a type_conversion that is a value conversion, the operand is evaluated, and then the
value of the operand is converted to a corresponding value of the target type, if any. If there is no value of
the target type that corresponds to the operand value, Constraint_Error is raised; this can only happen on
conversion to a modular type, and only when the operand value is outside the base range of the modular
type. Additional rules follow:

e Numeric Type Conversion

o If the target and the operand types are both integer types, then the result is the value of the
target type that corresponds to the same mathematical integer as the operand.

o If the target type is a decimal fixed point type, then the result is truncated (toward 0) if the
value of the operand is not a multiple of the small of the target type.

o If the target type is some other real type, then the result is within the accuracy of the target
type (see G.2, “Numeric Performance Requirements”, for implementations that support the
Numerics Annex).

o If the target type is an integer type and the operand type is real, the result is rounded to the
nearest integer (away from zero if exactly halfway between two integers).

e Enumeration Type Conversion

e The result is the value of the target type with the same position number as that of the
operand value.

e Array Type Conversion

o If the target subtype is a constrained array subtype, then a check is made that the length of
each dimension of the value of the operand equals the length of the corresponding
dimension of the target subtype. The bounds of the result are those of the target subtype.
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o If the target subtype is an unconstrained array subtype, then the bounds of the result are
obtained by converting each bound of the value of the operand to the corresponding index
type of the target type. For each nonnull index range, a check is made that the bounds of the
range belong to the corresponding index subtype.

e In either array case, the value of each component of the result is that of the matching
component of the operand value (see 4.5.2).

« Ifthe component types of the array types are anonymous access types, then a check is made
that the accessibility level of the operand type is not deeper than that of the target type.

e Composite (Non-Array) Type Conversion

e The value of each nondiscriminant component of the result is that of the matching
component of the operand value.

o The tag of the result is that of the operand. If the operand type is class-wide, a check is
made that the tag of the operand identifies a (specific) type that is covered by or descended
from the target type.

o For each discriminant of the target type that corresponds to a discriminant of the operand
type, its value is that of the corresponding discriminant of the operand value; if it
corresponds to more than one discriminant of the operand type, a check is made that all
these discriminants are equal in the operand value.

e For each discriminant of the target type that corresponds to a discriminant that is specified
by the derived_type_definition for some ancestor of the operand type (or if class-wide,
some ancestor of the specific type identified by the tag of the operand), its value in the
result is that specified by the derived_type_definition.

o For each discriminant of the operand type that corresponds to a discriminant that is
specified by the derived_type_definition for some ancestor of the target type, a check is
made that in the operand value it equals the value specified for it.

o For each discriminant of the result, a check is made that its value belongs to its subtype.
e Access Type Conversion

« For an access-to-object type, a check is made that the accessibility level of the operand type
is not deeper than that of the target type, unless the target type is an anonymous access type
of a stand-alone object. If the target type is that of such a stand-alone object, a check is
made that the accessibility level of the operand type is not deeper than that of the
declaration of the stand-alone object; then if the check succeeds, the accessibility level of
the target type becomes that of the operand type.

« If'the operand value is null, the result of the conversion is the null value of the target type.

o If the operand value is not null, then the result designates the same object (or subprogram)
as is designated by the operand value, but viewed as being of the target designated subtype
(or profile); any checks associated with evaluating a conversion to the target designated
subtype are performed.

After conversion of the value to the target type, if the target subtype is constrained, a check is performed
that the value satisfies this constraint. If the target subtype excludes null, then a check is made that the
value is not null. If predicate checks are enabled for the target subtype (see 3.2.4), a check is performed
that the predicate of the target subtype is satisfied for the value.

For the evaluation of a view conversion, the operand name is evaluated, and a new view of the object
denoted by the operand is created, whose type is the target type; if the target type is composite, checks are
performed as above for a value conversion.

129 13 December 2012 Type Conversions 4.6

38

39

39.1/2

40

41

42

43

44

45

46

47

48/3

49/2

50

51/3

52



53

54/1

55

56

57/3

58

59

60

61/2

62

6

[

64

6

a

66
67

68

ISO/IEC 8652:2012(E) — Ada Reference Manual

The properties of this new view are as follows:

If

If the target type is composite, the bounds or discriminants (if any) of the view are as defined
above for a value conversion; each nondiscriminant component of the view denotes the matching
component of the operand object; the subtype of the view is constrained if either the target
subtype or the operand object is constrained, or if the target subtype is indefinite, or if the
operand type is a descendant of the target type and has discriminants that were not inherited
from the target type;

If the target type is tagged, then an assignment to the view assigns to the corresponding part of
the object denoted by the operand; otherwise, an assignment to the view assigns to the object,
after converting the assigned value to the subtype of the object (which might raise
Constraint_Error);

Reading the value of the view yields the result of converting the value of the operand object to
the target subtype (which might raise Constraint Error), except if the object is of an access type
and the view conversion is passed as an out parameter; in this latter case, the value of the
operand object is used to initialize the formal parameter without checking against any constraint
of the target subtype (see 6.4.1).

an  Accessibility Check fails, Program Error is raised. If a predicate check fails,

Assertions.Assertion_Error is raised. Any other check associated with a conversion raises Constraint_Error
if it fails.

Conversion to a type is the same as conversion to an unconstrained subtype of the type.

NOTES

19 In addition to explicit type_conversions, type conversions are performed implicitly in situations where the expected
type and the actual type of a construct differ, as is permitted by the type resolution rules (see 8.6). For example, an integer
literal is of the type universal_integer, and is implicitly converted when assigned to a target of some specific integer type.
Similarly, an actual parameter of a specific tagged type is implicitly converted when the corresponding formal parameter
is of a class-wide type.

Even when the expected and actual types are the same, implicit subtype conversions are performed to adjust the array
bounds (if any) of an operand to match the desired target subtype, or to raise Constraint_Error if the (possibly adjusted)
value does not satisfy the constraints of the target subtype.

20 A ramification of the overload resolution rules is that the operand of an (explicit) type_conversion cannot be an
allocator, an aggregate, a string_literal, a character_literal, or an attribute_reference for an Access or Unchecked Access
attribute. Similarly, such an expression enclosed by parentheses is not allowed. A qualified_expression (see 4.7) can be
used instead of such a type_conversion.

21 The constraint of the target subtype has no effect for a type_conversion of an elementary type passed as an out
parameter. Hence, it is recommended that the first subtype be specified as the target to minimize confusion (a similar
recommendation applies to renaming and generic formal in out objects).

Examples
Examples of numeric type conversion:
Real (2*J) - value is converted to floating point
Integer(1.6) -- value is 2
Integer (-0.4) - valueis 0

Example of conversion between derived types:

type A Form is new B _Form;

X : A Form;
B Form;

A Form(Y)

Y
X := ;
Y := B_Form(X);

-- the reverse conversion
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Examples of conversions between array types:

type Sequence is array (Integer range <>) of Integer;

subtype Dozen is Sequence(l .. 12);

Ledger : array(l .. 100) of Integer;

Sequence (Ledger) -- bounds are those of Ledger
Sequence (Ledger (31 .. 42)) -- bounds are 31 and 42
Dozen (Ledger (31 .. 42)) -- bounds are those of Dozen

4.7 Qualified Expressions

A qualified_expression is used to state explicitly the type, and to verify the subtype, of an operand that is
either an expression or an aggregate.

Syntax
qualified_expression ::=
subtype_mark'(expression) | subtype_mark'aggregate
Name Resolution Rules

The operand (the expression or aggregate) shall resolve to be of the type determined by the subtype_-
mark, or a universal type that covers it.

Static Semantics
If the operand of a qualified_expression denotes an object, the qualified_expression denotes a constant
view of that object. The nominal subtype of a qualified_expression is the subtype denoted by the
subtype_mark.

Dynamic Semantics
The evaluation of a qualified_expression evaluates the operand (and if of a universal type, converts it to
the type determined by the subtype_mark) and checks that its value belongs to the subtype denoted by the
subtype_mark. The exception Constraint_Error is raised if this check fails.
NOTES
22 When a given context does not uniquely identify an expected type, a qualified_expression can be used to do so. In

particular, if an overloaded name or aggregate is passed to an overloaded subprogram, it might be necessary to qualify
the operand to resolve its type.

Examples

Examples of disambiguating expressions using qualification:

type Mask is (Fix, Dec, Exp, Signif);
type Code is (Fix, Cla, Dec, Tnz, Sub);

Print (Mask' (Dec)); -- Decis of type Mask

Print (Code' (Dec)); -- Decis oftype Code

for J in Code' (Fix) .. Code' (Dec) loop ... --qualification needed for either Fix or Dec
for J in Code range Fix .. Dec loop ... -- qualification unnecessary

for J in Code' (Fix) .. Dec loop ... -- qualification unnecessary for Dec

Dozen'(l | 3 | 5 | 7 => 2, others => 0) --see4.6

4.8 Allocators

The evaluation of an allocator creates an object and yields an access value that designates the object.

131 13 December 2012 Type Conversions 4.6

69
70

71

3.1/3

10



2/3

2113

2.2/3

3/3

5/2

5.1/3

5.2/3

5.3/3

5.4/3

5.5/3

5.6/3

6/3

ISO/IEC 8652:2012(E) — Ada Reference Manual

Syntax
allocator ::=
new [subpool_specification] subtype_indication
| new [subpool_specification] qualified_expression
subpool_specification ::= (subpool_handle_name)
For an allocator with a subtype_indication, the subtype_indication shall not specify a
null_exclusion.

Name Resolution Rules

The expected type for an allocator shall be a single access-to-object type with designated type D such that
either D covers the type determined by the subtype_mark of the subtype_indication or qualified_-
expression, or the expected type is anonymous and the determined type is D'Class. A
subpool_handle_name is expected to be of any type descended from Subpool Handle, which is the type
used to identify a subpool, declared in package System.Storage Pools.Subpools (see 13.11.4).

Legality Rules

An initialized allocator is an allocator with a qualified_expression. An uninitialized allocator is one with a
subtype_indication. In the subtype_indication of an uninitialized allocator, a constraint is permitted only
if the subtype_mark denotes an unconstrained composite subtype; if there is no constraint, then the
subtype_mark shall denote a definite subtype.

If the type of the allocator is an access-to-constant type, the allocator shall be an initialized allocator.

If a subpool_specification is given, the type of the storage pool of the access type shall be a descendant of
Root_Storage Pool With_ Subpools.

If the designated type of the type of the allocator is class-wide, the accessibility level of the type
determined by the subtype_indication or qualified_expression shall not be statically deeper than that of
the type of the allocator.

If the subtype determined by the subtype_indication or qualified_expression of the allocator has one or
more access discriminants, then the accessibility level of the anonymous access type of each access
discriminant shall not be statically deeper than that of the type of the allocator (see 3.10.2).

An allocator shall not be of an access type for which the Storage Size has been specified by a static
expression with value zero or is defined by the language to be zero.

If the designated type of the type of the allocator is limited, then the allocator shall not be used to define
the value of an access discriminant, unless the discriminated type is immutably limited (see 7.5).

In addition to the places where Legality Rules normally apply (see 12.3), these rules apply also in the
private part of an instance of a generic unit.

Static Semantics

If the designated type of the type of the allocator is elementary, then the subtype of the created object is
the designated subtype. If the designated type is composite, then the subtype of the created object is the
designated subtype when the designated subtype is constrained or there is an ancestor of the designated
type that has a constrained partial view; otherwise, the created object is constrained by its initial value
(even if the designated subtype is unconstrained with defaults).
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Dynamic Semantics

For the evaluation of an initialized allocator, the evaluation of the qualified_expression is performed first.
An object of the designated type is created and the value of the qualified_expression is converted to the
designated subtype and assigned to the object.

For the evaluation of an uninitialized allocator, the elaboration of the subtype_indication is performed
first. Then:

e If the designated type is elementary, an object of the designated subtype is created and any
implicit initial value is assigned;

o [f the designated type is composite, an object of the designated type is created with tag, if any,
determined by the subtype_mark of the subtype_indication. This object is then initialized by
default (see 3.3.1) using the subtype_indication to determine its nominal subtype. A check is
made that the value of the object belongs to the designated subtype. Constraint_Error is raised if
this check fails. This check and the initialization of the object are performed in an arbitrary
order.

For any allocator, if the designated type of the type of the allocator is class-wide, then a check is made
that the master of the type determined by the subtype_indication, or by the tag of the value of the
qualified_expression, includes the elaboration of the type of the allocator. If any part of the subtype
determined by the subtype_indication or qualified_expression of the allocator (or by the tag of the value
if the type of the qualified_expression is class-wide) has one or more access discriminants, then a check is
made that the accessibility level of the anonymous access type of each access discriminant is not deeper
than that of the type of the allocator. Program_Error is raised if either such check fails.

If the object to be created by an allocator has a controlled or protected part, and the finalization of the
collection of the type of the allocator (see 7.6.1) has started, Program_Error is raised.

If the object to be created by an allocator contains any tasks, and the master of the type of the allocator is
completed, and all of the dependent tasks of the master are terminated (see 9.3), then Program_Error is
raised.

If the allocator includes a subpool handle_name, Constraint Error is raised if the subpool handle is null.
Program_Error is raised if the subpool does not belong (see 13.11.4) to the storage pool of the access type
of the allocator.

If the created object contains any tasks, they are activated (see 9.2). Finally, an access value that
designates the created object is returned.

Bounded (Run-Time) Errors
It is a bounded error if the finalization of the collection of the type (see 7.6.1) of the allocator has started.
If the error is detected, Program_Error is raised. Otherwise, the allocation proceeds normally.

NOTES
23 Allocators cannot create objects of an abstract type. See 3.9.3.

24 1If any part of the created object is controlled, the initialization includes calls on corresponding Initialize or Adjust
procedures. See 7.6.

25 As explained in 13.11, “Storage Management”, the storage for an object allocated by an allocator comes from a
storage pool (possibly user defined). The exception Storage Error is raised by an allocator if there is not enough storage.
Instances of Unchecked_Deallocation may be used to explicitly reclaim storage.

26 Implementations are permitted, but not required, to provide garbage collection.
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Examples

Examples of allocators:
new Cell' (0, null, null) -- initialized explicitly, see 3.10.1
new Cell' (Value => 0, Succ => null, Pred => null) --initialized explicitly
new Cell -- not initialized
new Matrix (1 .. 10, 1 .. 20) - the bounds only are given
new Matrix'(l .. 10 => (1 .. 20 => 0.0)) -- initialized explicitly
new Buffer (100) -- the discriminant only is given
new Buffer' (Size => 80, Pos => 0, Value => (1 .. 80 => 'A')) --initialized explicitly
Expr Ptr' (new Literal) -- allocator for access-to-class-wide type, see 3.9.1
Expr Ptr' (new Literal' (Expression with 3.5)) -- initialized explicitly

4.9 Static Expressions and Static Subtypes

Certain expressions of a scalar or string type are defined to be static. Similarly, certain discrete ranges are
defined to be static, and certain scalar and string subtypes are defined to be static subtypes. Static means
determinable at compile time, using the declared properties or values of the program entities.

A static expression is a scalar or string expression that is one of the following:

4.8

a numeric_literal,
a string_literal of a static string subtype;
a name that denotes the declaration of a named number or a static constant;

a function_call whose function_name or function_prefix statically denotes a static function, and
whose actual parameters, if any (whether given explicitly or by default), are all static
expressions;

an attribute_reference that denotes a scalar value, and whose prefix denotes a static scalar
subtype;

an attribute_reference whose prefix statically denotes a statically constrained array object or
array subtype, and whose attribute_designator is First, Last, or Length, with an optional
dimension;

a type_conversion whose subtype_mark denotes a static scalar subtype, and whose operand is a
static expression;

a qualified_expression whose subtype_mark denotes a static (scalar or string) subtype, and
whose operand is a static expression;

a membership test whose simple_expression is a static expression, and whose
membership_choice_list consists only of membership_choices that are either static
choice_expressions, static ranges, or subtype_marks that denote a static (scalar or string)
subtype;

a short-circuit control form both of whose relations are static expressions;

a conditional_expression all of whose conditions, selecting expressions, and
dependent_expressions are static expressions;

a static expression enclosed in parentheses.

A name statically denotes an entity if it denotes the entity and:

It is a direct_name, expanded name, or character_literal, and it denotes a declaration other than
a renaming_declaration; or
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e [tis an attribute_reference whose prefix statically denotes some entity; or
¢ [t denotes a renaming_declaration with a name that statically denotes the renamed entity.

A static function is one of the following:
e a predefined operator whose parameter and result types are all scalar types none of which are
descendants of formal scalar types;
e apredefined concatenation operator whose result type is a string type;
e an enumeration literal;

¢ a language-defined attribute that is a function, if the prefix denotes a static scalar subtype, and if
the parameter and result types are scalar.

In any case, a generic formal subprogram is not a static function.

A static constant is a constant view declared by a full constant declaration or an object_renaming_-
declaration with a static nominal subtype, having a value defined by a static scalar expression or by a
static string expression whose value has a length not exceeding the maximum length of a string_literal in
the implementation.

A static range is a range whose bounds are static expressions, or a range_attribute_reference that is
equivalent to such a range. A static discrete_range is one that is a static range or is a subtype_indication
that defines a static scalar subtype. The base range of a scalar type is a static range, unless the type is a
descendant of a formal scalar type.

A static subtype is either a static scalar subtype or a static string subtype. A static scalar subtype is an
unconstrained scalar subtype whose type is not a descendant of a formal type, or a constrained scalar
subtype formed by imposing a compatible static constraint on a static scalar subtype. A static string
subtype is an unconstrained string subtype whose index subtype and component subtype are static, or a
constrained string subtype formed by imposing a compatible static constraint on a static string subtype. In
any case, the subtype of a generic formal object of mode in out, and the result subtype of a generic formal
function, are not static. Also, a subtype is not static if any Dynamic_Predicate specifications apply to it.
The different kinds of static constraint are defined as follows:

e A null constraint is always static;

e A scalar constraint is static if it has no range_constraint, or one with a static range;

e An index constraint is static if each discrete_range is static, and each index subtype of the
corresponding array type is static;

e A discriminant constraint is static if each expression of the constraint is static, and the subtype
of each discriminant is static.

In any case, the constraint of the first subtype of a scalar formal type is neither static nor null.
A subtype is statically constrained if it is constrained, and its constraint is static. An object is statically

constrained if its nominal subtype is statically constrained, or if it is a static string constant.

Legality Rules
An expression is statically unevaluated if it is part of:

e the right operand of a static short-circuit control form whose value is determined by its left
operand; or
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e a dependent_expression of an if_expression whose associated condition is static and equals
False; or

e a condition or dependent_expression of an if_expression where the condition corresponding to
at least one preceding dependent_expression of the if_expression is static and equals True; or

e adependent_expression of a case_expression whose selecting_expression is static and whose
value is not covered by the corresponding discrete_choice_list; or

e a choice_expression (or a simple_expression of a range that occurs as a membership_choice
of a membership_choice_list) of a static membership test that is preceded in the enclosing
membership_choice_list by another item whose individual membership test (see 4.5.2)
statically yields True.

A static expression is evaluated at compile time except when it is statically unevaluated. The compile-time
evaluation of a static expression is performed exactly, without performing Overflow_Checks. For a static
expression that is evaluated:

e The expression is illegal if its evaluation fails a language-defined check other than Overflow -
Check. For the purposes of this evaluation, the assertion policy is assumed to be Check.

o If the expression is not part of a larger static expression and the expression is expected to be of a
single specific type, then its value shall be within the base range of its expected type. Otherwise,
the value may be arbitrarily large or small.

e If the expression is of type universal _real and its expected type is a decimal fixed point type,
then its value shall be a multiple of the small of the decimal type. This restriction does not apply
if the expected type is a descendant of a formal scalar type (or a corresponding actual type in an
instance).

In addition to the places where Legality Rules normally apply (see 12.3), the above restrictions also apply
in the private part of an instance of a generic unit.

Implementation Requirements

For a real static expression that is not part of a larger static expression, and whose expected type is not a
descendant of a formal type, the implementation shall round or truncate the value (according to the
Machine Rounds attribute of the expected type) to the nearest machine number of the expected type; if the
value is exactly half-way between two machine numbers, the rounding performed is implementation-
defined. If the expected type is a descendant of a formal type, or if the static expression appears in the
body of an instance of a generic unit and the corresponding expression is nonstatic in the corresponding
generic body, then no special rounding or truncating is required — normal accuracy rules apply (see
Annex G).

Implementation Advice
For a real static expression that is not part of a larger static expression, and whose expected type is not a
descendant of a formal type, the rounding should be the same as the default rounding for the target system.

NOTES
27 An expression can be static even if it occurs in a context where staticness is not required.

28 A static (or run-time) type_conversion from a real type to an integer type performs rounding. If the operand value is
exactly half-way between two integers, the rounding is performed away from zero.
Examples
Examples of static expressions:

1+ 1 -2
abs (-10)*3 --30
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Kilo : constant
Mega : constant
Long : constant

Half_Pi : constant
Deg To_Rad : constant
Rad _To_Deg : constant

13 December 2012

1000;
Kilo*Kilo; --1_000_000
Float'Digits*2;
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Pi/2; --see 3.3.2
Half Pi/90;
1.0/Deg To_Rad; --equivalentto 1.0/((3.14159_26536/2)/90)
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4.9.1 Statically Matching Constraints and Subtypes

Static Semantics

A constraint statically matches another constraint if:
e both are null constraints;
e both are static and have equal corresponding bounds or discriminant values;

e both are nonstatic and result from the same elaboration of a constraint of a subtype_indication
or the same evaluation of a range of a discrete_subtype_definition; or

e Dboth are nonstatic and come from the same formal_type_declaration.

A subtype statically matches another subtype of the same type if they have statically matching constraints,
all predicate specifications that apply to them come from the same declarations, and, for access subtypes,
either both or neither exclude null. Two anonymous access-to-object subtypes statically match if their
designated subtypes statically match, and either both or neither exclude null, and either both or neither are
access-to-constant. Two anonymous access-to-subprogram subtypes statically match if their designated
profiles are subtype conformant, and either both or neither exclude null.

Two ranges of the same type statically match if both result from the same evaluation of a range, or if both
are static and have equal corresponding bounds.

A constraint is statically compatible with a scalar subtype if it statically matches the constraint of the
subtype, or if both are static and the constraint is compatible with the subtype. A constraint is statically
compatible with an access or composite subtype if it statically matches the constraint of the subtype, or if
the subtype is unconstrained.

Two statically matching subtypes are statically compatible with each other. In addition, a subtype S/ is
statically compatible with a subtype S2 if:
o the constraint of S/ is statically compatible with S2, and
e if S2 excludes null, so does S/, and
e either:
« all predicate specifications that apply to S2 apply also to S, or

o both subtypes are static, every value that satisfies the predicate of S/ also satisfies the
predicate of S2, and it is not the case that both types each have at least one applicable
predicate specification, predicate checks are enabled (see 11.4.2) for S2, and predicate
checks are not enabled for S/.
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5 Statements

A statement defines an action to be performed upon its execution.

This clause describes the general rules applicable to all statements. Some statements are discussed in
later clauses: Procedure_call_statements and return statements are described in 6, “Subprograms”.
Entry_call_statements, requeue_statements, delay_statements, accept_statements, select_statements,
and abort_statements are described in 9, “Tasks and Synchronization”. Raise_statements are described
in 11, “Exceptions”, and code_statements in 13. The remaining forms of statements are presented in this
clause.

5.1 Simple and Compound Statements - Sequences of Statements

A statement is either simple or compound. A simple_statement encloses no other statement. A
compound_statement can enclose simple_statements and other compound_statements.

Syntax
sequence_of_statements ::= statement {statement} {label}

statement ::=
{label} simple_statement | {label} compound_statement

simple_statement ::= null_statement

| assignment_statement | exit_statement

| goto_statement | procedure_call_statement
| simple_return_statement | entry_call_statement

| requeue_statement | delay_statement

| abort_statement | raise_statement

| code_statement
compound_statement ::=

if_statement | case_statement
| loop_statement | block_statement
| extended_return_statement
| accept_statement | select_statement

null_statement ::= null;
label ::= <<label statement_identifier>>
statement_identifier ::= direct_name

The direct_name of a statement_identifier shall be an identifier (not an operator_symbol).

Name Resolution Rules

The direct_name of a statement_identifier shall resolve to denote its corresponding implicit declaration
(see below).

Legality Rules

Distinct identifiers shall be used for all statement_identifiers that appear in the same body, including inner
block_statements but excluding inner program units.
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Static Semantics

For each statement_identifier, there is an implicit declaration (with the specified identifier) at the end of
the declarative_part of the innermost block_statement or body that encloses the statement_identifier. The
implicit declarations occur in the same order as the statement_identifiers occur in the source text. If a
usage name denotes such an implicit declaration, the entity it denotes is the label, loop_statement, or
block_statement with the given statement_identifier.

If one or more labels end a sequence_of statements, an implicit null_statement follows the labels
before any following constructs.

Dynamic Semantics

The execution of a null_statement has no effect.

A transfer of control is the run-time action of an exit_statement, return statement, goto_statement, or
requeue_statement, selection of a terminate_alternative, raising of an exception, or an abort, which
causes the next action performed to be one other than what would normally be expected from the other
rules of the language. As explained in 7.6.1, a transfer of control can cause the execution of constructs to
be completed and then left, which may trigger finalization.

The execution of a sequence_of_statements consists of the execution of the individual statements in
succession until the sequence_ is completed.
NOTES
1 A statement_identifier that appears immediately within the declarative region of a named loop_statement or an
accept_statement is nevertheless implicitly declared immediately within the declarative region of the innermost enclosing
body or block_statement; in other words, the expanded name for a named statement is not affected by whether the

statement occurs inside or outside a named loop or an accept_statement — only nesting within block_statements is
relevant to the form of its expanded name.

Examples
Examples of labeled statements:
<<Here>> <<Ici>> <<Aqui>> <<Hier>> null;

<<After>> X := 1;

5.2 Assignment Statements

An assignment_statement replaces the current value of a variable with the result of evaluating an
expression.

Syntax
assignment_statement ::=
variable_name := expression;

The execution of an assignment_statement includes the evaluation of the expression and the assignment
of the value of the expression into the farget. An assignment operation (as opposed to an assignment_-
statement) is performed in other contexts as well, including object initialization and by-copy parameter
passing. The target of an assignment operation is the view of the object to which a value is being assigned;
the target of an assignment_statement is the variable denoted by the variable name.

Name Resolution Rules

The variable_name of an assignment_statement is expected to be of any type. The expected type for the
expression is the type of the target.
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Legality Rules
The target denoted by the variable name shall be a variable of a nonlimited type.

If the target is of a tagged class-wide type T"Class, then the expression shall either be dynamically tagged,
or of type T and tag-indeterminate (see 3.9.2).

Dynamic Semantics
For the execution of an assignment_statement, the variable_name and the expression are first evaluated
in an arbitrary order.
When the type of the target is class-wide:

e If the expression is tag-indeterminate (see 3.9.2), then the controlling tag value for the
expression is the tag of the target;

e Otherwise (the expression is dynamically tagged), a check is made that the tag of the value of
the expression is the same as that of the target; if this check fails, Constraint_Error is raised.

The value of the expression is converted to the subtype of the target. The conversion might raise an
exception (see 4.6).

In cases involving controlled types, the target is finalized, and an anonymous object might be used as an
intermediate in the assignment, as described in 7.6.1, “Completion and Finalization”. In any case, the
converted value of the expression is then assigned to the target, which consists of the following two steps:
e The value of the target becomes the converted value.
e [fany part of the target is controlled, its value is adjusted as explained in subclause 7.6.

NOTES
2 The tag of an object never changes; in particular, an assignment_statement does not change the tag of the target.

This paragraph was deleted.

Examples

Examples of assignment statements:

Value := Max Value - 1;

Shade := Blue;

Next Frame(F) (M, N) := 2.5; -- seed.l.1

U := Dot_Product (V, W); -- see 6.3

Writer := (Status => Open, Unit => Printer, Line Count => 60); --see3.8.1/

Next Car.all := (72074, null); -- see 3.10.1
Examples involving scalar subtype conversions:

I, J : Integer range 1 .. 10 := 5;

K : Integer range 1 .. 20 := 15;

I := J; -- identical ranges

K := J; -- compatible ranges

J := K; -- will raise Constraint_Error if K> 10
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Examples involving array subtype conversions:

A : String(l .. 31);

B : String(3 .. 33);

A := B; -- same number of components

A(l .. 9) = "tar sauce";

A(4 .. 12) := A(1 .. 9); =-- A(l.. 12)="tartar sauce"
NOTES

3 Notes on the examples: Assignment_statements are allowed even in the case of overlapping slices of the same array,
because the variable_name and expression are both evaluated before copying the value into the variable. In the above
example, an implementation yielding A(1 .. 12) = "tartartartar" would be incorrect.

5.3 If Statements

An if_statement selects for execution at most one of the enclosed sequences_of_statements, depending
on the (truth) value of one or more corresponding conditions.

Syntax
if statement ::=

if condition then

sequence_of_statements
{elsif condition then

sequence_of_statements}
[else

sequence_of_statements]
end if;

Paragraphs 3 and 4 were deleted.

Dynamic Semantics
For the execution of an if_statement, the condition specified after if, and any conditions specified after
elsif, are evaluated in succession (treating a final else as elsif True then), until one evaluates to True or all

conditions are evaluated and yield False. If a condition evaluates to True, then the corresponding
sequence_of_statements is executed; otherwise, none of them is executed.

Examples
Examples of if statements:

if Month = December and Day = 31 then

Month := January;

Day =1;

Year = Year + 1;
end if;

if Line Too_ Short then
raise Layout Error;
elsif Line Full then
New_Line;
Put (Item) ;
else
Put (Item) ;
end if;

if My Car.Owner.Vehicle /= My Car then -- see 3.10.1
Report ("Incorrect data");
end if;
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5.4 Case Statements

A case_statement selects for execution one of a number of alternative sequences_of_statements; the
chosen alternative is defined by the value of an expression.

Syntax
case_statement ::=
case selecting_expression is
case_statement_alternative
{case_statement_alternative}
end case;
case_statement_alternative ::=
when discrete_choice_list =>
sequence_of_statements

Name Resolution Rules

The selecting expression is expected to be of any discrete type. The expected type for each
discrete_choice is the type of the selecting_expression.

Legality Rules

The choice_expressions, subtype_indications, and ranges given as discrete_choices of a
case_statement shall be static. A discrete_choice others, if present, shall appear alone and in the last
discrete_choice_list.

The possible values of the selecting expression shall be covered (see 3.8.1) as follows:

o If the selecting expression is a name (including a type_conversion, qualified_expression, or
function_call) having a static and constrained nominal subtype, then each non-others
discrete_choice shall cover only values in that subtype that satisfy its predicate (see 3.2.4), and
each value of that subtype that satisfies its predicate shall be covered by some discrete_choice
(either explicitly or by others).

o [f the type of the selecting expression is root_integer, universal_integer, or a descendant of a
formal scalar type, then the case_statement shall have an others discrete_choice.

e Otherwise, each value of the base range of the type of the selecting expression shall be covered
(either explicitly or by others).

Two distinct discrete_choices of a case_statement shall not cover the same value.

Dynamic Semantics

For the execution of a case_statement the selecting expression is first evaluated.

If the value of the selecting expression is covered by the discrete_choice_list of some case_statement_-
alternative, then the sequence_of statements of the _alternative is executed.

Otherwise (the value is not covered by any discrete_choice_list, perhaps due to being outside the base
range), Constraint_Error is raised.

NOTES
4 The execution of a case_statement chooses one and only one alternative. Qualification of the expression of a
case_statement by a static subtype can often be used to limit the number of choices that need be given explicitly.
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Examples

-

5  Examples of case statements:

16 case Sensor is
when Elevation => Record Elevation(Sensor Value) ;
when Azimuth => Record Azimuth (Sensor Value) ;
when Distance => Record Distance (Sensor Value) ;
when others => null;
end case;
17 case Today is
when Mon => Compute_Initial Balance;
when Fri => Compute_ Closing Balance;
when Tue .. Thu=> Generate Report (Today) ;
when Sat .. Sun=> null;
end case;
18 case Bin_ Number (Count) is
when 1 => Update_Bin(1) ;
when 2 => Update Bin(2) ;
when 3 | 4=>
Empty Bin(1);
Empty Bin(2);
when others => raise Error;

end case;

5.5 Loop Statements

1 A loop_statement includes a sequence_of_statements that is to be executed repeatedly, zero or more
times.

Syntax
2 loop_statement ::=
[loop_statement_identifier:]
[iteration_scheme] loop
sequence_of statements
end loop [loop_identifier];
3/3 iteration_scheme ::= while condition
| for loop_parameter_specification
| for iterator_specification
4 loop_parameter_specification ::=
defining_identifier in [reverse] discrete_subtype_definition

5 If a loop_statement has a loop_statement_identifier, then the identifier shall be repeated after the
end loop; otherwise, there shall not be an identifier after the end loop.
Static Semantics

6 A loop_parameter_specification declares a loop parameter, which is an object whose subtype is that
defined by the discrete_subtype_definition.

Dynamic Semantics

7 For the execution of a loop_statement, the sequence_of_statements is executed repeatedly, zero or more
times, until the loop_statement is complete. The loop_statement is complete when a transfer of control
occurs that transfers control out of the loop, or, in the case of an iteration_scheme, as specified below.
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For the execution of a loop_statement with a while iteration_scheme, the condition is evaluated before
each execution of the sequence_of_statements; if the value of the condition is True, the sequence_of -
statements is executed; if False, the execution of the loop_statement is complete.

For the execution of a loop_statement with the iteration_scheme being for loop_parameter_-
specification, the loop_parameter_specification is first elaborated. This elaboration creates the loop
parameter and elaborates the discrete_subtype_definition. If the discrete_subtype_definition defines a
subtype with a null range, the execution of the loop_statement is complete. Otherwise, the
sequence_of_statements is executed once for each value of the discrete subtype defined by the
discrete_subtype_definition that satisfies the predicate of the subtype (or until the loop is left as a
consequence of a transfer of control). Prior to each such iteration, the corresponding value of the discrete
subtype is assigned to the loop parameter. These values are assigned in increasing order unless the
reserved word reverse is present, in which case the values are assigned in decreasing order.

For details about the execution of a loop_statement with the iteration_scheme being for
iterator_specification, see 5.5.2.

NOTES
5 A loop parameter is a constant; it cannot be updated within the sequence_of_statements of the loop (see 3.3).

6 An object_declaration should not be given for a loop parameter, since the loop parameter is automatically declared by
the loop_parameter_specification. The scope of a loop parameter extends from the loop_parameter_specification to the
end of the loop_statement, and the visibility rules are such that a loop parameter is only visible within the
sequence_of_statements of the loop.

7 The discrete_subtype_definition of a for loop is elaborated just once. Use of the reserved word reverse does not alter
the discrete subtype defined, so that the following iteration_schemes are not equivalent; the first has a null range.

for J in reverse 1 .. 0
for Jin 0 .. 1

Examples
Example of a loop statement without an iteration scheme:

loop

Get (Current_Character) ;

exit when Current Character = '*';
end loop;

Example of a loop statement with a while iteration scheme:

while Bid(N) .Price < Cut_Off.Price loop
Record_Bid(Bid(N) .Price) ;
N := N + 1;

end loop;

Example of a loop statement with a for iteration scheme:

for J in Buffer'Range loop - - works even with a null range
if Buffer(J) /= Space then
Put (Buffer (J)) ;
end if;
end loop;

Example of a loop statement with a name:

Summation:
while Next /= Head loop --see 3.10.1
Sum := Sum + Next.Value;
Next := Next.Succ;

end loop Summation;
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5.5.1 User-Defined Iterator Types

Static Semantics
The following language-defined generic library package exists:

generic

type Cursor;

with function Has Element (Position : Cursor) return Boolean;
package Ada.Iterator Interfaces is

pragma Pure (Iterator Interfaces);

type Forward Iterator is limited interface;
function First (Object : Forward Iterator) return Cursor is abstract;
function Next (Object : Forward Iterator; Position : Cursor)

return Cursor is abstract;

type Reversible Iterator is limited interface and Forward Iterator;

function Last (Object : Reversible Iterator) return Cursor is abstract;

function Previous (Object : Reversible Iterator; Position : Cursor)
return Cursor is abstract;

end Ada.Iterator Interfaces;

An iterator type is a type descended from the Forward Iterator interface from some instance of
Ada.Iterator_Interfaces. A reversible iterator type is a type descended from the Reversible Iterator
interface from some instance of Ada.lterator Interfaces. An iterator object is an object of an iterator type.
A reversible iterator object is an object of a reversible iterator type. The formal subtype Cursor from the
associated instance of Ada.lterator Interfaces is the iteration cursor subtype for the iterator type.

The following type-related operational aspects may be specified for an indexable container type 7T (see
4.1.6):

Default_Iterator

This aspect is specified by a name that denotes exactly one function declared immediately
within the same declaration list in which 7 is declared, whose first parameter is of type T or
T'Class or an access parameter whose designated type is type T or T'Class, whose other
parameters, if any, have default expressions, and whose result type is an iterator type. This
function is the default iterator function for T. Its result subtype is the default iterator
subtype for T. The iteration cursor subtype for the default iterator subtype is the default
cursor subtype for T.

Iterator Element
This aspect is specified by a name that denotes a subtype. This is the default element
subtype for T.

These aspects are inherited by descendants of type 7 (including 7'Class).

An iterable container type is an indexable container type with specified Default Iterator and
Iterator Element aspects. A reversible iterable container type is an iterable container type with the default
iterator type being a reversible iterator type. An iterable container object is an object of an iterable
container type. A reversible iterable container object is an object of a reversible iterable container type.

Legality Rules
The Constant_Indexing aspect (if any) of an iterable container type 7 shall denote exactly one function
with the following properties:

e the result type of the function is covered by the default element type of T or is a reference type
(see 4.1.5) with an access discriminant designating a type covered by the default element type of
T;
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o the type of the second parameter of the function covers the default cursor type for 7;
¢ if there are more than two parameters, the additional parameters all have default expressions.

This function (if any) is the default constant indexing function for T.

The Variable Indexing aspect (if any) of an iterable container type 7 shall denote exactly one function
with the following properties:

e the result type of the function is a reference type (see 4.1.5) with an access discriminant
designating a type covered by the default element type of 7;

o the type of the second parameter of the function covers the default cursor type for 7;
e if there are more than two parameters, the additional parameters all have default expressions.

This function (if any) is the default variable indexing function for T.

5.5.2 Generalized Loop lteration

Generalized forms of loop iteration are provided by an iterator_specification.

Syntax
iterator_specification ::=
defining_identifier in [reverse] iterator _name
| defining_identifier [: subtype_indication] of [reverse] iterable_ name

Name Resolution Rules

For the first form of iterator_specification, called a generalized iterator, the expected type for the
iterator_name is any iterator type. For the second form of iterator_specification, the expected type for the
iterable_name is any array or iterable container type. If the iferable name denotes an array object, the
iterator_specification is called an array component iterator; otherwise it is called a container element
iterator.

Legality Rules

If the reserved word reverse appears, the iterator_specification is a reverse iterator; otherwise it is a
forward iterator. In a reverse generalized iterator, the iterator_name shall be of a reversible iterator type.
In a reverse container element iterator, the default iterator type for the type of the iterable_name shall be a
reversible iterator type.

The type of the subtype_indication, if any, of an array component iterator shall cover the component type
of the type of the iterable name. The type of the subtype_indication, if any, of a container element
iterator shall cover the default element type for the type of the iterable_name.

In a container element iterator whose iterable name has type 7, if the iterable_name denotes a constant
or the Variable Indexing aspect is not specified for 7, then the Constant_Indexing aspect shall be specified
for T.

Static Semantics

An iterator_specification declares a loop parameter. In a generalized iterator, the nominal subtype of the
loop parameter is the iteration cursor subtype. In an array component iterator or a container element
iterator, if a subtype_indication is present, it determines the nominal subtype of the loop parameter. In an
array component iterator, if a subtype_indication is not present, the nominal subtype of the loop parameter
is the component subtype of the type of the iferable name. In a container element iterator, if a
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subtype_indication is not present, the nominal subtype of the loop parameter is the default element
subtype for the type of the iterable_name.

In a generalized iterator, the loop parameter is a constant. In an array component iterator, the loop
parameter is a constant if the iterable name denotes a constant; otherwise it denotes a variable. In a
container element iterator, the loop parameter is a constant if the iterable_name denotes a constant, or if
the Variable Indexing aspect is not specified for the type of the iterable _name; otherwise it is a variable.

Dynamic Semantics
For the execution of a loop_statement with an iterator_specification, the iterator_specification is first
elaborated. This elaboration elaborates the subtype_indication, if any.

For a generalized iterator, the loop parameter is created, the iferator name is evaluated, and the denoted
iterator object becomes the loop iterator. In a forward generalized iterator, the operation First of the
iterator type is called on the loop iterator, to produce the initial value for the loop parameter. If the result
of calling Has_Element on the initial value is False, then the execution of the loop_statement is complete.
Otherwise, the sequence_of_statements is executed and then the Next operation of the iterator type is
called with the loop iterator and the current value of the loop parameter to produce the next value to be
assigned to the loop parameter. This repeats until the result of calling Has_Element on the loop parameter
is False, or the loop is left as a consequence of a transfer of control. For a reverse generalized iterator, the
operations Last and Previous are called rather than First and Next.

For an array component iterator, the iterable_name is evaluated and the denoted array object becomes the
array for the loop. If the array for the loop is a null array, then the execution of the loop_statement is
complete. Otherwise, the sequence_of_statements is executed with the loop parameter denoting each
component of the array for the loop, using a canonical order of components, which is last dimension
varying fastest (unless the array has convention Fortran, in which case it is first dimension varying fastest).
For a forward array component iterator, the iteration starts with the component whose index values are
each the first in their index range, and continues in the canonical order. For a reverse array component
iterator, the iteration starts with the component whose index values are each the last in their index range,
and continues in the reverse of the canonical order. The loop iteration proceeds until the
sequence_of_statements has been executed for each component of the array for the loop, or until the
loop is left as a consequence of a transfer of control.

For a container element iterator, the iterable_name is evaluated and the denoted iterable container object
becomes the iterable container object for the loop. The default iterator function for the type of the iterable
container object for the loop is called on the iterable container object and the result is the loop iterator. An
object of the default cursor subtype is created (the loop cursor).

For a forward container element iterator, the operation First of the iterator type is called on the loop
iterator, to produce the initial value for the loop cursor. If the result of calling Has_Element on the initial
value is False, then the execution of the loop_statement is complete. Otherwise, the
sequence_of_statements is executed with the loop parameter denoting an indexing (see 4.1.6) into the
iterable container object for the loop, with the only parameter to the indexing being the current value of
the loop cursor; then the Next operation of the iterator type is called with the loop iterator and the loop
cursor to produce the next value to be assigned to the loop cursor. This repeats until the result of calling
Has_Element on the loop cursor is False, or until the loop is left as a consequence of a transfer of control.
For a reverse container element iterator, the operations Last and Previous are called rather than First and
Next. If the loop parameter is a constant (see above), then the indexing uses the default constant indexing
function for the type of the iterable container object for the loop; otherwise it uses the default variable
indexing function.
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Examples
- - Array component iterator example:
for Element of Board loop -- See3.6.1.
Element := Element * 2.0; -- Double each element of Board, a two-dimensional array.

end loop;

For examples of use of generalized iterators, see A.18.32 and the corresponding container packages in
A.18.2 and A.18.3.

5.6 Block Statements

A block_statement encloses a handled_sequence_of statements optionally preceded by a
declarative_part.

Syntax

block_statement ::=
[block_statement_identifier:]
[declare
declarative_part]
begin
handled_sequence_of statements
end [block_identifier];

If a block_statement has a block_statement_identifier, then the identifier shall be repeated after the
end; otherwise, there shall not be an identifier after the end.
Static Semantics

A block_statement that has no explicit declarative_part has an implicit empty declarative_part.

Dynamic Semantics

The execution of a block_statement consists of the elaboration of its declarative_part followed by the
execution of its handled_sequence_of statements.

Examples

Example of a block statement with a local variable:

Swap:
declare
Temp : Integer;
begin
Temp := V; V := U; U := Temp;
end Swap;

5.7 Exit Statements

An exit_statement is used to complete the execution of an enclosing loop_statement; the completion is
conditional if the exit_statement includes a condition.

Syntax

exit_statement ::=
exit [loop_name] [when condition];

Name Resolution Rules

The loop_name, if any, in an exit_statement shall resolve to denote a loop_statement.
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Legality Rules

Each exit_statement applies to a loop_statement; this is the loop_statement being exited. An exit_-
statement with a name is only allowed within the loop_statement denoted by the name, and applies to
that loop_statement. An exit_statement without a name is only allowed within a loop_statement, and
applies to the innermost enclosing one. An exit_statement that applies to a given loop_statement shall not
appear within a body or accept_statement, if this construct is itself enclosed by the given
loop_statement.

Dynamic Semantics
For the execution of an exit_statement, the condition, if present, is first evaluated. If the value of the
condition is True, or if there is no condition, a transfer of control is done to complete the loop_statement.
If the value of the condition is False, no transfer of control takes place.

NOTES
8 Several nested loops can be exited by an exit_statement that names the outer loop.

Examples
Examples of loops with exit statements:

for N in 1 .. Max Num Items loop
Get New Item(New_ Item) ;
Merge Item(New Item, Storage File);
exit when New Item = Terminal Item;
end loop;

Main Cycle:
loop
- - initial statements
exit Main Cycle when Found;
- - final statements
end loop Main Cycle;

5.8 Goto Statements

A goto_statement specifies an explicit transfer of control from this statement to a target statement with a
given label.

Syntax
goto_statement ::= goto label name;

Name Resolution Rules

The label name shall resolve to denote a label; the statement with that label is the farget statement.

Legality Rules

The innermost sequence_of statements that encloses the target statement shall also enclose the
goto_statement. Furthermore, if a goto_statement is enclosed by an accept_statement or a body, then
the target statement shall not be outside this enclosing construct.

Dynamic Semantics
The execution of a goto_statement transfers control to the target statement, completing the execution of
any compound_statement that encloses the goto_statement but does not enclose the target.

NOTES
9 The above rules allow transfer of control to a statement of an enclosing sequence_of_statements but not the reverse.
Similarly, they prohibit transfers of control such as between alternatives of a case_statement, if statement, or

5.7 Exit Statements 13 December 2012 150



ISO/IEC 8652:2012(E) — Ada Reference Manual

select_statement; between exception_handlers; or from an exception_handler of a handled_sequence_of statements
back to its sequence_of_statements.

Examples
Example of a loop containing a goto statement:

<<Sort>>
for T in 1 .. N-1 loop
if A(I) > A(I+1l) then
Exchange (A(I), A(I+1));
goto Sort;
end if;
end loop;
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6 Subprograms

A subprogram is a program unit or intrinsic operation whose execution is invoked by a subprogram call.
There are two forms of subprogram: procedures and functions. A procedure call is a statement; a function
call is an expression and returns a value. The definition of a subprogram can be given in two parts: a
subprogram declaration defining its interface, and a subprogram_body defining its execution. Operators
and enumeration literals are functions.

A callable entity is a subprogram or entry (see Section 9). A callable entity is invoked by a call; that is, a
subprogram call or entry call. A callable construct is a construct that defines the action of a call upon a
callable entity: a subprogram_body, entry_body, or accept_statement.

6.1 Subprogram Declarations

A subprogram_declaration declares a procedure or function.

Syntax

subprogram_declaration ::=
[overriding_indicator]

subprogram_specification

[aspect_specification];

This paragraph was deleted.

subprogram_specification ::=
procedure_specification
| function_specification

procedure_specification ::= procedure defining_program_unit_name parameter_profile
function_specification ::= function defining_designator parameter_and_result_profile
designator ::= [parent_unit_name . ]identifier | operator_symbol

defining_designator ::= defining_program_unit_name | defining_operator_symbol
defining_program_unit_name ::= [parent_unit_name . ]defining_identifier

The optional parent_unit_name is only allowed for library units (see 10.1.1).
operator_symbol ::= string_literal

The sequence of characters in an operator_symbol shall form a reserved word, a delimiter, or
compound delimiter that corresponds to an operator belonging to one of the six categories of
operators defined in subclause 4.5.

defining_operator_symbol ::= operator_symbol

parameter_profile ::= [formal_part]

parameter_and_result_profile ::=

[formal_part] return [null_exclusion] subtype_mark
| [formal_part] return access_definition

formal_part ::=
(parameter_specification {; parameter_specification})
parameter_specification ::=
defining_identifier_list : [aliased] mode [null_exclusion] subtype_mark [:= default_expression]
| defining_identifier_list : access_definition [:= default_expression]
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mode ::= [in] | in out | out

Name Resolution Rules

A formal parameter is an object directly visible within a subprogram_body that represents the actual
parameter passed to the subprogram in a call; it is declared by a parameter_specification. For a formal
parameter, the expected type for its default_expression, if any, is that of the formal parameter.

Legality Rules

The parameter mode of a formal parameter conveys the direction of information transfer with the actual
parameter: in, in out, or out. Mode in is the default, and is the mode of a parameter defined by an
access_definition.

A default_expression is only allowed in a parameter_specification for a formal parameter of mode in.

A subprogram_declaration or a generic_subprogram_declaration requires a completion unless the
Import aspect (see B.1) is True for the declaration; the completion shall be a body or a
renaming_declaration (see 8.5). A completion is not allowed for an abstract_subprogram_declaration
(see 3.9.3), a null_procedure_declaration (see 6.7), or an expression_function_declaration (see 6.8).

A name that denotes a formal parameter is not allowed within the formal_part in which it is declared, nor
within the formal_part of a corresponding body or accept_statement.

Static Semantics

The profile of (a view of) a callable entity is either a parameter_profile or parameter_and_result_profile;
it embodies information about the interface to that entity — for example, the profile includes information
about parameters passed to the callable entity. All callable entities have a profile — enumeration literals,
other subprograms, and entries. An access-to-subprogram type has a designated profile. Associated with a
profile is a calling convention. A subprogram_declaration declares a procedure or a function, as indicated
by the initial reserved word, with name and profile as given by its specification.

The nominal subtype of a formal parameter is the subtype determined by the optional null_exclusion and
the subtype_mark, or defined by the access_definition, in the parameter_specification. The nominal
subtype of a function result is the subtype determined by the optional null_exclusion and the
subtype_mark, or defined by the access_definition, in the parameter_and_result_profile.

An explicitly aliased parameter is a formal parameter whose parameter_specification includes the
reserved word aliased.

An access parameter is a formal in parameter specified by an access_definition. An access result type is a
function result type specified by an access_definition. An access parameter or result type is of an
anonymous access type (see 3.10). Access parameters of an access-to-object type allow dispatching calls
to be controlled by access values. Access parameters of an access-to-subprogram type permit calls to
subprograms passed as parameters irrespective of their accessibility level.
The subtypes of a profile are:

e For any non-access parameters, the nominal subtype of the parameter.

e For any access parameters of an access-to-object type, the designated subtype of the parameter

type.

e For any access parameters of an access-to-subprogram type, the subtypes of the designated
profile of the parameter type.

e For any non-access result, the nominal subtype of the function result.
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e For any access result type of an access-to-object type, the designated subtype of the result type.

e For any access result type of an access-to-subprogram type, the subtypes of the designated
profile of the result type.

The types of a profile are the types of those subtypes.

A subprogram declared by an abstract_subprogram_declaration is abstract; a subprogram declared by a
subprogram_declaration is not. See 3.9.3, “Abstract Types and Subprograms”. Similarly, a procedure
declared by a null_procedure_declaration is a null procedure; a procedure declared by a
subprogram_declaration is not. See 6.7, “Null Procedures”. Finally, a function declared by an
expression_function_declaration is an expression function; a function declared by a
subprogram_declaration is not. See 6.8, “Expression Functions”.

An overriding_indicator is used to indicate whether overriding is intended. See 8.3.1, “Overriding
Indicators”.

Dynamic Semantics
The elaboration of a subprogram_declaration has no effect.

NOTES
1 A parameter_specification with several identifiers is equivalent to a sequence of single parameter_specifications, as
explained in 3.3.

2 Abstract subprograms do not have bodies, and cannot be used in a nondispatching call (see 3.9.3, “Abstract Types and
Subprograms”).

3 The evaluation of default_expressions is caused by certain calls, as described in 6.4.1. They are not evaluated during
the elaboration of the subprogram declaration.

4 Subprograms can be called recursively and can be called concurrently from multiple tasks.

Examples
Examples of subprogram declarations:

procedure Traverse_Tree;
procedure Increment (X : in out Integer) ;

procedure Right Indent (Margin : out Line Size); -- see3.54
procedure Switch(From, To : in out Link); -- see 3.10.1
function Random return Probability; -- see 3.5.7
function Min Cell(X : Link) return Cell; -- see 3.10.1
function Next Frame (K : Positive) return Frame; -- see 3.10
function Dot_Product (Left, Right : Vector) return Real; -- see3.6

function "*" (Left, Right : Matrix) return Matrix; -- see 3.6

Examples of in parameters with default expressions:

procedure Print Header (Pages : in Natural;
Header : in Line := (1 .. Line'Last => ' '); -- see3.6
Center : in Boolean := True) ;

155 13 December 2012 Subprogram Declarations 6.1

28.1/2

28.2/3

29

30/3

30.1/2

31/2

32

33

34

35

36

37

38
39

40

41

42



1/3

2/3

3/3

4/3

5/3

6/3

713

8/3

9/3

10/3

11/3

12/3

13/3

14/3

15/3

16/3

ISO/IEC 8652:2012(E) — Ada Reference Manual

6.1.1 Preconditions and Postconditions

For a subprogram or entry, the following language-defined aspects may be specified with an
aspect_specification (see 13.1.1):

Pre This aspect specifies a specific precondition for a callable entity; it shall be specified by an
expression, called a specific precondition expression. If not specified for an entity, the
specific precondition expression for the entity is the enumeration literal True.

Pre'Class This aspect specifies a class-wide precondition for an operation of a tagged type and its
descendants; it shall be specified by an expression, called a class-wide precondition
expression. If not specified for an entity, then if no other class-wide precondition applies to
the entity, the class-wide precondition expression for the entity is the enumeration literal
True.

Post This aspect specifies a specific postcondition for a callable entity; it shall be specified by an
expression, called a specific postcondition expression. If not specified for an entity, the
specific postcondition expression for the entity is the enumeration literal True.

Post'Class This aspect specifies a class-wide postcondition for an operation of a tagged type and its
descendants; it shall be specified by an expression, called a class-wide postcondition
expression. If not specified for an entity, the class-wide postcondition expression for the
entity is the enumeration literal True.

Name Resolution Rules
The expected type for a precondition or postcondition expression is any boolean type.
Within the expression for a Pre'Class or Post'Class aspect for a primitive subprogram of a tagged type T, a
name that denotes a formal parameter of type 7 is interpreted as having type 7'Class. Similarly, a name

that denotes a formal access parameter of type access-to-T is interpreted as having type access-to-7"Class.
This ensures that the expression is well-defined for a primitive subprogram of a type descended from 7.

For an attribute_reference with attribute_designator Old, if the attribute reference has an expected type or
shall resolve to a given type, the same applies to the prefix; otherwise, the prefix shall be resolved
independently of context.

Legality Rules

The Pre or Post aspect shall not be specified for an abstract subprogram or a null procedure. Only the
Pre'Class and Post'Class aspects may be specified for such a subprogram.

If a type T has an implicitly declared subprogram P inherited from a parent type 7/ and a homograph (see
8.3) of P from a progenitor type 72, and

e the corresponding primitive subprogram P/ of type T/ is neither null nor abstract; and
o the class-wide precondition expression True does not apply to P/ (implicitly or explicitly); and

e there is a class-wide precondition expression that applies to the corresponding primitive
subprogram P2 of 72 that does not fully conform to any class-wide precondition expression that
applies to P1,

then:
e Ifthe type T is abstract, the implicitly declared subprogram P is abstract.

e Otherwise, the subprogram P requires overriding and shall be overridden with a nonabstract
subprogram.
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If a renaming of a subprogram or entry S/ overrides an inherited subprogram S2, then the overriding is
illegal unless each class-wide precondition expression that applies to S/ fully conforms to some class-wide
precondition expression that applies to S2 and each class-wide precondition expression that applies to S2
fully conforms to some class-wide precondition expression that applies to S1.

Static Semantics

If a Pre'Class or Post'Class aspect is specified for a primitive subprogram of a tagged type 7, then the
associated expression also applies to the corresponding primitive subprogram of each descendant of 7.

If performing checks is required by the Pre, Pre'Class, Post, or Post'Class assertion policies (see 11.4.2) in
effect at the point of a corresponding aspect specification applicable to a given subprogram or entry, then
the respective precondition or postcondition expressions are considered enabled.

An expression is potentially unevaluated if it occurs within:
e any part of an if_expression other than the first condition;
® adependent_expression of a case_expression;
e the right operand of a short-circuit control form; or
e amembership_choice other than the first of a membership operation.

For a prefix X that denotes an object of a nonlimited type, the following attribute is defined:

X'0ld For each X'Old in a postcondition expression that is enabled, a constant is implicitly
declared at the beginning of the subprogram or entry. The constant is of the type of X and is
initialized to the result of evaluating X (as an expression) at the point of the constant
declaration. The value of X'Old in the postcondition expression is the value of this constant;
the type of X'Old is the type of X. These implicit constant declarations occur in an arbitrary
order.

Reference to this attribute is only allowed within a postcondition expression. The prefix of
an Old attribute_reference shall not contain a Result attribute reference, nor an Old
attribute_reference, nor a use of an entity declared within the postcondition expression but
not within prefix itself (for example, the loop parameter of an enclosing
quantified_expression). The prefix of an Old attribute_reference that is potentially
unevaluated shall statically denote an entity.

For a prefix F that denotes a function declaration, the following attribute is defined:

F'Result Within a postcondition expression for function F, denotes the result object of the function.
The type of this attribute is that of the function result except within a Post'Class
postcondition expression for a function with a controlling result or with a controlling access
result. For a controlling result, the type of the attribute is 7'Class, where T is the function
result type. For a controlling access result, the type of the attribute is an anonymous access
type whose designated type is 7'Class, where T is the designated type of the function result
type.

Use of this attribute is allowed only within a postcondition expression for F.

Dynamic Semantics
Upon a call of the subprogram or entry, after evaluating any actual parameters, precondition checks are
performed as follows:

e The specific precondition check begins with the evaluation of the specific precondition
expression that applies to the subprogram or entry, if it is enabled; if the expression evaluates to
False, Assertions.Assertion_Error is raised; if the expression is not enabled, the check succeeds.
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e The class-wide precondition check begins with the evaluation of any enabled class-wide
precondition expressions that apply to the subprogram or entry. If and only if all the class-wide
precondition expressions evaluate to False, Assertions.Assertion_Error is raised.

The precondition checks are performed in an arbitrary order, and if any of the class-wide precondition
expressions evaluate to True, it is not specified whether the other class-wide precondition expressions are
evaluated. The precondition checks and any check for elaboration of the subprogram body are performed
in an arbitrary order. It is not specified whether in a call on a protected operation, the checks are
performed before or after starting the protected action. For an entry call, the checks are performed prior to
checking whether the entry is open.

Upon successful return from a call of the subprogram or entry, prior to copying back any by-copy in out
or out parameters, the postcondition check is performed. This consists of the evaluation of any enabled
specific and class-wide postcondition expressions that apply to the subprogram or entry. If any of the
postcondition expressions evaluate to False, then Assertions.Assertion Error is raised. The postcondition
expressions are evaluated in an arbitrary order, and if any postcondition expression evaluates to False, it is
not specified whether any other postcondition expressions are evaluated. The postcondition check, and any
constraint or predicate checks associated with in out or out parameters are performed in an arbitrary order.

If a precondition or postcondition check fails, the exception is raised at the point of the call; the exception
cannot be handled inside the called subprogram or entry. Similarly, any exception raised by the evaluation
of a precondition or postcondition expression is raised at the point of call.

For any subprogram or entry call (including dispatching calls), the checks that are performed to verify
specific precondition expressions and specific and class-wide postcondition expressions are determined by
those for the subprogram or entry actually invoked. Note that the class-wide postcondition expressions
verified by the postcondition check that is part of a call on a primitive subprogram of type T includes all
class-wide postcondition expressions originating in any progenitor of 7, even if the primitive subprogram
called is inherited from a type 71 and some of the postcondition expressions do not apply to the
corresponding primitive subprogram of 7'/.

The class-wide precondition check for a call to a subprogram or entry consists solely of checking the
class-wide precondition expressions that apply to the denoted callable entity (not necessarily the one that
is invoked).

For a call via an access-to-subprogram value, all precondition and postcondition checks performed are
determined by the subprogram or entry denoted by the prefix of the Access attribute reference that
produced the value.

NOTES
5 A precondition is checked just before the call. If another task can change any value that the precondition expression
depends on, the precondition need not hold within the subprogram or entry body.
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6.2 Formal Parameter Modes

A parameter_specification declares a formal parameter of mode in, in out, or out.

Static Semantics

A parameter is passed either by copy or by reference. When a parameter is passed by copy, the formal
parameter denotes a separate object from the actual parameter, and any information transfer between the
two occurs only before and after executing the subprogram. When a parameter is passed by reference, the
formal parameter denotes (a view of) the object denoted by the actual parameter; reads and updates of the
formal parameter directly reference the actual parameter object.

A type is a by-copy type if it is an elementary type, or if it is a descendant of a private type whose full type
is a by-copy type. A parameter of a by-copy type is passed by copy, unless the formal parameter is
explicitly aliased.

A type is a by-reference type if it is a descendant of one of the following:
e atagged type;
e atask or protected type;
e an explicitly limited record type;
e acomposite type with a subcomponent of a by-reference type;
e aprivate type whose full type is a by-reference type.

A parameter of a by-reference type is passed by reference, as is an explicitly aliased parameter of any
type. Each value of a by-reference type has an associated object. For a parenthesized expression,
qualified_expression, or type_conversion, this object is the one associated with the operand. For a
conditional_expression, this object is the one associated with the evaluated dependent expression.

For other parameters, it is unspecified whether the parameter is passed by copy or by reference.

Bounded (Run-Time) Errors

If one name denotes a part of a formal parameter, and a second name denotes a part of a distinct formal
parameter or an object that is not part of a formal parameter, then the two names are considered distinct
access paths. If an object is of a type for which the parameter passing mechanism is not specified and is
not an explicitly aliased parameter, then it is a bounded error to assign to the object via one access path,
and then read the value of the object via a distinct access path, unless the first access path denotes a part of
a formal parameter that no longer exists at the point of the second access (due to leaving the corresponding
callable construct). The possible consequences are that Program_Error is raised, or the newly assigned
value is read, or some old value of the object is read.

NOTES
6 A formal parameter of mode in is a constant view (see 3.3); it cannot be updated within the subprogram_body.
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6.3 Subprogram Bodies
A subprogram_body specifies the execution of a subprogram.

Syntax
subprogram_body ::=
[overriding_indicator]
subprogram_specification
[aspect_specification] is
declarative_part
begin
handled_sequence_of_statements
end [designator];
If a designator appears at the end of a subprogram_body, it shall repeat the defining_designator of
the subprogram_specification.
Legality Rules
In contrast to other bodies, a subprogram_body need not be the completion of a previous declaration, in
which case the body declares the subprogram. If the body is a completion, it shall be the completion of a
subprogram_declaration or generic_subprogram_declaration. The profile of a subprogram_body that
completes a declaration shall conform fully to that of the declaration.

Static Semantics

A subprogram_body is considered a declaration. It can either complete a previous declaration, or itself be
the initial declaration of the subprogram.

Dynamic Semantics
The elaboration of a nongeneric subprogram_body has no other effect than to establish that the
subprogram can from then on be called without failing the Elaboration_Check.

The execution of a subprogram_body is invoked by a subprogram call. For this execution the
declarative_part is elaborated, and the handled_sequence_of_statements is then executed.

Examples
Example of procedure body:

procedure Push(E : in Element Type; S : in out Stack) is
begin
if S.Index = S.Size then
raise Stack_Overflow;

else
S.Index := S.Index + 1;
S.Space (S.Index) := E;
end if;
end Push;

Example of a function body:

function Dot Product (Left, Right : Vector) return Real is
Sum : Real := 0.0;
begin
Check (Left'First = Right'First and Left'Last = Right'Last);
for J in Left'Range loop
Sum := Sum + Left (J)*Right (J);
end loop;
return Sum;
end Dot Product;
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6.3.1 Conformance Rules

When subprogram profiles are given in more than one place, they are required to conform in one of four
ways: type conformance, mode conformance, subtype conformance, or full conformance.

Static Semantics

As explained in B.1, “Interfacing Aspects”, a convention can be specified for an entity. Unless this
International Standard states otherwise, the default convention of an entity is Ada. For a callable entity or
access-to-subprogram type, the convention is called the calling convention. The following conventions are
defined by the language:

e The default calling convention for any subprogram not listed below is Ada. The Convention
aspect may be specified to override the default calling convention (see B.1).

e The Intrinsic calling convention represents subprograms that are “built in” to the compiler. The
default calling convention is Intrinsic for the following:

e an enumeration literal;
o a'"/=" operator declared implicitly due to the declaration of "=" (see 6.6);
« any other implicitly declared subprogram unless it is a dispatching operation of a tagged
type;
« an inherited subprogram of a generic formal tagged type with unknown discriminants;
« an attribute that is a subprogram;
« asubprogram declared immediately within a protected_body;
« any prefixed view of a subprogram (see 4.1.3).
The Access attribute is not allowed for Intrinsic subprograms.

e The default calling convention is profected for a protected subprogram, and for an access-to-
subprogram type with the reserved word protected in its definition.

e The default calling convention is entry for an entry.

e The calling convention for an anonymous access-to-subprogram parameter or anonymous
access-to-subprogram result is protected if the reserved word protected appears in its definition;
otherwise, it is the convention of the subprogram that contains the parameter.

e If not specified above as Intrinsic, the calling convention for any inherited or overriding
dispatching operation of a tagged type is that of the corresponding subprogram of the parent
type. The default calling convention for a new dispatching operation of a tagged type is the
convention of the type.

Of these four conventions, only Ada and Intrinsic are allowed as a convention_identifier in the
specification of a Convention aspect.

Two profiles are type conformant if they have the same number of parameters, and both have a result if
either does, and corresponding parameter and result types are the same, or, for access parameters or access
results, corresponding designated types are the same, or corresponding designated profiles are type
conformant.

Two profiles are mode conformant if:

e they are type conformant; and
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e corresponding parameters have identical modes and both or neither are explicitly aliased
parameters; and

e for corresponding access parameters and any access result type, the designated subtypes
statically match and either both or neither are access-to-constant, or the designated profiles are
subtype conformant.

Two profiles are subtype conformant if they are mode conformant, corresponding subtypes of the profile
statically match, and the associated calling conventions are the same. The profile of a generic formal
subprogram is not subtype conformant with any other profile.

Two profiles are fully conformant if they are subtype conformant, if they have access-to-subprogram
results whose designated profiles are fully conformant, and for corresponding parameters:

e they have the same names; and

e both or neither have null_exclusions; and

e neither have default_expressions, or they both have default_expressions that are fully
conformant with one another; and

e for access-to-subprogram parameters, the designated profiles are fully conformant.

Two expressions are fully conformant if, after replacing each use of an operator with the equivalent
function_call:

e cach constituent construct of one corresponds to an instance of the same syntactic category in
the other, except that an expanded name may correspond to a direct_name (or character_literal)
or to a different expanded name in the other; and

e cach direct_name, character_literal, and selector_name that is not part of the prefix of an
expanded name in one denotes the same declaration as the corresponding direct_name,
character_literal, or selector_name in the other; and

e cach attribute_designator in one is the same as the corresponding attribute_designator in the
other; and

e cach primary that is a literal in one has the same value as the corresponding literal in the other.

Two known_discriminant_parts are fully conformant if they have the same number of discriminants, and
discriminants in the same positions have the same names, statically matching subtypes, and
default_expressions that are fully conformant with one another.

Two discrete_subtype_definitions are fully conformant if they are both subtype_indications or are both
ranges, the subtype_marks (if any) denote the same subtype, and the corresponding simple_expressions
of the ranges (if any) fully conform.

The prefixed view profile of a subprogram is the profile obtained by omitting the first parameter of that
subprogram. There is no prefixed view profile for a parameterless subprogram. For the purposes of
defining subtype and mode conformance, the convention of a prefixed view profile is considered to match
that of either an entry or a protected operation.

Implementation Permissions

An implementation may declare an operator declared in a language-defined library unit to be intrinsic.
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6.3.2 Inline Expansion of Subprograms
Subprograms may be expanded in line at the call site.

Paragraphs 2 through 4 were moved to Annex J, “Obsolescent Features”.

Static Semantics

For a callable entity or a generic subprogram, the following language-defined representation aspect may
be specified:

Inline The type of aspect Inline is Boolean. When aspect Inline is True for a callable entity, inline
expansion is desired for all calls to that entity. When aspect Inline is True for a generic
subprogram, inline expansion is desired for all calls to all instances of that generic
subprogram.

If directly specified, the aspect_definition shall be a static expression. This aspect is never
inherited; if not directly specified, the aspect is False.

Implementation Permissions

For each call, an implementation is free to follow or to ignore the recommendation determined by the
Inline aspect.

6.4 Subprogram Calls

A subprogram call is either a procedure_call_statement or a function_call; it invokes the execution of the
subprogram_body. The call specifies the association of the actual parameters, if any, with formal
parameters of the subprogram.

Syntax

procedure_call_statement ::=

procedure_name;

| procedure_prefix actual_parameter_part;
function_call ::=

function_name

| function_prefix actual_parameter_part
actual_parameter_part ::=

(parameter_association {, parameter_association})

parameter_association ::=
[formal parameter_selector_name =>] explicit_actual_parameter

explicit_actual_parameter ::= expression | variable name

A parameter_association is named or positional according to whether or not the formal parameter -
selector_name is specified. Any positional associations shall precede any named associations.
Named associations are not allowed if the prefix in a subprogram call is an attribute_reference.

Name Resolution Rules

The name or prefix given in a procedure_call_statement shall resolve to denote a callable entity that is a
procedure, or an entry renamed as (viewed as) a procedure. The name or prefix given in a function_call
shall resolve to denote a callable entity that is a function. The name or prefix shall not resolve to denote an
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abstract subprogram unless it is also a dispatching subprogram. When there is an actual_parameter_part,
the prefix can be an implicit_dereference of an access-to-subprogram value.

A subprogram call shall contain at most one association for each formal parameter. Each formal parameter
without an association shall have a default_expression (in the profile of the view denoted by the name or
prefix). This rule is an overloading rule (see 8.6).

Dynamic Semantics

For the execution of a subprogram call, the name or prefix of the call is evaluated, and each parameter_-
association is evaluated (see 6.4.1). If a default_expression is used, an implicit parameter_association is
assumed for this rule. These evaluations are done in an arbitrary order. The subprogram_body is then
executed, or a call on an entry or protected subprogram is performed (see 3.9.2). Finally, if the subprogram
completes normally, then after it is left, any necessary assigning back of formal to actual parameters
occurs (see 6.4.1).

If the name or prefix of a subprogram call denotes a prefixed view (see 4.1.3), the subprogram call is
equivalent to a call on the underlying subprogram, with the first actual parameter being provided by the
prefix of the prefixed view (or the Access attribute of this prefix if the first formal parameter is an access
parameter), and the remaining actual parameters given by the actual_parameter_part, if any.

The exception Program_Error is raised at the point of a function_call if the function completes normally
without executing a return statement.

A function_call denotes a constant, as defined in 6.5; the nominal subtype of the constant is given by the
nominal subtype of the function result.

Examples
Examples of procedure calls:
Traverse_Tree; -~ seeb6.]
Print Header (128, Title, True); -- see6.1
Switch (From => X, To => Next) ; -- see 6.1
Print Header (128, Header => Title, Center => True); -- see6.1
Print Header (Header => Title, Center => True, Pages => 128); -- see0./
Examples of function calls:
Dot_Product (U, V) -- see 6.1 and 6.3
Clock -- see 9.6
F.all - - presuming F is of an access-to-subprogram type — see 3.10
Examples of procedures with default expressions:
procedure Activate (Process : in Process Name;
After : in Process_Name := No_Process;
Wait : in Duration := 0.0;
Prior : in Boolean := False);
procedure Pair(Left, Right : in Person Name := new Person(M)); -- see 3.10.1

Examples of their calls:

Activate (X) ;

Activate (X, After => Y);

Activate (X, Wait => 60.0, Prior => True);
Activate (X, Y, 10.0, False);

Pair;

Pair (Left => new Person(F), Right => new Person(M)) ;
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NOTES

7 If a default_expression is used for two or more parameters in a multiple parameter_specification, the default_-
expression is evaluated once for each omitted parameter. Hence in the above examples, the two calls of Pair are
equivalent.

Examples

Examples of overloaded subprograms:

procedure Put
procedure Put

X : in Integer);
X : in String);
procedure Set
procedure Set

Tint : in Color) ;
Signal : in Light);

Examples of their calls:

Put (28) ;

Put ("no possible ambiguity here");
(
(

Set (Tint => Red) ;
Set (Signal => Red);
Set (Color!' (Red)) ;

- - Set(Red) would be ambiguous since Red may
- - denote a value either of type Color or of type Light

6.4.1 Parameter Associations

A parameter association defines the association between an actual parameter and a formal parameter.

Name Resolution Rules

The formal parameter_selector_name of a named parameter_association shall resolve to denote a
parameter_specification of the view being called; this is the formal parameter of the association. The
formal parameter for a positional parameter_association is the parameter with the corresponding position
in the formal part of the view being called.

The actual parameter is either the explicit_actual_parameter given in a parameter_association for a
given formal parameter, or the corresponding default_expression if no parameter_association is given
for the formal parameter. The expected type for an actual parameter is the type of the corresponding
formal parameter.

If the mode is in, the actual is interpreted as an expression; otherwise, the actual is interpreted only as a
name, if possible.
Legality Rules
If the mode is in out or out, the actual shall be a name that denotes a variable.
If the formal parameter is an explicitly aliased parameter, the type of the actual parameter shall be tagged

or the actual parameter shall be an aliased view of an object. Further, if the formal parameter subtype F is
untagged:

o the subtype F shall statically match the nominal subtype of the actual object; or

e the subtype F shall be unconstrained, discriminated in its full view, and unconstrained in any
partial view.

In a function call, the accessibility level of the actual object for each explicitly aliased parameter shall not
be statically deeper than the accessibility level of the master of the call (see 3.10.2).

Two names are known to denote the same object if:
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both names statically denote the same stand-alone object or parameter; or

both names are selected_components, their prefixes are known to denote the same object, and
their selector_names denote the same component; or

both names are dereferences (implicit or explicit) and the dereferenced names are known to
denote the same object; or

both names are indexed_components, their prefixes are known to denote the same object, and
cach of the pairs of corresponding index values are either both static expressions with the same
static value or both names that are known to denote the same object; or

both names are slices, their prefixes are known to denote the same object, and the two slices
have statically matching index constraints; or

one of the two names statically denotes a renaming declaration whose renamed object name is
known to denote the same object as the other, the prefix of any dereference within the renamed
object_name is not a variable, and any expression within the renamed object_name contains no
references to variables nor calls on nonstatic functions.

Two names are known to refer to the same object if

The two names are known to denote the same object; or

One of the names is a selected _component, indexed_component, or slice and its prefix is
known to refer to the same object as the other name; or

One of the two names statically denotes a renaming declaration whose renamed object_name is
known to refer to the same object as the other name.

If a call C has two or more parameters of mode in out or out that are of an elementary type, then the call is
legal only if:

For each name N that is passed as a parameter of mode in out or out to the call C, there is no
other name among the other parameters of mode in out or out to C that is known to denote the
same object.

If a construct C has two or more direct constituents that are names or expressions whose evaluation may
occur in an arbitrary order, at least one of which contains a function call with an in out or out parameter,
then the construct is legal only if:

For each name N that is passed as a parameter of mode in out or out to some inner function call
C2 (not including the construct C itself), there is no other name anywhere within a direct
constituent of the construct C other than the one containing C2, that is known to refer to the
same object.

For the purposes of checking this rule:

For an array aggregate, an expression associated with a discrete_choice_list that has two or
more discrete choices, or that has a nonstatic range, is considered as two or more separate
occurrences of the expression;

For a record aggregate:

o The expression of a record_component_association is considered to occur once for each
associated component; and

o The default_expression for each record_component_association with <> for which the
associated component has a default_expression is considered part of the aggregate;

For a call, any default_expression evaluated as part of the call is considered part of the call.

6.4.1 Parameter Associations 13 December 2012

166



ISO/IEC 8652:2012(E) — Ada Reference Manual

Dynamic Semantics
For the evaluation of a parameter_association:
e The actual parameter is first evaluated.

e For an access parameter, the access_definition is elaborated, which creates the anonymous
access type.

e For a parameter (of any mode) that is passed by reference (see 6.2), a view conversion of the
actual parameter to the nominal subtype of the formal parameter is evaluated, and the formal
parameter denotes that conversion.

e For an in or in out parameter that is passed by copy (see 6.2), the formal parameter object is
created, and the value of the actual parameter is converted to the nominal subtype of the formal
parameter and assigned to the formal.

e For an out parameter that is passed by copy, the formal parameter object is created, and:

e For an access type, the formal parameter is initialized from the value of the actual, without
checking that the value satisfies any constraint, any predicate, or any exclusion of the null
value;

e For a scalar type that has the Default Value aspect specified, the formal parameter is
initialized from the value of the actual, without checking that the value satisfies any
constraint or any predicate;

e For a composite type with discriminants or that has implicit initial values for any
subcomponents (see 3.3.1), the behavior is as for an in out parameter passed by copy.

e For any other type, the formal parameter is uninitialized. If composite, a view conversion of
the actual parameter to the nominal subtype of the formal is evaluated (which might raise
Constraint_Error), and the actual subtype of the formal is that of the view conversion. If
elementary, the actual subtype of the formal is given by its nominal subtype.

e In a function call, for each explicitly aliased parameter, a check is made that the accessibility

level of the master of the actual object is not deeper than that of the master of the call (see
3.10.2).

A formal parameter of mode in out or out with discriminants is constrained if either its nominal subtype or
the actual parameter is constrained.

After normal completion and leaving of a subprogram, for each in out or out parameter that is passed by
copy, the value of the formal parameter is converted to the subtype of the variable given as the actual
parameter and assigned to it. These conversions and assignments occur in an arbitrary order.

Erroneous Execution
If the nominal subtype of a formal parameter with discriminants is constrained or indefinite, and the
parameter is passed by reference, then the execution of the call is erroneous if the value of any
discriminant of the actual is changed while the formal parameter exists (that is, before leaving the
corresponding callable construct).
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6.5 Return Statements

A simple_return_statement or extended_return_statement (collectively called a return statement) is
used to complete the execution of the innermost enclosing subprogram_body, entry_body, or accept_-
statement.

Syntax
simple_return_statement ::= return [expression];

extended_return_object_declaration ::=
defining_identifier : [aliased][constant] return_subtype_indication [:= expression]

extended_return_statement ::=
return extended_return_object_declaration [do
handled_sequence_of statements
end return];

return_subtype_indication ::= subtype_indication | access_definition

Name Resolution Rules

The result subtype of a function is the subtype denoted by the subtype_mark, or defined by the
access_definition, after the reserved word return in the profile of the function. The expected type for the
expression, if any, of a simple_return_statement is the result type of the corresponding function. The
expected type for the expression of an extended_return_statement is that of the return_subtype_ -
indication.

Legality Rules

A return statement shall be within a callable construct, and it applies to the innermost callable construct or
extended_return_statement that contains it. A return statement shall not be within a body that is within
the construct to which the return statement applies.

A function body shall contain at least one return statement that applies to the function body, unless the
function contains code_statements. A simple_return_statement shall include an expression if and only
if it applies to a function body. An extended_return_statement shall apply to a function body. An
extended_return_statement with the reserved word constant shall include an expression.

For an extended_return_statement that applies to a function body:

e If the result subtype of the function is defined by a subtype_mark, the return_subtype -
indication shall be a subtype_indication. The type of the subtype_indication shall be covered by
the result type of the function. The subtype defined by the subtype_indication shall be statically
compatible with the result subtype of the function; if the result type of the function is
clementary, the two subtypes shall statically match. If the result subtype of the function is
indefinite, then the subtype defined by the subtype_indication shall be a definite subtype, or
there shall be an expression.

e If the result subtype of the function is defined by an access_definition, the return_subtype_-
indication shall be an access_definition. The subtype defined by the access_definition shall
statically match the result subtype of the function. The accessibility level of this anonymous
access subtype is that of the result subtype.

e If the result subtype of the function is class-wide, the accessibility level of the type of the
subtype defined by the return_subtype_indication shall not be statically deeper than that of the
master that elaborated the function body.
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For any return statement that applies to a function body:

e If the result subtype of the function is limited, then the expression of the return statement (if
any) shall meet the restrictions described in 7.5.

e If the result subtype of the function is class-wide, the accessibility level of the type of the
expression (if any) of the return statement shall not be statically deeper than that of the master
that elaborated the function body.

e If the subtype determined by the expression of the simple_return_statement or by the
return_subtype_indication has one or more access discriminants, the accessibility level of the
anonymous access type of each access discriminant shall not be statically deeper than that of the
master that elaborated the function body.

If the keyword aliased is present in an extended_return_object_declaration, the type of the extended
return object shall be immutably limited.

Static Semantics

Within an extended_return_statement, the return object is declared with the given defining_identifier,
with the nominal subtype defined by the return_subtype_indication. An extended_return_statement with
the reserved word constant is a full constant declaration that declares the return object to be a constant
object.

Dynamic Semantics

For the execution of an extended_return_statement, the subtype_indication or access_definition is
claborated. This creates the nominal subtype of the return object. If there is an expression, it is evaluated
and converted to the nominal subtype (which might raise Constraint_Error — see 4.6); the return object is
created and the converted value is assigned to the return object. Otherwise, the return object is created and
initialized by default as for a stand-alone object of its nominal subtype (see 3.3.1). If the nominal subtype
is indefinite, the return object is constrained by its initial value. A check is made that the value of the
return object belongs to the function result subtype. Constraint Error is raised if this check fails.

For the execution of a simple_return_statement, the expression (if any) is first evaluated, converted to
the result subtype, and then is assigned to the anonymous return object.

If the return object has any parts that are tasks, the activation of those tasks does not occur until after the
function returns (see 9.2).

If the result type of a function is a specific tagged type, the tag of the return object is that of the result
type. If the result type is class-wide, the tag of the return object is that of the type of the
subtype_indication if it is specific, or otherwise that of the value of the expression. A check is made that
the master of the type identified by the tag of the result includes the elaboration of the master that
elaborated the function body. If this check fails, Program_Error is raised.

If the result subtype of the function is defined by an access_definition designating a specific tagged type
T, a check is made that the result value is null or the tag of the object designated by the result value
identifies 7. Constraint_Error is raised if this check fails.

Paragraphs 9 through 20 were deleted.

If any part of the specific type of the return object of a function (or coextension thereof) has one or more
access discriminants whose value is not constrained by the result subtype of the function, a check is made
that the accessibility level of the anonymous access type of each access discriminant, as determined by the
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expression or the return_subtype_indication of the return statement, is not deeper than the level of the
master of the call (see 3.10.2). If this check fails, Program_Error is raised.

For the execution of an extended_return_statement, the handled_sequence_of statements is executed.
Within this handled_sequence_of_statements, the execution of a simple_return_statement that applies
to the extended_return_statement causes a transfer of control that completes the extended_return_-
statement. Upon completion of a return statement that applies to a callable construct by the normal
completion of a simple_return_statement or by reaching the end return of an extended_return_-
statement, a transfer of control is performed which completes the execution of the callable construct, and
returns to the caller.

In the case of a function, the function_call denotes a constant view of the return object.

Implementation Permissions

For a function call used to initialize a composite object with a constrained nominal subtype or used to
initialize a return object that is built in place into such an object:

e If the result subtype of the function is constrained, and conversion of an object of this subtype to
the subtype of the object being initialized would raise Constraint Error, then Constraint Error
may be raised before calling the function.

o If the result subtype of the function is unconstrained, and a return statement is executed such that
the return object is known to be constrained, and conversion of the return object to the subtype
of the object being initialized would raise Constraint_Error, then Constraint_Error may be raised
at the point of the call (after abandoning the execution of the function body).

Examples
Examples of return statements:
return; - - in a procedure body, entry_body,
- - accept_statement, or extended_return_statement

return Key Value(Last Index) ; - - in a function body
return Node : Cell do - - in a function body, see 3.10.1 for Cell

Node.Value := Result;

Node.Succ := Next_ Node;

end return;
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6.5.1 Nonreturning Procedures

Specifying aspect No_Return to have the value True indicates that a procedure cannot return normally; it
may propagate an exception or loop forever.

Paragraphs 2 and 3 were moved to Annex J, “Obsolescent Features”.

Static Semantics

For a procedure or generic procedure, the following language-defined representation aspect may be
specified:

No Return  The type of aspect No_Return is Boolean. When aspect No_Return is True for an entity, the
entity is said to be nonreturning.

If directly specified, the aspect_definition shall be a static expression. This aspect is never
inherited; if not directly specified, the aspect is False.

If a generic procedure is nonreturning, then so are its instances. If a procedure declared within a generic
unit is nonreturning, then so are the corresponding copies of that procedure in instances.

Legality Rules
Aspect No_Return shall not be specified for a null procedure nor an instance of a generic unit.

A return statement shall not apply to a nonreturning procedure or generic procedure.

A procedure shall be nonreturning if it overrides a dispatching nonreturning procedure. In addition to the
places where Legality Rules normally apply (see 12.3), this rule applies also in the private part of an
instance of a generic unit.

If a renaming-as-body completes a nonreturning procedure declaration, then the renamed procedure shall
be nonreturning.

Paragraph 8 was deleted.

Dynamic Semantics

If the body of a nonreturning procedure completes normally, Program_Error is raised at the point of the
call.

Examples

procedure Fail (Msg : String) -- raises Fatal Error exception
with No Return;
- - Inform compiler and reader that procedure never returns normally

171 13 December 2012 Nonreturning Procedures 6.5.1

13

3.1/3

3.2/3

3.3/3

3.4/3

4/3

5/2

6/2

712

912

10/3



3/3

6/3

ISO/IEC 8652:2012(E) — Ada Reference Manual

6.6 Overloading of Operators

An operator is a function whose designator is an operator_symbol. Operators, like other functions, may
be overloaded.

Name Resolution Rules
Each use of a unary or binary operator is equivalent to a function_call with function prefix being the
corresponding operator_symbol, and with (respectively) one or two positional actual parameters being the
operand(s) of the operator (in order).

Legality Rules

The subprogram_specification of a unary or binary operator shall have one or two parameters,
respectively. The parameters shall be of mode in. A generic function instantiation whose designator is an
operator_symbol is only allowed if the specification of the generic function has the corresponding number
of parameters, and they are all of mode in.

Default_expressions are not allowed for the parameters of an operator (whether the operator is declared
with an explicit subprogram_specification or by a generic_instantiation).

An explicit declaration of "/=" shall not have a result type of the predefined type Boolean.

Static Semantics
An explicit declaration of "=" whose result type is Boolean implicitly declares an operator "/=" that gives
the complementary result.

NOTES
8 The operators "+" and "-" are both unary and binary operators, and hence may be overloaded with both one- and two-
parameter functions.

Examples

Examples of user-defined operators:

function "+" (Left, Right : Matrix) return Matrix;
function "+" (Left, Right : Vector) return Vector;

- - assuming that A, B, and C are of the type Vector
- - the following two statements are equivalent:

B + C;
" (B, C);
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6.7 Null Procedures

A null_procedure_declaration provides a shorthand to declare a procedure with an empty body. 112

Syntax

null_procedure_declaration ::= 213
[overriding_indicator]
procedure_specification is null
[aspect_specification];

Legality Rules

If a null_procedure_declaration is a completion, it shall be the completion of a subprogram_declaration  2.1/3
or generic_subprogram_declaration. The profile of a null_procedure_declaration that completes a
declaration shall conform fully to that of the declaration.

Static Semantics

A null_procedure_declaration declares a null procedure. A completion is not allowed for a 33
null_procedure_declaration; however, a null_procedure_declaration can complete a previous declaration.

Dynamic Semantics

The execution of a null procedure is invoked by a subprogram call. For the execution of a subprogram call ~ 412
on a null procedure, the execution of the subprogram_body has no effect.

The elaboration of a null_procedure_declaration has no other effect than to establish that the null 53
procedure can be called without failing the Elaboration_Check.

Examples

procedure Simplify (Expr : in out Expression) is null; -- see3.9 6/2
- - By default, Simplify does nothing, but it may be overridden in extensions of Expression
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6.8 Expression Functions

An expression_function_declaration provides a shorthand to declare a function whose body consists of a
single return statement.

Syntax
expression_function_declaration ::=
[overriding_indicator]
function_specification is
(expression)
[aspect_specification];

Name Resolution Rules

The expected type for the expression of an expression_function_declaration is the result type (see 6.5) of
the function.

Legality Rules

If an expression_function_declaration is a completion, it shall be the completion of a
subprogram_declaration or generic_subprogram_declaration. The profile of an expression_function_-
declaration that completes a declaration shall conform fully to that of the declaration.

If the result subtype has one or more unconstrained access discriminants, the accessibility level of the
anonymous access type of each access discriminant, as determined by the expression of the expression
function, shall not be statically deeper than that of the master that elaborated the expression_function_-
declaration.

Static Semantics

An expression_function_declaration declares an expression function. A completion is not allowed for an
expression_function_declaration; however, an expression_function_declaration can complete a previous
declaration.

Dynamic Semantics
The execution of an expression function is invoked by a subprogram call. For the execution of a
subprogram call on an expression function, the execution of the subprogram_body executes an implicit
function body containing only a simple_return_statement whose expression is that of the expression
function.

The elaboration of an expression_function_declaration has no other effect than to establish that the
expression function can be called without failing the Elaboration Check.

Examples

function Is Origin (P : in Point) return Boolean is -- see3.9
(P.X = 0.0 and P.Y = 0.0);
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7 Packages

Packages are program units that allow the specification of groups of logically related entities. Typically, a
package contains the declaration of a type (often a private type or private extension) along with the
declarations of primitive subprograms of the type, which can be called from outside the package, while
their inner workings remain hidden from outside users.

7.1 Package Specifications and Declarations

A package is generally provided in two parts: a package_specification and a package_body. Every
package has a package_specification, but not all packages have a package_body.

Syntax
package_declaration ::= package_specification;
package_specification ::=

package defining_program_unit_name
[aspect_specification] is
{basic_declarative_item}
[private
{basic_declarative_item}]
end [[parent_unit_name.]identifier]

If an identifier or parent_unit_name.identifier appears at the end of a package_specification, then
this sequence of lexical elements shall repeat the defining_program_unit_name.

Legality Rules

A package_declaration or generic_package_declaration requires a completion (a body) if it contains any
basic_declarative_item that requires a completion, but whose completion is not in its
package_specification.

Static Semantics

The first list of basic_declarative_items of a package_specification of a package other than a generic
formal package is called the visible part of the package. The optional list of basic_declarative_items after
the reserved word private (of any package_specification) is called the private part of the package. If the
reserved word private does not appear, the package has an implicit empty private part. Each list of
basic_declarative_items of a package_specification forms a declaration list of the package.

An entity declared in the private part of a package is visible only within the declarative region of the
package itself (including any child units — see 10.1.1). In contrast, expanded names denoting entities
declared in the visible part can be used even outside the package; furthermore, direct visibility of such
entities can be achieved by means of use_clauses (see 4.1.3 and 8.4).

Dynamic Semantics
The elaboration of a package_declaration consists of the elaboration of its basic_declarative_items in the
given order.

NOTES
1 The visible part of a package contains all the information that another program unit is able to know about the package.

2 If a declaration occurs immediately within the specification of a package, and the declaration has a corresponding
completion that is a body, then that body has to occur immediately within the body of the package.
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Examples
Example of a package declaration:
package Rational Numbers is
type Rational is
record
Numerator : Integer;
Denominator : Positive;
end record;
function "="(X,Y : Rational) return Boolean;
function "/" (X,Y : Integer) return Rational; -- fo constructa rational number
function "+" (X,Y : Rational) return Rational;
function "-" (X,Y : Rational) return Rational;
function "*" (X,Y : Rational) return Rational;
function "/" (X,Y : Rational) return Rational;

end Rational Numbers;

There are also many examples of package declarations in the predefined language environment (see Annex
A).

7.2 Package Bodies

In contrast to the entities declared in the visible part of a package, the entities declared in the
package_body are visible only within the package_body itself. As a consequence, a package with a
package_body can be used for the construction of a group of related subprograms in which the logical
operations available to clients are clearly isolated from the internal entities.

Syntax
package_body ::=
package body defining_program_unit_name
[aspect_specification] is
declarative_part
[begin
handled_sequence_of_statements]
end [[parent_unit_name.]identifier];

If an identifier or parent_unit_name.identifier appears at the end of a package_body, then this
sequence of lexical elements shall repeat the defining_program_unit_name.

Legality Rules

A package_body shall be the completion of a previous package_declaration or generic_package -
declaration. A library package_declaration or library generic_package_declaration shall not have a
body unless it requires a body; pragma Elaborate Body can be used to require a library_unit_declaration
to have a body (see 10.2.1) if it would not otherwise require one.

Static Semantics

In any package_body without statements there is an implicit null_statement. For any package_-
declaration without an explicit completion, there is an implicit package_body containing a single
null_statement. For a noninstance, nonlibrary package, this body occurs at the end of the declarative_part
of the innermost enclosing program unit or block_statement; if there are several such packages, the order
of the implicit package_bodies is unspecified. (For an instance, the implicit package_body occurs at the
place of the instantiation (see 12.3). For a library package, the place is partially determined by the
claboration dependences (see Clause 10).)
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Dynamic Semantics

For the elaboration of a nongeneric package_body, its declarative_part is first elaborated, and its
handled_sequence_of statements is then executed.

NOTES

3 A variable declared in the body of a package is only visible within this body and, consequently, its value can only be
changed within the package_body. In the absence of local tasks, the value of such a variable remains unchanged between
calls issued from outside the package to subprograms declared in the visible part. The properties of such a variable are
similar to those of a “static” variable of C.

4 The elaboration of the body of a subprogram explicitly declared in the visible part of a package is caused by the
elaboration of the body of the package. Hence a call of such a subprogram by an outside program unit raises the exception
Program_Error if the call takes place before the elaboration of the package_body (see 3.11).

Examples
Example of a package body (see 7.1):

package body Rational Numbers is

procedure Same Denominator (X,Y : in out Rational) is
begin
-- reduces X and Y to the same denominator:

end Same_Denominator;

function "="(X,Y : Rational) return Boolean is
U : Rational := X;
V : Rational := Y;

begin
Same_Denominator (U,V);
return U.Numerator = V.Numerator;

end "=";
function "/" (X,Y : Integer) return Rational is
begin

if Y > 0 then
return (Numerator => X, Denominator => Y);

else
return (Numerator => -X, Denominator => -Y);

end if;
end n/n ;
function "+" (X,Y : Rational) return Rational is ... end "+";
function "-" (X,Y : Rational) return Rational is ... end "-";
function "*" (X,Y : Rational) return Rational is ... end "*";
function "/" (X,Y : Rational) return Rational is ... end "/";

end Rational Numbers;

7.3 Private Types and Private Extensions

The declaration (in the visible part of a package) of a type as a private type or private extension serves to
separate the characteristics that can be used directly by outside program units (that is, the logical
properties) from other characteristics whose direct use is confined to the package (the details of the
definition of the type itself). See 3.9.1 for an overview of type extensions.

Syntax

private_type_declaration ::=
type defining_identifier [discriminant_part] is [[abstract] tagged] [limited] private
[aspect_specification];
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private_extension_declaration ::=
type defining_identifier [discriminant_part] is
[abstract] [limited | synchronized] new ancestor_subtype_indication
[and interface_list] with private
[aspect_specification];

Legality Rules
A private_type_declaration or private_extension_declaration declares a partial view of the type; such a
declaration is allowed only as a declarative_item of the visible part of a package, and it requires a
completion, which shall be a full_type_declaration that occurs as a declarative_item of the private part of
the package. The view of the type declared by the full_type_declaration is called the full view. A generic
formal private type or a generic formal private extension is also a partial view.

A type shall be completely defined before it is frozen (see 3.11.1 and 13.14). Thus, neither the declaration
of a variable of a partial view of a type, nor the creation by an allocator of an object of the partial view are
allowed before the full declaration of the type. Similarly, before the full declaration, the name of the
partial view cannot be used in a generic_instantiation or in a representation item.

A private type is limited if its declaration includes the reserved word limited; a private extension is limited
if its ancestor type is a limited type that is not an interface type, or if the reserved word limited or
synchronized appears in its definition. If the partial view is nonlimited, then the full view shall be
nonlimited. If a tagged partial view is limited, then the full view shall be limited. On the other hand, if an
untagged partial view is limited, the full view may be limited or nonlimited.

If the partial view is tagged, then the full view shall be tagged. On the other hand, if the partial view is
untagged, then the full view may be tagged or untagged. In the case where the partial view is untagged and
the full view is tagged, no derivatives of the partial view are allowed within the immediate scope of the
partial view; derivatives of the full view are allowed.

If a full type has a partial view that is tagged, then:

e the partial view shall be a synchronized tagged type (see 3.9.4) if and only if the full type is a
synchronized tagged type;

o the partial view shall be a descendant of an interface type (see 3.9.4) if and only if the full type
is a descendant of the interface type.

The ancestor subtype of a private_extension_declaration is the subtype defined by the ancestor -
subtype_indication; the ancestor type shall be a specific tagged type. The full view of a private extension
shall be derived (directly or indirectly) from the ancestor type. In addition to the places where Legality
Rules normally apply (see 12.3), the requirement that the ancestor be specific applies also in the private
part of an instance of a generic unit.

If the reserved word limited appears in a private_extension_declaration, the ancestor type shall be a
limited type. If the reserved word synchronized appears in a private_extension_declaration, the ancestor
type shall be a limited interface.

If the declaration of a partial view includes a known_discriminant_part, then the full_type_declaration
shall have a fully conforming (explicit) known_discriminant_part (see 6.3.1, “Conformance Rules”). The
ancestor subtype may be unconstrained; the parent subtype of the full view is required to be constrained
(see 3.7).

If a private extension inherits known discriminants from the ancestor subtype, then the full view shall also
inherit its discriminants from the ancestor subtype, and the parent subtype of the full view shall be
constrained if and only if the ancestor subtype is constrained.
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If the full_type_declaration for a private extension includes a derived_type_definition, then the reserved
word limited shall appear in the full_type_declaration if and only if it also appears in the
private_extension_declaration.

If a partial view has unknown discriminants, then the full_type_declaration may define a definite or an
indefinite subtype, with or without discriminants.

If a partial view has neither known nor unknown discriminants, then the full_type_declaration shall define
a definite subtype.

If the ancestor subtype of a private extension has constrained discriminants, then the parent subtype of the
full view shall impose a statically matching constraint on those discriminants.

Static Semantics

A private_type_declaration declares a private type and its first subtype. Similarly, a private_extension_-
declaration declares a private extension and its first subtype.

A declaration of a partial view and the corresponding full_type_declaration define two views of a single
type. The declaration of a partial view together with the visible part define the operations that are available
to outside program units; the declaration of the full view together with the private part define other
operations whose direct use is possible only within the declarative region of the package itself. Moreover,
within the scope of the declaration of the full view, the characteristics (see 3.4) of the type are determined
by the full view; in particular, within its scope, the full view determines the classes that include the type,
which components, entries, and protected subprograms are visible, what attributes and other predefined
operations are allowed, and whether the first subtype is static. See 7.3.1.

For a private extension, the characteristics (including components, but excluding discriminants if there is a
new discriminant_part specified), predefined operators, and inherited user-defined primitive subprograms
are determined by its ancestor type and its progenitor types (if any), in the same way that those of a record
extension are determined by those of its parent type and its progenitor types (see 3.4 and 7.3.1).

Dynamic Semantics

The elaboration of a private_type_declaration creates a partial view of a type. The elaboration of a
private_extension_declaration elaborates the ancestor_subtype_indication, and creates a partial view of a

type.

NOTES
5 The partial view of a type as declared by a private_type_declaration is defined to be a composite view (in 3.2). The full
view of the type might or might not be composite. A private extension is also composite, as is its full view.

6 Declaring a private type with an unknown_discriminant_part is a way of preventing clients from creating uninitialized
objects of the type; they are then forced to initialize each object by calling some operation declared in the visible part of
the package.

7 The ancestor type specified in a private_extension_declaration and the parent type specified in the corresponding
declaration of a record extension given in the private part need not be the same. If the ancestor type is not an interface
type, the parent type of the full view can be any descendant of the ancestor type. In this case, for a primitive subprogram
that is inherited from the ancestor type and not overridden, the formal parameter names and default expressions (if any)
come from the corresponding primitive subprogram of the specified ancestor type, while the body comes from the
corresponding primitive subprogram of the parent type of the full view. See 3.9.2.

8 If the ancestor type specified in a private_extension_declaration is an interface type, the parent type can be any type so
long as the full view is a descendant of the ancestor type. The progenitor types specified in a
private_extension_declaration and the progenitor types specified in the corresponding declaration of a record extension
given in the private part need not be the same — the only requirement is that the private extension and the record
extension be descended from the same set of interfaces.
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Examples
Examples of private type declarations:

type Key is private;
type File Name is limited private;

Example of a private extension declaration:

type List is new Ada.Finalization.Controlled with private;

7.3.1 Private Operations

For a type declared in the visible part of a package or generic package, certain operations on the type do
not become visible until later in the package — either in the private part or the body. Such private
operations are available only inside the declarative region of the package or generic package.

Static Semantics

The predefined operators that exist for a given type are determined by the classes to which the type
belongs. For example, an integer type has a predefined "+" operator. In most cases, the predefined
operators of a type are declared immediately after the definition of the type; the exceptions are explained
below. Inherited subprograms are also implicitly declared immediately after the definition of the type,
except as stated below.

For a composite type, the characteristics (see 7.3) of the type are determined in part by the characteristics
of its component types. At the place where the composite type is declared, the only characteristics of
component types used are those characteristics visible at that place. If later immediately within the
declarative region in which the composite type is declared additional characteristics become visible for a
component type, then any corresponding characteristics become visible for the composite type. Any
additional predefined operators are implicitly declared at that place. If there is no such place, then
additional predefined operators are not declared at all, but they still exist.

The corresponding rule applies to a type defined by a derived_type_definition, if there is a place
immediately within the declarative region in which the type is declared where additional characteristics of
its parent type become visible.

For example, an array type whose component type is limited private becomes nonlimited if the full view of
the component type is nonlimited and visible at some later place immediately within the declarative region
in which the array type is declared. In such a case, the predefined "=" operator is implicitly declared at that
place, and assignment is allowed after that place.

A type is a descendant of the full view of some ancestor of its parent type only if the current view it has of
its parent is a descendant of the full view of that ancestor. More generally, at any given place, a type is
descended from the same view of an ancestor as that from which the current view of its parent is
descended. This view determines what characteristics are inherited from the ancestor, and, for example,
whether the type is considered to be a descendant of a record type, or a descendant only through record
extensions of a more distant ancestor.

It is possible for there to be places where a derived type is visibly a descendant of an ancestor type, but not
a descendant of even a partial view of the ancestor type, because the parent of the derived type is not
visibly a descendant of the ancestor. In this case, the derived type inherits no characteristics from that
ancestor, but nevertheless is within the derivation class of the ancestor for the purposes of type conversion,
the "covers" relationship, and matching against a formal derived type. In this case the derived type is
considered to be a descendant of an incomplete view of the ancestor.
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Inherited primitive subprograms follow a different rule. For a derived_type_definition, each inherited 613
primitive subprogram is implicitly declared at the earliest place, if any, immediately within the declarative
region in which the type_declaration occurs, but after the type_declaration, where the corresponding
declaration from the parent is visible. If there is no such place, then the inherited subprogram is not
declared at all, but it still exists. For a tagged type, it is possible to dispatch to an inherited subprogram

that is not declared at all.

For a private_extension_declaration, each inherited subprogram is declared immediately after the 7
private_extension_declaration if the corresponding declaration from the ancestor is visible at that place.
Otherwise, the inherited subprogram is not declared for the private extension, though it might be for the

full type.

The Class attribute is defined for tagged subtypes in 3.9. In addition, for every subtype S of an untagged s
private type whose full view is tagged, the following attribute is defined:

S'Class Denotes the class-wide subtype corresponding to the full view of S. This attribute is o

allowed only from the beginning of the private part in which the full view is declared, until
the declaration of the full view. After the full view, the Class attribute of the full view can
be used.

NOTES

9 Because a partial view and a full view are two different views of one and the same type, outside of the defining package 10
the characteristics of the type are those defined by the visible part. Within these outside program units the type is just a
private type or private extension, and any language rule that applies only to another class of types does not apply. The fact

that the full declaration might implement a private type with a type of a particular class (for example, as an array type) is
relevant only within the declarative region of the package itself including any child units.

The consequences of this actual implementation are, however, valid everywhere. For example: any default initialization of 11
components takes place; the attribute Size provides the size of the full view; finalization is still done for controlled
components of the full view; task dependence rules still apply to components that are task objects.

10 Partial views provide initialization, membership tests, selected components for the selection of discriminants and  12/2
inherited components, qualification, and explicit conversion. Nonlimited partial views also allow use of
assignment_statements.

11 For a subtype S of a partial view, S'Size is defined (see 13.3). For an object A of a partial view, the attributes A'Size 13
and A'Address are defined (see 13.3). The Position, First_Bit, and Last_Bit attributes are also defined for discriminants
and inherited components.

Examples
Example of a type with private operations: 14
package Key Manager is 15
type Key is private;
Null Key : comstant Key; -- adeferred constant declaration (see 7.4)

181

procedure Get Key(K : out Key);
function "<" (X, Y : Key) return Boolean;

private
type Key is new Natural;
Null Key : constant Key := Key'First;

end Key Manager;
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package body Key Manager is
Last _Key : Key := Null Key;
procedure Get Key (K : out Key) is
begin
Last_Key := Last_Key + 1;
K := Last Key;
end Get_ Key;

function "<" (X, Y : Key) return Boolean is
begin
return Natural (X) < Natural (Y) ;

end "<";
end Key Manager;
NOTES
12 Notes on the example: Outside of the package Key_Manager, the operations available for objects of type Key include
assignment, the comparison for equality or inequality, the procedure Get Key and the operator "<"; they do not include
other relational operators such as ">=", or arithmetic operators.

The explicitly declared operator "<" hides the predefined operator "<" implicitly declared by the full_type_declaration.
Within the body of the function, an explicit conversion of X and Y to the subtype Natural is necessary to invoke the "<"
operator of the parent type. Alternatively, the result of the function could be written as not (X >=Y), since the operator
">="is not redefined.

The value of the variable Last_Key, declared in the package body, remains unchanged between calls of the procedure
Get_Key. (See also the NOTES of 7.2.)

7.3.2 Type Invariants

For a private type or private extension, the following language-defined aspects may be specified with an

aspect_specification (see 13.1.1):

Type_Invariant
This aspect shall be specified by an expression, called an invariant expression.
Type_Invariant may be specified on a private_type_declaration, on a private_extension_-
declaration, or on a full_type_declaration that declares the completion of a private type or
private extension.

Type_Invariant'Class
This aspect shall be specified by an expression, called an invariant expression.
Type_Invariant'Class may be specified on a private_type_declaration or a private_-
extension_declaration.

Name Resolution Rules
The expected type for an invariant expression is any boolean type.
Within an invariant expression, the identifier of the first subtype of the associated type denotes the current

instance of the type. Within an invariant expression associated with type 7, the type of the current instance
is T for the Type Invariant aspect and 7'Class for the Type Invariant'Class aspect.

Legality Rules

The Type Invariant'Class aspect shall not be specified for an untagged type. The Type Invariant aspect
shall not be specified for an abstract type.

Static Semantics

If the Type Invariant aspect is specified for a type 7, then the invariant expression applies to 7.

If the Type Invariant'Class aspect is specified for a tagged type 7, then the invariant expression applies to
all descendants of 7.
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Dynamic Semantics

If one or more invariant expressions apply to a type 7, then an invariant check is performed at the
following places, on the specified object(s):

e After successful default initialization of an object of type 7, the check is performed on the new
object;

o After successful conversion to type 7, the check is performed on the result of the conversion;

e For a view conversion, outside the immediate scope of 7, that converts from a descendant of T
(including T itself) to an ancestor of type T (other than T itself), a check is performed on the part
of the object that is of type 7T:

« after assigning to the view conversion; and

o after successful return from a call that passes the view conversion as an in out or out
parameter.

e After a successful call on the Read or Input stream attribute of the type 7, the check is performed
on the object initialized by the stream attribute;

e An invariant is checked upon successful return from a call on any subprogram or entry that:

e is declared within the immediate scope of type T (or by an instance of a generic unit, and
the generic is declared within the immediate scope of type 7), and

e s visible outside the immediate scope of type T" or overrides an operation that is visible
outside the immediate scope of 7, and

e has a result with a part of type 7, or one or more parameters with a part of type 7, or an
access to variable parameter whose designated type has a part of type 7.

The check is performed on each such part of type 7.

If performing checks is required by the Invariant or Invariant'Class assertion policies (see 11.4.2) in effect
at the point of corresponding aspect specification applicable to a given type, then the respective invariant
expression is considered enabled.

The invariant check consists of the evaluation of each enabled invariant expression that applies to 7, on
each of the objects specified above. If any of these evaluate to False, Assertions.Assertion Error is raised
at the point of the object initialization, conversion, or call. If a given call requires more than one
evaluation of an invariant expression, either for multiple objects of a single type or for multiple types with
invariants, the evaluations are performed in an arbitrary order, and if one of them evaluates to False, it is
not specified whether the others are evaluated. Any invariant check is performed prior to copying back any
by-copy in out or out parameters. Invariant checks, any postcondition check, and any constraint or
predicate checks associated with in out or out parameters are performed in an arbitrary order.

The invariant checks performed on a call are determined by the subprogram or entry actually invoked,
whether directly, as part of a dispatching call, or as part of a call through an access-to-subprogram value.

NOTES

13 For a call of a primitive subprogram of type NT that is inherited from type 7, the specified checks of the specific
invariants of both the types N7 and T are performed. For a call of a primitive subprogram of type NT that is overridden for
type NT, the specified checks of the specific invariants of only type NT are performed.
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7.4 Deferred Constants

Deferred constant declarations may be used to declare constants in the visible part of a package, but with
the value of the constant given in the private part. They may also be used to declare constants imported
from other languages (see Annex B).

Legality Rules

A deferred constant declaration is an object_declaration with the reserved word constant but no
initialization expression. The constant declared by a deferred constant declaration is called a deferred
constant. Unless the Import aspect (see B.1) is True for a deferred constant declaration, the deferred
constant declaration requires a completion, which shall be a full constant declaration (called the full
declaration of the deferred constant).

A deferred constant declaration that is completed by a full constant declaration shall occur immediately
within the visible part of a package_specification. For this case, the following additional rules apply to
the corresponding full declaration:

o The full declaration shall occur immediately within the private part of the same package;

e The deferred and full constants shall have the same type, or shall have statically matching
anonymous access subtypes;

e If the deferred constant declaration includes a subtype_indication S that defines a constrained
subtype, then the constraint defined by the subtype_indication in the full declaration shall match
the constraint defined by S statically. On the other hand, if the subtype of the deferred constant is
unconstrained, then the full declaration is still allowed to impose a constraint. The constant itself
will be constrained, like all constants;

o [f the deferred constant declaration includes the reserved word aliased, then the full declaration
shall also;

e If the subtype of the deferred constant declaration excludes null, the subtype of the full
declaration shall also exclude null.

A deferred constant declaration for which the Import aspect is True need not appear in the visible part of a
package_specification, and has no full constant declaration.

The completion of a deferred constant declaration shall occur before the constant is frozen (see 13.14).

Dynamic Semantics

The elaboration of a deferred constant declaration elaborates the subtype_indication, access_definition,
or (only allowed in the case of an imported constant) the array_type_definition.

NOTES
14 The full constant declaration for a deferred constant that is of a given private type or private extension is not allowed
before the corresponding full_type_declaration. This is a consequence of the freezing rules for types (see 13.14).

Examples
Examples of deferred constant declarations:

Null Key : constant Key; --see7.3.1

CPU_Identifier : comnstant String(1l..8)
with Import => True, Convention => Assembler, Link Name => "CPU ID";
--seeB.1
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7.5 Limited Types

A limited type is (a view of) a type for which copying (such as for an assignment_statement) is not
allowed. A nonlimited type is a (view of a) type for which copying is allowed.

Legality Rules

If a tagged record type has any limited components, then the reserved word limited shall appear in its
record_type_definition. If the reserved word limited appears in the definition of a
derived_type_definition, its parent type and any progenitor interfaces shall be limited.

In the following contexts, an expression of a limited type is not permitted unless it is an aggregate, a
function_call, a parenthesized expression or qualified_expression whose operand is permitted by this
rule, or a conditional_expression all of whose dependent _expressions are permitted by this rule:

e the initialization expression of an object_declaration (see 3.3.1)

e the default_expression of a component_declaration (see 3.8)

o the expression of a record_component_association (see 4.3.1)

o the expression for an ancestor_part of an extension_aggregate (see 4.3.2)

e an expression of a positional_array_aggregate or the expression of an
array_component_association (see 4.3.3)

e the qualified_expression of an initialized allocator (see 4.8)
e the expression of a return statement (see 6.5)
o the expression of an expression_function_declaration (see 6.8)

o the default_expression or actual parameter for a formal object of mode in (see 12.4)

Static Semantics
A view of a type is limited if it is one of the following:
e atype with the reserved word limited, synchronized, task, or protected in its definition;
e aclass-wide type whose specific type is limited;
e acomposite type with a limited component;
e an incomplete view;
e aderived type whose parent is limited and is not an interface.
Otherwise, the type is nonlimited.
There are no predefined equality operators for a limited type.
A type is immutably limited if it is one of the following:
e An explicitly limited record type;
e A record extension with the reserved word limited;

e A nonformal limited private type that is tagged or has at least one access discriminant with a
default_expression;

e A task type, a protected type, or a synchronized interface;

e A type derived from an immutably limited type.
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A descendant of a generic formal limited private type is presumed to be immutably limited except within
the body of a generic unit or a body declared within the declarative region of a generic unit, if the formal
type is declared within the formal part of the generic unit.

NOTES

15 While it is allowed to write initializations of limited objects, such initializations never copy a limited object. The
source of such an assignment operation must be an aggregate or function_call, and such aggregates and function_calls
must be built directly in the target object (see 7.6).

Paragraphs 10 through 15 were deleted.

16 As illustrated in 7.3.1, an untagged limited type can become nonlimited under certain circumstances.

Examples
Example of a package with a limited type:

package IO _Package is
type File Name is limited private;

procedure Open

(F : in out File Name) ;
procedure Close (F :

(

(

F : in out File Name) ;
F : in File Name; Item : out Integer)
F

procedure Read H
in File Name; Item : in Integer);

procedure Write
private
type File Name is
limited record
InternaliName : Integer := 0;
end record;
end IO Package;

package body IO Package is

Limit : comstant := 200;

type File Descriptor is record ... end record;

Directory : array (1 .. Limit) of File Descriptor;

procedure Open (F : in out File Name) is ... end;

procedure Close(F : in out File Name) is ... end;

procedure Read (F : in File Name; Item : out Integer) is ... end;
procedure Write(F : in File Name; Item : in Integer) is ... end;

begin

end IO Package;

NOTES

17 Notes on the example: In the example above, an outside subprogram making use of I0_Package may obtain a file
name by calling Open and later use it in calls to Read and Write. Thus, outside the package, a file name obtained from
Open acts as a kind of password, its internal properties (such as containing a numeric value) are not known and no other
operations (such as addition or comparison of internal names) can be performed on a file name. Most importantly, clients
of the package cannot make copies of objects of type File Name.

This example is characteristic of any case where complete control over the operations of a type is desired. Such packages
serve a dual purpose. They prevent a user from making use of the internal structure of the type. They also implement the
notion of an encapsulated data type where the only operations on the type are those given in the package specification.

The fact that the full view of File Name is explicitly declared limited means that parameter passing will always be by
reference and function results will always be built directly in the result object (see 6.2 and 6.5).
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7.6 Assignment and Finalization

Three kinds of actions are fundamental to the manipulation of objects: initialization, finalization, and
assignment. Every object is initialized, either explicitly or by default, after being created (for example, by
an object_declaration or allocator). Every object is finalized before being destroyed (for example, by
leaving a subprogram_body containing an object_declaration, or by a call to an instance of
Unchecked Deallocation). An assignment operation is used as part of assignment_statements, explicit
initialization, parameter passing, and other operations.

Default definitions for these three fundamental operations are provided by the language, but a controlled
type gives the user additional control over parts of these operations. In particular, the user can define, for a
controlled type, an Initialize procedure which is invoked immediately after the normal default
initialization of a controlled object, a Finalize procedure which is invoked immediately before finalization
of any of the components of a controlled object, and an Adjust procedure which is invoked as the last step
of an assignment to a (nonlimited) controlled object.

Static Semantics
The following language-defined library package exists:

package Ada.Finalization is
pragma Pure (Finalization) ;

type Controlled is abstract tagged private;
pragma Preelaborable Initialization(Controlled) ;

procedure Initialize (Object : in out Controlled) is null;
procedure Adjust (Object : in out Controlled) is null;
procedure Finalize (Object : in out Controlled) is null;

type Limited Controlled is abstract tagged limited private;
pragma Preelaborable Initialization(Limited Controlled) ;

procedure Initialize (Object : in out Limited Controlled) is null;
procedure Finalize (Object : in out Limited Controlled) is null;
private

... -- notspecified by the language
end Ada.Finalization;

A controlled type is a descendant of Controlled or Limited Controlled. The predefined "=" operator of
type Controlled always returns True, since this operator is incorporated into the implementation of the
predefined equality operator of types derived from Controlled, as explained in 4.5.2. The type
Limited_Controlled is like Controlled, except that it is limited and it lacks the primitive subprogram
Adjust.
A type is said to need finalization if:

e itis a controlled type, a task type or a protected type; or

e it has a component whose type needs finalization; or

e itis a class-wide type; or

e itis a partial view whose full view needs finalization; or

e it is one of a number of language-defined types that are explicitly defined to need finalization.

Dynamic Semantics

During the elaboration or evaluation of a construct that causes an object to be initialized by default, for
every controlled subcomponent of the object that is not assigned an initial value (as defined in 3.3.1),
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Initialize is called on that subcomponent. Similarly, if the object that is initialized by default as a whole is
controlled, Initialize is called on the object.

For an extension_aggregate whose ancestor_part is a subtype_mark denoting a controlled subtype, the
Initialize procedure of the ancestor type is called, unless that Initialize procedure is abstract.

Initialize and other initialization operations are done in an arbitrary order, except as follows. Initialize is
applied to an object after initialization of its subcomponents, if any (including both implicit initialization
and Initialize calls). If an object has a component with an access discriminant constrained by a per-object
expression, Initialize is applied to this component after any components that do not have such
discriminants. For an object with several components with such a discriminant, Initialize is applied to them
in order of their component_declarations. For an allocator, any task activations follow all calls on
Initialize.

When a target object with any controlled parts is assigned a value, either when created or in a subsequent
assignment_statement, the assignment operation proceeds as follows:

e The value of the target becomes the assigned value.
e The value of the target is adjusted.

To adjust the value of a composite object, the values of the components of the object are first adjusted in
an arbitrary order, and then, if the object is nonlimited controlled, Adjust is called. Adjusting the value of
an elementary object has no effect, nor does adjusting the value of a composite object with no controlled
parts.

For an assignment_statement, after the name and expression have been evaluated, and any conversion
(including constraint checking) has been done, an anonymous object is created, and the value is assigned
into it; that is, the assignment operation is applied. (Assignment includes value adjustment.) The target of
the assignment_statement is then finalized. The value of the anonymous object is then assigned into the
target of the assignment_statement. Finally, the anonymous object is finalized. As explained below, the
implementation may eliminate the intermediate anonymous object, so this description subsumes the one
given in 5.2, “Assignment Statements”.

When a function call or aggregate is used to initialize an object, the result of the function call or
aggregate is an anonymous object, which is assigned into the newly-created object. For such an
assignment, the anonymous object might be built in place, in which case the assignment does not involve
any copying. Under certain circumstances, the anonymous object is required to be built in place. In
particular:

e If the full type of any part of the object is immutably limited, the anonymous object is built in
place.

o In the case of an aggregate, if the full type of any part of the newly-created object is controlled,
the anonymous object is built in place.

e In other cases, it is unspecified whether the anonymous object is built in place.
Notwithstanding what this International Standard says elsewhere, if an object is built in place:

e Upon successful completion of the return statement or aggregate, the anonymous object mutates
into the newly-created object; that is, the anonymous object ceases to exist, and the newly-
created object appears in its place.

o Finalization is not performed on the anonymous object.

e Adjustment is not performed on the newly-created object.

7.6 Assignment and Finalization 13 December 2012 188



ISO/IEC 8652:2012(E) — Ada Reference Manual

o All access values that designate parts of the anonymous object now designate the corresponding
parts of the newly-created object.

e All renamings of parts of the anonymous object now denote views of the corresponding parts of
the newly-created object.

¢ Coextensions of the anonymous object become coextensions of the newly-created object.

Implementation Permissions

An implementation is allowed to relax the above rules for assignment_statements in the following ways:

e Ifan object is assigned the value of that same object, the implementation need not do anything.

e For assignment of a noncontrolled type, the implementation may finalize and assign each
component of the variable separately (rather than finalizing the entire variable and assigning the
entire new value) unless a discriminant of the variable is changed by the assignment.

e The implementation need not create an anonymous object if the value being assigned is the
result of evaluating a name denoting an object (the source object) whose storage cannot overlap
with the target. If the source object might overlap with the target object, then the implementation
can avoid the need for an intermediary anonymous object by exercising one of the above
permissions and perform the assignment one component at a time (for an overlapping array
assignment), or not at all (for an assignment where the target and the source of the assignment
are the same object).

Furthermore, an implementation is permitted to omit implicit Initialize, Adjust, and Finalize calls and
associated assignment operations on an object of a nonlimited controlled type provided that:

e any omitted Initialize call is not a call on a user-defined Initialize procedure, and

e any usage of the value of the object after the implicit Initialize or Adjust call and before any
subsequent Finalize call on the object does not change the external effect of the program, and

e after the omission of such calls and operations, any execution of the program that executes an
Initialize or Adjust call on an object or initializes an object by an aggregate will also later
execute a Finalize call on the object and will always do so prior to assigning a new value to the
object, and

o the assignment operations associated with omitted Adjust calls are also omitted.

This permission applies to Adjust and Finalize calls even if the implicit calls have additional external
effects.

7.6.1 Completion and Finalization

This subclause defines completion and leaving of the execution of constructs and entities. A master is the
execution of a construct that includes finalization of local objects after it is complete (and after waiting for
any local tasks — see 9.3), but before leaving. Other constructs and entities are left immediately upon
completion.

Dynamic Semantics

The execution of a construct or entity is complete when the end of that execution has been reached, or
when a transfer of control (see 5.1) causes it to be abandoned. Completion due to reaching the end of
execution, or due to the transfer of control of an exit_statement, return statement, goto_statement, or
requeue_statement or of the selection of a terminate_alternative is normal completion. Completion is
abnormal otherwise — when control is transferred out of a construct due to abort or the raising of an
exception.
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After execution of a construct or entity is complete, it is /eft, meaning that execution continues with the
next action, as defined for the execution that is taking place. Leaving an execution happens immediately
after its completion, except in the case of a master: the execution of a body other than a package_body;
the execution of a statement; or the evaluation of an expression, function_call, or range that is not part of
an enclosing expression, function_call, range, or simple_statement other than a simple_return_-
statement. A master is finalized after it is complete, and before it is left.

For the finalization of a master, dependent tasks are first awaited, as explained in 9.3. Then each object
whose accessibility level is the same as that of the master is finalized if the object was successfully
initialized and still exists. These actions are performed whether the master is left by reaching the last
statement or via a transfer of control. When a transfer of control causes completion of an execution, each
included master is finalized in order, from innermost outward.

For the finalization of an object:
e Ifthe full type of the object is an elementary type, finalization has no effect;

o If the full type of the object is a tagged type, and the tag of the object identifies a controlled
type, the Finalize procedure of that controlled type is called;

e If the full type of the object is a protected type, or if the full type of the object is a tagged type
and the tag of the object identifies a protected type, the actions defined in 9.4 are performed;

o If the full type of the object is a composite type, then after performing the above actions, if any,
every component of the object is finalized in an arbitrary order, except as follows: if the object
has a component with an access discriminant constrained by a per-object expression, this
component is finalized before any components that do not have such discriminants; for an object
with several components with such a discriminant, they are finalized in the reverse of the order
of their component_declarations;

e If the object has coextensions (see 3.10.2), each coextension is finalized after the object whose
access discriminant designates it.

Immediately before an instance of Unchecked Deallocation reclaims the storage of an object, the object is
finalized. If an instance of Unchecked Deallocation is never applied to an object created by an allocator,
the object will still exist when the corresponding master completes, and it will be finalized then.

The finalization of a master performs finalization of objects created by declarations in the master in the
reverse order of their creation. After the finalization of a master is complete, the objects finalized as part of
its finalization cease to exist, as do any types and subtypes defined and created within the master.

Each nonderived access type T has an associated collection, which is the set of objects created by
allocators of 7, or of types derived from 7. Unchecked Deallocation removes an object from its collection.
Finalization of a collection consists of finalization of each object in the collection, in an arbitrary order.
The collection of an access type is an object implicitly declared at the following place:

e For a named access type, the first freezing point (see 13.14) of the type.
e For the type of an access parameter, the call that contains the allocator.
o For the type of an access result, within the master of the call (see 3.10.2).

e For any other anonymous access type, the first freezing point of the innermost enclosing
declaration.

The target of an assignment_statement is finalized before copying in the new value, as explained in 7.6.

The master of an object is the master enclosing its creation whose accessibility level (see 3.10.2) is equal
to that of the object, except in the case of an anonymous object representing the result of an aggregate or
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function call. If such an anonymous object is part of the result of evaluating the actual parameter
expression for an explicitly aliased parameter of a function call, the master of the object is the innermost
master enclosing the evaluation of the aggregate or function call, excluding the aggregate or function call
itself. Otherwise, the master of such an anonymous object is the innermost master enclosing the evaluation
of the aggregate or function call, which may be the aggregate or function call itself.

In the case of an expression that is a master, finalization of any (anonymous) objects occurs after
completing evaluation of the expression and all use of the objects, prior to starting the execution of any
subsequent construct.

Bounded (Run-Time) Errors

It is a bounded error for a call on Finalize or Adjust that occurs as part of object finalization or assignment
to propagate an exception. The possible consequences depend on what action invoked the Finalize or
Adjust operation:

e For a Finalize invoked as part of an assignment_statement, Program_Error is raised at that
point.

e For an Adjust invoked as part of assignment operations other than those invoked as part of an
assignment_statement, other adjustments due to be performed might or might not be
performed, and then Program_Error is raised. During its propagation, finalization might or might
not be applied to objects whose Adjust failed. For an Adjust invoked as part of an
assignment_statement, any other adjustments due to be performed are performed, and then
Program_Error is raised.

e For a Finalize invoked as part of a call on an instance of Unchecked Deallocation, any other
finalizations due to be performed are performed, and then Program_Error is raised.

®  This paragraph was deleted.

e For a Finalize invoked due to reaching the end of the execution of a master, any other
finalizations associated with the master are performed, and Program_Error is raised immediately
after leaving the master.

e For a Finalize invoked by the transfer of control of an exit_statement, return statement,
goto_statement, or requeue_statement, Program Error is raised no earlier than after the
finalization of the master being finalized when the exception occurred, and no later than the
point where normal execution would have continued. Any other finalizations due to be
performed up to that point are performed before raising Program_Error.

e For a Finalize invoked by a transfer of control that is due to raising an exception, any other
finalizations due to be performed for the same master are performed; Program_Error is raised
immediately after leaving the master.

e For a Finalize invoked by a transfer of control due to an abort or selection of a terminate
alternative, the exception is ignored; any other finalizations due to be performed are performed.

Implementation Permissions
If the execution of an allocator propagates an exception, any parts of the allocated object that were

successfully initialized may be finalized as part of the finalization of the innermost master enclosing the
allocator.

The implementation may finalize objects created by allocators for an access type whose storage pool
supports subpools (see 13.11.4) as if the objects were created (in an arbitrary order) at the point where the
storage pool was elaborated instead of at the first freezing point of the access type.
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NOTES

21/3 18 The rules of Clause 10 imply that immediately prior to partition termination, Finalize operations are applied to library-
level controlled objects (including those created by allocators of library-level access types, except those already finalized).
This occurs after waiting for library-level tasks to terminate.

22 19 A constant is only constant between its initialization and finalization. Both initialization and finalization are allowed to
change the value of a constant.

23 20 Abort is deferred during certain operations related to controlled types, as explained in 9.8. Those rules prevent an
abort from causing a controlled object to be left in an ill-defined state.

24 21 The Finalize procedure is called upon finalization of a controlled object, even if Finalize was called earlier, either
explicitly or as part of an assignment; hence, if a controlled type is visibly controlled (implying that its Finalize primitive
is directly callable), or is nonlimited (implying that assignment is allowed), its Finalize procedure should be designed to
have no ill effect if it is applied a second time to the same object.
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8 Visibility Rules

The rules defining the scope of declarations and the rules defining which identifiers, character_literals,
and operator_symbols are visible at (or from) various places in the text of the program are described in
this clause. The formulation of these rules uses the notion of a declarative region.

As explained in Clause 3, a declaration declares a view of an entity and associates a defining name with
that view. The view comprises an identification of the viewed entity, and possibly additional properties. A
usage name denotes a declaration. It also denotes the view declared by that declaration, and denotes the
entity of that view. Thus, two different usage names might denote two different views of the same entity;
in this case they denote the same entity.

8.1 Declarative Region

Static Semantics

For each of the following constructs, there is a portion of the program text called its declarative region,
within which nested declarations can occur:

e any declaration, other than that of an enumeration type, that is not a completion of a previous
declaration;

e ablock_statement;

e aloop_statement;

e aquantified_expression;

e an extended_return_statement;
e an accept_statement;

e an exception_handler.

The declarative region includes the text of the construct together with additional text determined
(recursively), as follows:

e [fa declaration is included, so is its completion, if any.

e [f the declaration of a library unit (including Standard — see 10.1.1) is included, so are the
declarations of any child units (and their completions, by the previous rule). The child
declarations occur after the declaration.

e [Ifabody_stub is included, so is the corresponding subunit.

o If a type_declaration is included, then so is a corresponding record_representation_clause, if
any.

The declarative region of a declaration is also called the declarative region of any view or entity declared
by the declaration.

A declaration occurs immediately within a declarative region if this region is the innermost declarative
region that encloses the declaration (the immediately enclosing declarative region), not counting the
declarative region (if any) associated with the declaration itself.

A declaration is local to a declarative region if the declaration occurs immediately within the declarative
region. An entity is local to a declarative region if the entity is declared by a declaration that is local to the
declarative region.
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A declaration is global to a declarative region if the declaration occurs immediately within another
declarative region that encloses the declarative region. An entity is global to a declarative region if the
entity is declared by a declaration that is global to the declarative region.

NOTES

1 The children of a parent library unit are inside the parent's declarative region, even though they do not occur inside the
parent's declaration or body. This implies that one can use (for example) "P.Q" to refer to a child of P whose defining
name is Q, and that after "use P;" Q can refer (directly) to that child.

2 As explained above and in 10.1.1, “Compilation Units - Library Units”, all library units are descendants of Standard,
and so are contained in the declarative region of Standard. They are not inside the declaration or body of Standard, but
they are inside its declarative region.

3 For a declarative region that comes in multiple parts, the text of the declarative region does not contain any text that
might appear between the parts. Thus, when a portion of a declarative region is said to extend from one place to another in
the declarative region, the portion does not contain any text that might appear between the parts of the declarative region.

8.2 Scope of Declarations

For each declaration, the language rules define a certain portion of the program text called the scope of the
declaration. The scope of a declaration is also called the scope of any view or entity declared by the
declaration. Within the scope of an entity, and only there, there are places where it is legal to refer to the
declared entity. These places are defined by the rules of visibility and overloading.

Static Semantics

The immediate scope of a declaration is a portion of the declarative region immediately enclosing the
declaration. The immediate scope starts at the beginning of the declaration, except in the case of an
overloadable declaration, in which case the immediate scope starts just after the place where the profile of
the callable entity is determined (which is at the end of the _specification for the callable entity, or at the
end of the generic_instantiation if an instance). The immediate scope extends to the end of the declarative
region, with the following exceptions:

e The immediate scope of a library_item includes only its semantic dependents.

e The immediate scope of a declaration in the private part of a library unit does not include the
visible part of any public descendant of that library unit.

The visible part of (a view of) an entity is a portion of the text of its declaration containing declarations
that are visible from outside. The private part of (a view of) an entity that has a visible part contains all
declarations within the declaration of (the view of) the entity, except those in the visible part; these are not
visible from outside. Visible and private parts are defined only for these kinds of entities: callable entities,
other program units, and composite types.

e The visible part of a view of a callable entity is its profile.

e The visible part of a composite type other than a task or protected type consists of the
declarations of all components declared (explicitly or implicitly) within the type_declaration.

e The visible part of a generic unit includes the generic_formal_part. For a generic package, it
also includes the first list of basic_declarative_items of the package_specification. For a
generic subprogram, it also includes the profile.

e The visible part of a package, task unit, or protected unit consists of declarations in the program
unit's declaration other than those following the reserved word private, if any; see 7.1 and 12.7
for packages, 9.1 for task units, and 9.4 for protected units.
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The scope of a declaration always contains the immediate scope of the declaration. In addition, for a given
declaration that occurs immediately within the visible part of an outer declaration, or is a public child of an
outer declaration, the scope of the given declaration extends to the end of the scope of the outer
declaration, except that the scope of a library_item includes only its semantic dependents.

The scope of an attribute_definition_clause is identical to the scope of a declaration that would occur at
the point of the attribute_definition_clause. The scope of an aspect_specification is identical to the scope
of the associated declaration.

The immediate scope of a declaration is also the immediate scope of the entity or view declared by the
declaration. Similarly, the scope of a declaration is also the scope of the entity or view declared by the
declaration.

NOTES

4 There are notations for denoting visible declarations that are not directly visible. For example, parameter_-
specifications are in the visible part of a subprogram_declaration so that they can be used in named-notation calls
appearing outside the called subprogram. For another example, declarations of the visible part of a package can be denoted
by expanded names appearing outside the package, and can be made directly visible by a use_clause.

8.3 Visibility

The visibility rules, given below, determine which declarations are visible and directly visible at each
place within a program. The visibility rules apply to both explicit and implicit declarations.

Static Semantics

A declaration is defined to be directly visible at places where a name consisting of only an identifier or
operator_symbol is sufficient to denote the declaration; that is, no selected_component notation or
special context (such as preceding => in a named association) is necessary to denote the declaration. A
declaration is defined to be visible wherever it is directly visible, as well as at other places where some
name (such as a selected_component) can denote the declaration.

The syntactic category direct_name is used to indicate contexts where direct visibility is required. The
syntactic category selector_name is used to indicate contexts where visibility, but not direct visibility, is
required.

There are two kinds of direct visibility: immediate visibility and use-visibility. A declaration is
immediately visible at a place if it is directly visible because the place is within its immediate scope. A
declaration is use-visible if it is directly visible because of a use_clause (see 8.4). Both conditions can
apply.

A declaration can be hidden, either from direct visibility, or from all visibility, within certain parts of its
scope. Where hidden from all visibility, it is not visible at all (neither using a direct_name nor a
selector_name). Where hidden from direct visibility, only direct visibility is lost; visibility using a
selector_name is still possible.

Two or more declarations are overloaded if they all have the same defining name and there is a place
where they are all directly visible.

The declarations of callable entities (including enumeration literals) are overloadable, meaning that
overloading is allowed for them.

Two declarations are homographs if they have the same defining name, and, if both are overloadable, their
profiles are type conformant. An inner declaration hides any outer homograph from direct visibility.
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o1 Two homographs are not generally allowed immediately within the same declarative region unless one
overrides the other (see Legality Rules below). The only declarations that are overridable are the implicit
declarations for predefined operators and inherited primitive subprograms. A declaration overrides another
homograph that occurs immediately within the same declarative region in the following cases:

10/1 e A declaration that is not overridable overrides one that is overridable, regardless of which
declaration occurs first;

1 e The implicit declaration of an inherited operator overrides that of a predefined operator;

12 e An implicit declaration of an inherited subprogram overrides a previous implicit declaration of

an inherited subprogram.

12172 o If two or more homographs are implicitly declared at the same place:

12.2/2 o If at least one is a subprogram that is neither a null procedure nor an abstract subprogram,
and does not require overriding (see 3.9.3), then they override those that are null
procedures, abstract subprograms, or require overriding. If more than one such homograph
remains that is not thus overridden, then they are all hidden from all visibility.

12.312 o Otherwise (all are null procedures, abstract subprograms, or require overriding), then any
null procedure overrides all abstract subprograms and all subprograms that require
overriding; if more than one such homograph remains that is not thus overridden, then if
they are all fully conformant with one another, one is chosen arbitrarily; if not, they are all
hidden from all visibility.

13 e For an implicit declaration of a primitive subprogram in a generic unit, there is a copy of this
declaration in an instance. However, a whole new set of primitive subprograms is implicitly
declared for each type declared within the visible part of the instance. These new declarations
occur immediately after the type declaration, and override the copied ones. The copied ones can
be called only from within the instance; the new ones can be called only from outside the
instance, although for tagged types, the body of a new one can be executed by a call to an old
one.

14 A declaration is visible within its scope, except where hidden from all visibility, as follows:

15 e An overridden declaration is hidden from all visibility within the scope of the overriding
declaration.

16 e A declaration is hidden from all visibility until the end of the declaration, except:

17 « For a record type or record extension, the declaration is hidden from all visibility only until

the reserved word record;

18/3 « For a package declaration, generic_package_declaration, subprogram_body, or
expression_function_declaration, the declaration is hidden from all visibility only until the
reserved word is of the declaration;

18.1/2 « For a task declaration or protected declaration, the declaration is hidden from all visibility
only until the reserved word with of the declaration if there is one, or the reserved word is
of the declaration if there is no with.

19 e If the completion of a declaration is a declaration, then within the scope of the completion, the
first declaration is hidden from all visibility. Similarly, a discriminant_specification or
parameter_specification is hidden within the scope of a corresponding discriminant_-
specification or parameter_specification of a corresponding completion, or of a corresponding
accept_statement.

20/2 e The declaration of a library unit (including a library_unit_renaming_declaration) is hidden from
all visibility at places outside its declarative region that are not within the scope of a
nonlimited_with_clause that mentions it. The limited view of a library package is hidden from
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all visibility at places that are not within the scope of a limited_with_clause that mentions it; in
addition, the limited view is hidden from all visibility within the declarative region of the
package, as well as within the scope of any nonlimited_with_clause that mentions the package.
Where the declaration of the limited view of a package is visible, any name that denotes the
package denotes the limited view, including those provided by a package renaming.

e For each declaration or renaming of a generic unit as a child of some parent generic package,
there is a corresponding declaration nested immediately within each instance of the parent. Such
a nested declaration is hidden from all visibility except at places that are within the scope of a
with_clause that mentions the child.

A declaration with a defining_identifier or defining_operator_symbol is immediately visible (and hence
directly visible) within its immediate scope except where hidden from direct visibility, as follows:

e A declaration is hidden from direct visibility within the immediate scope of a homograph of the
declaration, if the homograph occurs within an inner declarative region;

e A declaration is also hidden from direct visibility where hidden from all visibility.

An attribute_definition_clause or an aspect_specification is visible everywhere within its scope.

Name Resolution Rules

A direct_name shall resolve to denote a directly visible declaration whose defining name is the same as
the direct_name. A selector_name shall resolve to denote a visible declaration whose defining name is
the same as the selector_name.

These rules on visibility and direct visibility do not apply in a context_clause, a parent_unit_name, or a
pragma that appears at the place of a compilation_unit. For those contexts, see the rules in 10.1.6,
“Environment-Level Visibility Rules”.

Legality Rules

A nonoverridable declaration is illegal if there is a homograph occurring immediately within the same
declarative region that is visible at the place of the declaration, and is not hidden from all visibility by the
nonoverridable declaration. In addition, a type extension is illegal if somewhere within its immediate
scope it has two visible components with the same name. Similarly, the context_clause for a compilation
unit is illegal if it mentions (in a with_clause) some library unit, and there is a homograph of the library
unit that is visible at the place of the compilation unit, and the homograph and the mentioned library unit
are both declared immediately within the same declarative region. These rules also apply to dispatching
operations declared in the visible part of an instance of a generic unit. However, they do not apply to other
overloadable declarations in an instance; such declarations may have type conformant profiles in the
instance, so long as the corresponding declarations in the generic were not type conformant.
NOTES

5 Visibility for compilation units follows from the definition of the environment in 10.1.4, except that it is necessary to
apply a with_clause to obtain visibility to a library_unit_declaration or library_unit_renaming_declaration.

6 In addition to the visibility rules given above, the meaning of the occurrence of a direct_name or selector_name at a
given place in the text can depend on the overloading rules (see 8.6).

7 Not all contexts where an identifier, character_literal, or operator_symbol are allowed require visibility of a
corresponding declaration. Contexts where visibility is not required are identified by using one of these three syntactic
categories directly in a syntax rule, rather than using direct_name or selector_name.
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8.3.1 Overriding Indicators

An overriding_indicator is used to declare that an operation is intended to override (or not override) an
inherited operation.

Syntax
overriding_indicator ::= [not] overriding

Legality Rules
If an abstract_subprogram_declaration, null_procedure_declaration, expression_function_declaration,
subprogram_body, subprogram_body_stub, subprogram_renaming_declaration, generic_instantiation
of a subprogram, or subprogram_declaration other than a protected subprogram has an overriding_-
indicator, then:

e the operation shall be a primitive operation for some type;

e if the overriding_indicator is overriding, then the operation shall override a homograph at the
place of the declaration or body;

e if the overriding_indicator is not overriding, then the operation shall not override any
homograph (at any place).

In addition to the places where Legality Rules normally apply, these rules also apply in the private part of
an instance of a generic unit.
NOTES

8 Rules for overriding_indicators of task and protected entries and of protected subprograms are found in 9.5.2 and 9.4,
respectively.

Examples
The use of overriding_indicators allows the detection of errors at compile-time that otherwise might not be
detected at all. For instance, we might declare a security queue derived from the Queue interface of 3.9.4
as:
type Security Queue is new Queue with record ...;

overriding
procedure Append(Q : in out Security Queue; Person : in Person_ Name) ;

overriding
procedure Remove First(Q : in out Security Queue; Person : in Person_ Name) ;

overriding
function Cur Count (Q : in Security Queue) return Natural;

overriding
function Max Count (Q : in Security Queue) return Natural;

not overriding

procedure Arrest(Q : in out Security Queue; Person : in Person_ Name) ;
The first four subprogram declarations guarantee that these subprograms will override the four
subprograms inherited from the Queue interface. A misspelling in one of these subprograms will be
detected by the implementation. Conversely, the declaration of Arrest guarantees that this is a new
operation.
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8.4 Use Clauses

A use_package_clause achieves direct visibility of declarations that appear in the visible part of a
package; a use_type_clause achieves direct visibility of the primitive operators of a type.

Syntax
use_clause ::= use_package_clause | use_type_clause
use_package_clause ::= use package name {, package name};
use_type_clause ::= use [all] type subtype_mark {, subtype_mark};

Legality Rules
A package_name of a use_package_clause shall denote a nonlimited view of a package.

Static Semantics

For each use_clause, there is a certain region of text called the scope of the use_clause. For a
use_clause within a context_clause of a library_unit_declaration or library_unit_renaming_declaration,
the scope is the entire declarative region of the declaration. For a use_clause within a context_clause of a
body, the scope is the entire body and any subunits (including multiply nested subunits). The scope does
not include context_clauses themselves.

For a use_clause immediately within a declarative region, the scope is the portion of the declarative
region starting just after the use_clause and extending to the end of the declarative region. However, the
scope of a use_clause in the private part of a library unit does not include the visible part of any public
descendant of that library unit.

A package is named in a use_package_clause if it is denoted by a package name of that clause. A type
is named in a use_type_clause if it is determined by a subtype_mark of that clause.

For each package named in a use_package_clause whose scope encloses a place, each declaration that
occurs immediately within the declarative region of the package is potentially use-visible at this place if
the declaration is visible at this place. For each type T or T'Class named in a use_type_clause whose
scope encloses a place, the declaration of each primitive operator of type 7 is potentially use-visible at this
place if its declaration is visible at this place. If a use_type_clause whose scope encloses a place includes
the reserved word all, then the following entities are also potentially use-visible at this place if the
declaration of the entity is visible at this place:

e FEach primitive subprogram of 7 including each enumeration literal (if any);

e Each subprogram that is declared immediately within the declarative region in which an ancestor
type of T'is declared and that operates on a class-wide type that covers T.

Certain implicit declarations may become potentially use-visible in certain contexts as described in 12.6.

A declaration is use-visible if it is potentially use-visible, except in these naming-conflict cases:

e A potentially use-visible declaration is not use-visible if the place considered is within the
immediate scope of a homograph of the declaration.

e Potentially use-visible declarations that have the same identifier are not use-visible unless each
of them is an overloadable declaration.

Dynamic Semantics

The elaboration of a use_clause has no effect.
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Examples
Example of a use clause in a context clause:
with Ada.Calendar; use Ada;

Example of a use type clause:

use type Rational Numbers.Rational; -- see 7./
Two_Thirds: Rational Numbers.Rational := 2/3;

8.5 Renaming Declarations

A renaming_declaration declares another name for an entity, such as an object, exception, package,
subprogram, entry, or generic unit. Alternatively, a subprogram_renaming_declaration can be the
completion of a previous subprogram_declaration.

Syntax
renaming_declaration ::=
object_renaming_declaration
| exception_renaming_declaration
| package_renaming_declaration
| subprogram_renaming_declaration
| generic_renaming_declaration

Dynamic Semantics

The elaboration of a renaming_declaration evaluates the name that follows the reserved word renames
and thereby determines the view and entity denoted by this name (the renamed view and renamed entity).
A name that denotes the renaming_declaration denotes (a new view of) the renamed entity.

NOTES
9 Renaming may be used to resolve name conflicts and to act as a shorthand. Renaming with a different identifier or
operator_symbol does not hide the old name; the new name and the old name need not be visible at the same places.

10 A task or protected object that is declared by an explicit object_declaration can be renamed as an object. However, a
single task or protected object cannot be renamed since the corresponding type is anonymous (meaning it has no nameable
subtypes). For similar reasons, an object of an anonymous array or access type cannot be renamed.

11 A subtype defined without any additional constraint can be used to achieve the effect of renaming another subtype
(including a task or protected subtype) as in

subtype Mode is Ada.Text_IO.File Mode;

8.5.1 Object Renaming Declarations

An object_renaming_declaration is used to rename an object.

Syntax

object_renaming_declaration ::=
defining_identifier : [null_exclusion] subtype_mark renames object name
[aspect_specification];
| defining_identifier : access_definition renames object name
[aspect_specification];

Name Resolution Rules

The type of the object name shall resolve to the type determined by the subtype_mark, or in the case
where the type is defined by an access_definition, to an anonymous access type. If the anonymous access
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type is an access-to-object type, the type of the object name shall have the same designated type as that of
the access_definition. If the anonymous access type is an access-to-subprogram type, the type of the
object_name shall have a designated profile that is type conformant with that of the access_definition.

Legality Rules
The renamed entity shall be an object.

In the case where the type is defined by an access_definition, the type of the renamed object and the type
defined by the access_definition:

¢ shall both be access-to-object types with statically matching designated subtypes and with both
or neither being access-to-constant types; or

o shall both be access-to-subprogram types with subtype conformant designated profiles.

For an object_renaming_declaration with a null_exclusion or an access_definition that has a
null_exclusion:

e if the object name denotes a generic formal object of a generic unit G, and the
object_renaming_declaration occurs within the body of G or within the body of a generic unit
declared within the declarative region of G, then the declaration of the formal object of G shall
have a null_exclusion;

o otherwise, the subtype of the object name shall exclude null. In addition to the places where
Legality Rules normally apply (see 12.3), this rule applies also in the private part of an instance
of a generic unit.

The renamed entity shall not be a subcomponent that depends on discriminants of an object whose
nominal subtype is unconstrained unless the object is known to be constrained. A slice of an array shall
not be renamed if this restriction disallows renaming of the array. In addition to the places where Legality
Rules normally apply, these rules apply also in the private part of an instance of a generic unit.

Static Semantics

An object_renaming_declaration declares a new view of the renamed object whose properties are
identical to those of the renamed view. Thus, the properties of the renamed object are not affected by the
renaming_declaration. In particular, its value and whether or not it is a constant are unaffected; similarly,
the null exclusion or constraints that apply to an object are not affected by renaming (any constraint
implied by the subtype_mark or access_definition of the object_renaming_declaration is ignored).

Examples
Example of renaming an object:
declare
L : Person renames Leftmost Person; -- see3.10.]
begin

L.Age := L.Age + 1;
end;
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8.5.2 Exception Renaming Declarations

An exception_renaming_declaration is used to rename an exception.

Syntax
exception_renaming_declaration ::= defining_identifier : exception renames exception_name
[aspect_specification];
Legality Rules

The renamed entity shall be an exception.

Static Semantics

An exception_renaming_declaration declares a new view of the renamed exception.

Examples

Example of renaming an exception:

EOF : exception renames Ada.IO Exceptions.End_ Error; --seed.l3

8.5.3 Package Renaming Declarations

A package_renaming_declaration is used to rename a package.

Syntax
package_renaming_declaration ::=
package defining_program_unit_name renames package name
[aspect_specification];
Legality Rules

The renamed entity shall be a package.
If the package name of a package_renaming_declaration denotes a limited view of a package P, then a
name that denotes the package_renaming_declaration shall occur only within the immediate scope of the
renaming or the scope of a with_clause that mentions the package P or, if P is a nested package, the
innermost library package enclosing P.

Static Semantics
A package_renaming_declaration declares a new view of the renamed package.

At places where the declaration of the limited view of the renamed package is visible, a name that denotes
the package_renaming_declaration denotes a limited view of the package (see 10.1.1).

Examples

Example of renaming a package:

package TM renames Table Manager;
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8.5.4 Subprogram Renaming Declarations

A subprogram_renaming_declaration can serve as the completion of a subprogram_declaration; such a
renaming_declaration is called a renaming-as-body. A subprogram_renaming_declaration that is not a
completion is called a remaming-as-declaration, and is used to rename a subprogram (possibly an
enumeration literal) or an entry.

Syntax

subprogram_renaming_declaration ::=
[overriding_indicator]
subprogram_specification renames callable_entity name
[aspect_specification];

Name Resolution Rules

The expected profile for the callable _entity name is the profile given in the subprogram_specification.

Legality Rules

The profile of a renaming-as-declaration shall be mode conformant, with that of the renamed callable
entity.

For a parameter or result subtype of the subprogram_specification that has an explicit null_exclusion:

o if the callable_entity_ name denotes a generic formal subprogram of a generic unit G, and the
subprogram_renaming_declaration occurs within the body of a generic unit G or within the
body of a generic unit declared within the declarative region of the generic unit G, then the
corresponding parameter or result subtype of the formal subprogram of G shall have a
null_exclusion;

o otherwise, the subtype of the corresponding parameter or result type of the renamed callable
entity shall exclude null. In addition to the places where Legality Rules normally apply (see
12.3), this rule applies also in the private part of an instance of a generic unit.

The profile of a renaming-as-body shall conform fully to that of the declaration it completes. If the
renaming-as-body completes that declaration before the subprogram it declares is frozen, the profile shall
be mode conformant with that of the renamed callable entity and the subprogram it declares takes its
convention from the renamed subprogram; otherwise, the profile shall be subtype conformant with that of
the renamed callable entity and the convention of the renamed subprogram shall not be Intrinsic. A
renaming-as-body is illegal if the declaration occurs before the subprogram whose declaration it completes
is frozen, and the renaming renames the subprogram itself, through one or more subprogram renaming
declarations, none of whose subprograms has been frozen.

The callable_entity name of a renaming shall not denote a subprogram that requires overriding (see
3.9.3).

The callable_entity name of a renaming-as-body shall not denote an abstract subprogram.

A name that denotes a formal parameter of the subprogram_specification is not allowed within the
callable entity name.

Static Semantics

A renaming-as-declaration declares a new view of the renamed entity. The profile of this new view takes
its subtypes, parameter modes, and calling convention from the original profile of the callable entity, while
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taking the formal parameter names and default_expressions from the profile given in the
subprogram_renaming_declaration. The new view is a function or procedure, never an entry.

Dynamic Semantics
For a call to a subprogram whose body is given as a renaming-as-body, the execution of the renaming-as-

body is equivalent to the execution of a subprogram_body that simply calls the renamed subprogram with
its formal parameters as the actual parameters and, if it is a function, returns the value of the call.

For a call on a renaming of a dispatching subprogram that is overridden, if the overriding occurred before
the renaming, then the body executed is that of the overriding declaration, even if the overriding
declaration is not visible at the place of the renaming; otherwise, the inherited or predefined subprogram is
called. A corresponding rule applies to a call on a renaming of a predefined equality operator for an
untagged record type.

Bounded (Run-Time) Errors

If a subprogram directly or indirectly renames itself, then it is a bounded error to call that subprogram.
Possible consequences are that Program_Error or Storage Error is raised, or that the call results in infinite
recursion.

NOTES

12 A procedure can only be renamed as a procedure. A function whose defining_designator is either an identifier or an
operator_symbol can be renamed with either an identifier or an operator_symbol; for renaming as an operator, the
subprogram specification given in the renaming_declaration is subject to the rules given in 6.6 for operator declarations.
Enumeration literals can be renamed as functions; similarly, attribute_references that denote functions (such as references
to Succ and Pred) can be renamed as functions. An entry can only be renamed as a procedure; the new name is only
allowed to appear in contexts that allow a procedure name. An entry of a family can be renamed, but an entry family
cannot be renamed as a whole.

13 The operators of the root numeric types cannot be renamed because the types in the profile are anonymous, so the
corresponding specifications cannot be written; the same holds for certain attributes, such as Pos.

14 Calls with the new name of a renamed entry are procedure_call_statements and are not allowed at places where the
syntax requires an entry_call_statement in conditional_ and timed_entry_calls, nor in an asynchronous_select; similarly,
the Count attribute is not available for the new name.

15 The primitiveness of a renaming-as-declaration is determined by its profile, and by where it occurs, as for any
declaration of (a view of) a subprogram; primitiveness is not determined by the renamed view. In order to perform a
dispatching call, the subprogram name has to denote a primitive subprogram, not a nonprimitive renaming of a primitive

subprogram.

Examples

Examples of subprogram renaming declarations:

procedure My Write(C : in Character) renames Pool (K) .Write; -- see4.l.3
function Real Plus(Left, Right : Real ) return Real renames "+";
function Int Plus (Left, Right : Integer) return Integer renames "+";
function Rouge return Color renames Red; -- see3.S.]
function Rot return Color renames Red;

function Rosso return Color renames Rouge;

function Next (X : Color) return Color renames Color'Succ; --see3.5. 1

Example of a subprogram renaming declaration with new parameter names:

function "*" (X,Y : Vector) return Real renames Dot Product; -- see6./

Example of a subprogram renaming declaration with a new default expression:

function Minimum(L : Link := Head) return Cell renames Min Cell; -- see6.]
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8.5.5 Generic Renaming Declarations

A generic_renaming_declaration is used to rename a generic unit.

Syntax
generic_renaming_declaration ::=
generic package defining_program_unit_name renames generic_package name
[aspect_specification];
| generic procedure defining_program_unit_name renames generic_procedure _name
[aspect_specification];
| generic function defining_program_unit_name renames generic_function_name
[aspect_specification];

Legality Rules
The renamed entity shall be a generic unit of the corresponding kind.

Static Semantics

A generic_renaming_declaration declares a new view of the renamed generic unit.

NOTES

16 Although the properties of the new view are the same as those of the renamed view, the place where the
generic_renaming_declaration occurs may affect the legality of subsequent renamings and instantiations that denote the
generic_renaming_declaration, in particular if the renamed generic unit is a library unit (see 10.1.1).

Examples

Example of renaming a generic unit:

generic package Enum_ IO renames Ada.Text IO.Enumeration IO; --seed.10.10

8.6 The Context of Overload Resolution

Because declarations can be overloaded, it is possible for an occurrence of a usage name to have more than
one possible interpretation; in most cases, ambiguity is disallowed. This subclause describes how the
possible interpretations resolve to the actual interpretation.

Certain rules of the language (the Name Resolution Rules) are considered “overloading rules”. If a
possible interpretation violates an overloading rule, it is assumed not to be the intended interpretation;
some other possible interpretation is assumed to be the actual interpretation. On the other hand, violations
of nonoverloading rules do not affect which interpretation is chosen; instead, they cause the construct to be
illegal. To be legal, there usually has to be exactly one acceptable interpretation of a construct that is a
“complete context”, not counting any nested complete contexts.

The syntax rules of the language and the visibility rules given in 8.3 determine the possible interpretations.
Most type checking rules (rules that require a particular type, or a particular class of types, for example)
are overloading rules. Various rules for the matching of formal and actual parameters are overloading
rules.

Name Resolution Rules

Overload resolution is applied separately to each complete context, not counting inner complete contexts.
Each of the following constructs is a complete context:

e A context_item.
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6 e A declarative_item or declaration.

7 e A statement.

8 e A pragma_argument_association.

9 e The expression of a case_statement.

10 An (overall) interpretation of a complete context embodies its meaning, and includes the following
information about the constituents of the complete context, not including constituents of inner complete
contexts:

1 e for each constituent of the complete context, to which syntactic categories it belongs, and by
which syntax rules; and

12 o for each usage name, which declaration it denotes (and, therefore, which view and which entity
it denotes); and

13 e for a complete context that is a declarative_item, whether or not it is a completion of a
declaration, and (if so) which declaration it completes.

14 A possible interpretation is one that obeys the syntax rules and the visibility rules. An acceptable
interpretation is a possible interpretation that obeys the overloading rules, that is, those rules that specify
an expected type or expected profile, or specify how a construct shall resolve or be interpreted.

15 The interpretation of a constituent of a complete context is determined from the overall interpretation of
the complete context as a whole. Thus, for example, “interpreted as a function_call,” means that the
construct's interpretation says that it belongs to the syntactic category function_call.

16 Each occurrence of a usage name denotes the declaration determined by its interpretation. It also denotes
the view declared by its denoted declaration, except in the following cases:

1713 e If a usage name appears within the declarative region of a type_declaration and denotes that
same type_declaration, then it denotes the current instance of the type (rather than the type
itself); the current instance of a type is the object or value of the type that is associated with the
execution that evaluates the usage name. Similarly, if a usage name appears within the
declarative region of a subtype_declaration and denotes that same subtype_declaration, then it
denotes the current instance of the subtype. These rules do not apply if the usage name appears
within the subtype_mark of an access_definition for an access-to-object type, or within the
subtype of a parameter or result of an access-to-subprogram type.

18 e If a usage name appears within the declarative region of a generic_declaration (but not within
its generic_formal_part) and it denotes that same generic_declaration, then it denotes the
current instance of the generic unit (rather than the generic unit itself). See also 12.3.

19 A usage name that denotes a view also denotes the entity of that view.

202 The expected type for a given expression, name, or other construct determines, according to the fype
resolution rules given below, the types considered for the construct during overload resolution. The type
resolution rules provide support for class-wide programming, universal literals, dispatching operations,
and anonymous access types:

21 e If a construct is expected to be of any type in a class of types, or of the universal or class-wide
type for a class, then the type of the construct shall resolve to a type in that class or to a
universal type that covers the class.

22 e If the expected type for a construct is a specific type 7, then the type of the construct shall
resolve either to 7, or:

23 e to T'Class; or
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« to a universal type that covers T; or

« when T is a specific anonymous access-to-object type (see 3.10) with designated type D, to
an access-to-object type whose designated type is D'Class or is covered by D; or

e when T is a named general access-to-object type (see 3.10) with designated type D, to an
anonymous access-to-object type whose designated type covers or is covered by D; or

« when T is an anonymous access-to-subprogram type (see 3.10), to an access-to-subprogram
type whose designated profile is type conformant with that of 7.

In certain contexts, such as in a subprogram_renaming_declaration, the Name Resolution Rules define an
expected profile for a given name; in such cases, the name shall resolve to the name of a callable entity
whose profile is type conformant with the expected profile.

Legality Rules

When a construct is one that requires that its expected type be a single type in a given class, the type of the
construct shall be determinable solely from the context in which the construct appears, excluding the
construct itself, but using the requirement that it be in the given class. Furthermore, the context shall not
be one that expects any type in some class that contains types of the given class; in particular, the
construct shall not be the operand of a type_conversion.

Other than for the simple_expression of a membership test, if the expected type for a name or expression
is not the same as the actual type of the name or expression, the actual type shall be convertible to the
expected type (see 4.6); further, if the expected type is a named access-to-object type with designated type
DI and the actual type is an anonymous access-to-object type with designated type D2, then DI shall
cover D2, and the name or expression shall denote a view with an accessibility level for which the
statically deeper relationship applies; in particular it shall not denote an access parameter nor a stand-alone
access object.

A complete context shall have at least one acceptable interpretation; if there is exactly one, then that one is
chosen.

There is a preference for the primitive operators (and ranges) of the root numeric types root_integer and
root_real. In particular, if two acceptable interpretations of a constituent of a complete context differ only
in that one is for a primitive operator (or range) of the type root_integer or root real, and the other is not,
the interpretation using the primitive operator (or range) of the root numeric type is preferred.

Similarly, there is a preference for the equality operators of the universal access type (see 4.5.2). If two
acceptable interpretations of a constituent of a complete context differ only in that one is for an equality
operator of the universal_access type, and the other is not, the interpretation using the equality operator of
the universal _access type is preferred.

For a complete context, if there is exactly one overall acceptable interpretation where each constituent's
interpretation is the same as or preferred (in the above sense) over those in all other overall acceptable
interpretations, then that one overall acceptable interpretation is chosen. Otherwise, the complete context
is ambiguous.

A complete context other than a pragma_argument_association shall not be ambiguous.

A complete context that is a pragma_argument_association is allowed to be ambiguous (unless otherwise
specified for the particular pragma), but only if every acceptable interpretation of the pragma argument is
as a name that statically denotes a callable entity. Such a name denotes all of the declarations determined
by its interpretations, and all of the views declared by these declarations.
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NOTES
17 If a usage name has only one acceptable interpretation, then it denotes the corresponding entity. However, this does
not mean that the usage name is necessarily legal since other requirements exist which are not considered for overload

resolution; for example, the fact that an expression is static, whether an object is constant, mode and subtype conformance
rules, freezing rules, order of elaboration, and so on.

Similarly, subtypes are not considered for overload resolution (the violation of a constraint does not make a program
illegal but raises an exception during program execution).
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9 Tasks and Synchronization

The execution of an Ada program consists of the execution of one or more tasks. Each task represents a  1/3
separate thread of control that proceeds independently and concurrently between the points where it
interacts with other tasks. The various forms of task interaction are described in this clause, and include:

e the activation and termination of a task; 2

e acall on a protected subprogram of a protected object, providing exclusive read-write access, or 3
concurrent read-only access to shared data;

e a call on an entry, either of another task, allowing for synchronous communication with that 4
task, or of a protected object, allowing for asynchronous communication with one or more other
tasks using that same protected object;

e a timed operation, including a simple delay statement, a timed entry call or accept, or a timed 5
asynchronous select statement (see next item);

e an asynchronous transfer of control as part of an asynchronous select statement, where a task 6
stops what it is doing and begins execution at a different point in response to the completion of
an entry call or the expiration of a delay;

e an abort statement, allowing one task to cause the termination of another task. 7

In addition, tasks can communicate indirectly by reading and updating (unprotected) shared variables, 8
presuming the access is properly synchronized through some other kind of task interaction.

Static Semantics

The properties of a task are defined by a corresponding task declaration and task_body, which together o
define a program unit called a task unit.

Dynamic Semantics
Over time, tasks proceed through various states. A task is initially inactive; upon activation, and prior to 10
its termination it is either blocked (as part of some task interaction) or ready to run. While ready, a task
competes for the available execution resources that it requires to run.

NOTES

1 Concurrent task execution may be implemented on multicomputers, multiprocessors, or with interleaved execution on a 11
single physical processor. On the other hand, whenever an implementation can determine that the required semantic
effects can be achieved when parts of the execution of a given task are performed by different physical processors acting

in parallel, it may choose to perform them in this way.

9.1 Task Units and Task Objects

A task unit is declared by a fask declaration, which has a corresponding task_body. A task declaration 1
may be a task_type_declaration, in which case it declares a named task type; alternatively, it may be a
single_task_declaration, in which case it defines an anonymous task type, as well as declaring a named
task object of that type.
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Syntax
task_type_declaration ::=
task type defining_identifier [known_discriminant_part]
[aspect_specification] [is
[new interface_list with]
task_definition];
single_task_declaration ::=
task defining_identifier
[aspect_specification][is
[new interface_list with]
task_definition];
task_definition ::=
{task_item}
[ private
{task_item}]
end [fask_identifier]
task_item ::= entry_declaration | aspect_clause
task_body ::=
task body defining_identifier
[aspect_specification] is
declarative_part
begin
handled_sequence_of statements
end [task_identifier];
If a task_identifier appears at the end of a task_definition or task_body, it shall repeat the
defining_identifier.

Paragraph 8 was deleted.

Static Semantics

A task_definition defines a task type and its first subtype. The first list of task_items of a task_definition,
together with the known_discriminant_part, if any, is called the visible part of the task unit. The optional
list of task_items after the reserved word private is called the private part of the task unit.

For a task declaration without a task_definition, a task_definition without task_items is assumed.

For a task declaration with an interface_list, the task type inherits user-defined primitive subprograms
from each progenitor type (see 3.9.4), in the same way that a derived type inherits user-defined primitive
subprograms from its progenitor types (see 3.4). If the first parameter of a primitive inherited subprogram
is of the task type or an access parameter designating the task type, and there is an entry_declaration for a
single entry with the same identifier within the task declaration, whose profile is type conformant with the
prefixed view profile of the inherited subprogram, the inherited subprogram is said to be implemented by
the conforming task entry using an implicitly declared nonabstract subprogram which has the same profile
as the inherited subprogram and which overrides it.

Legality Rules

A task declaration requires a completion, which shall be a task_body, and every task_body shall be the
completion of some task declaration.

Each interface_subtype_mark of an interface_list appearing within a task declaration shall denote a
limited interface type that is not a protected interface.
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The prefixed view profile of an explicitly declared primitive subprogram of a tagged task type shall not be
type conformant with any entry of the task type, if the subprogram has the same defining name as the
entry and the first parameter of the subprogram is of the task type or is an access parameter designating the
task type.

For each primitive subprogram inherited by the type declared by a task declaration, at most one of the
following shall apply:
o the inherited subprogram is overridden with a primitive subprogram of the task type, in which

case the overriding subprogram shall be subtype conformant with the inherited subprogram and
not abstract; or

e the inherited subprogram is implemented by a single entry of the task type; in which case its
prefixed view profile shall be subtype conformant with that of the task entry.

If neither applies, the inherited subprogram shall be a null procedure. In addition to the places where
Legality Rules normally apply (see 12.3), these rules also apply in the private part of an instance of a
generic unit.

Dynamic Semantics
The elaboration of a task declaration elaborates the task_definition. The elaboration of a single_task_-
declaration also creates an object of an (anonymous) task type.

The elaboration of a task_definition creates the task type and its first subtype; it also includes the
elaboration of the entry_declarations in the given order.

As part of the initialization of a task object, any aspect_clauses and any per-object constraints associated
with entry_declarations of the corresponding task_definition are elaborated in the given order.

The elaboration of a task_body has no effect other than to establish that tasks of the type can from then on
be activated without failing the Elaboration_Check.

The execution of a task_body is invoked by the activation of a task of the corresponding type (see 9.2).

The content of a task object of a given task type includes:
o The values of the discriminants of the task object, if any;
e An entry queue for each entry of the task object;
o A representation of the state of the associated task.

NOTES

2 Other than in an access_definition, the name of a task unit within the declaration or body of the task unit denotes the
current instance of the unit (see 8.6), rather than the first subtype of the corresponding task type (and thus the name cannot
be used as a subtype_mark).

3 The notation of a selected_component can be used to denote a discriminant of a task (see 4.1.3). Within a task unit, the
name of a discriminant of the task type denotes the corresponding discriminant of the current instance of the unit.

4 A task type is a limited type (see 7.5), and hence precludes use of assignment_statements and predefined equality
operators. If an application needs to store and exchange task identities, it can do so by defining an access type designating
the corresponding task objects and by using access values for identification purposes. Assignment is available for such an
access type as for any access type. Alternatively, if the implementation supports the Systems Programming Annex, the
Identity attribute can be used for task identification (see C.7.1).
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Examples
22 Examples of declarations of task types:

23 task type Server is
entry Next Work Item(WI : in Work Item) ;
entry Shut_Down;
end Server;

24/2 task type Keyboard Driver (ID : Keyboard ID := New ID) is
new Serial Device with --see3.9.4
entry Read (C : out Character);
entry Write(C : in Character) ;
end Keyboard Driver;

N

5  Examples of declarations of single tasks:

26 task Controller is
entry Request (Level) (D : Item); -- afamily of entries
end Controller;

27 task Parser is
entry Next Lexeme(L : in Lexical_ Element) ;
entry Next Action(A : out Parser Action);
end;

28 task User; -- has no entries

29 Examples of task objects:

30 Agent : Server;
Teletype : Keyboard Driver (TTY_ID);
Pool : array(l .. 10) of Keyboard Driver;

31 Example of access type designating task objects:

32 type Keyboard is access Keyboard Driver;
Terminal : Keyboard := new Keyboard Driver (Term_ ID) ;

9.2 Task Execution - Task Activation

Dynamic Semantics

1 The execution of a task of a given task type consists of the execution of the corresponding task_body. The
initial part of this execution is called the activation of the task; it consists of the elaboration of the
declarative_part of the task_body. Should an exception be propagated by the elaboration of its
declarative_part, the activation of the task is defined to have failed, and it becomes a completed task.

22 A task object (which represents one task) can be a part of a stand-alone object, of an object created by an
allocator, or of an anonymous object of a limited type, or a coextension of one of these. All tasks that are
part or coextensions of any of the stand-alone objects created by the elaboration of object_declarations (or
generic_associations of formal objects of mode in) of a single declarative region are activated together.
All tasks that are part or coextensions of a single object that is not a stand-alone object are activated
together.

32 For the tasks of a given declarative region, the activations are initiated within the context of the handled_-
sequence_of_statements (and its associated exception_handlers if any — see 11.2), just prior to
executing the statements of the handled_sequence_of_statements. For a package without an explicit
body or an explicit handled_sequence_of_statements, an implicit body or an implicit null_statement is
assumed, as defined in 7.2.
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For tasks that are part or coextensions of a single object that is not a stand-alone object, activations are
initiated after completing any initialization of the outermost object enclosing these tasks, prior to
performing any other operation on the outermost object. In particular, for tasks that are part or
coextensions of the object created by the evaluation of an allocator, the activations are initiated as the last
step of evaluating the allocator, prior to returning the new access value. For tasks that are part or
coextensions of an object that is the result of a function call, the activations are not initiated until after the
function returns.

The task that created the new tasks and initiated their activations (the activator) is blocked until all of
these activations complete (successfully or not). Once all of these activations are complete, if the
activation of any of the tasks has failed (due to the propagation of an exception), Tasking Error is raised
in the activator, at the place at which it initiated the activations. Otherwise, the activator proceeds with its
execution normally. Any tasks that are aborted prior to completing their activation are ignored when
determining whether to raise Tasking Error.

If the master that directly encloses the point where the activation of a task 7 would be initiated, completes
before the activation of 7 is initiated, 7 becomes terminated and is never activated. Furthermore, if a return
statement is left such that the return object is not returned to the caller, any task that was created as a part
of the return object or one of its coextensions immediately becomes terminated and is never activated.

NOTES
5 An entry of a task can be called before the task has been activated.

6 If several tasks are activated together, the execution of any of these tasks need not await the end of the activation of the
other tasks.

7 A task can become completed during its activation either because of an exception or because it is aborted (see 9.8).

Examples
Example of task activation:
procedure P is
A, B : Server; - - elaborate the task objects A, B
c : Server; - - elaborate the task object C

begin
-- the tasks A, B, C are activated together before the first statement

end;

9.3 Task Dependence - Termination of Tasks

Dynamic Semantics
Each task (other than an environment task — see 10.2) depends on one or more masters (see 7.6.1), as
follows:
o [fthe task is created by the evaluation of an allocator for a given access type, it depends on each

master that includes the elaboration of the declaration of the ultimate ancestor of the given
access type.

o [f the task is created by the elaboration of an object_declaration, it depends on each master that
includes this elaboration.

e Otherwise, the task depends on the master of the outermost object of which it is a part (as
determined by the accessibility level of that object — see 3.10.2 and 7.6.1), as well as on any
master whose execution includes that of the master of the outermost object.
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Furthermore, if a task depends on a given master, it is defined to depend on the task that executes the
master, and (recursively) on any master of that task.

A task is said to be completed when the execution of its corresponding task_body is completed. A task is
said to be terminated when any finalization of the task_body has been performed (see 7.6.1). The first step
of finalizing a master (including a task_body) is to wait for the termination of any tasks dependent on the
master. The task executing the master is blocked until all the dependents have terminated. Any remaining
finalization is then performed and the master is left.

Completion of a task (and the corresponding task_body) can occur when the task is blocked at a select_-
statement with an open terminate_alternative (see 9.7.1); the open terminate_alternative is selected if
and only if the following conditions are satisfied:

e The task depends on some completed master; and

e Each task that depends on the master considered is either already terminated or similarly blocked
at a select_statement with an open terminate_alternative.

When both conditions are satisfied, the task considered becomes completed, together with all tasks that
depend on the master considered that are not yet completed.

NOTES

8 The full view of a limited private type can be a task type, or can have subcomponents of a task type. Creation of an
object of such a type creates dependences according to the full type.

9 An object_renaming_declaration defines a new view of an existing entity and hence creates no further dependence.

10 The rules given for the collective completion of a group of tasks all blocked on select_statements with open
terminate_alternatives ensure that the collective completion can occur only when there are no remaining active tasks that
could call one of the tasks being collectively completed.

11 If two or more tasks are blocked on select_statements with open terminate_alternatives, and become completed
collectively, their finalization actions proceed concurrently.

12 The completion of a task can occur due to any of the following:
o the raising of an exception during the elaboration of the declarative_part of the corresponding task_body;
e the completion of the handled_sequence_of_statements of the corresponding task_body;

o the selection of an open terminate_alternative of a select_statement in the corresponding task_body;
e the abort of the task.

Examples
Example of task dependence:
declare
type Global is access Server; -- see 9.1
A, B : Server;
G : Global;
begin
- - activation of A and B
declare
type Local is access Server;
X : Global := new Server; -- activation of X.all
L : Local = new Server; -- activation of L.all
C : Server;
begin
- - activation of C
G := X; -- both G and X designate the same task object
end; -- await termination of C and L.all (but not X.all)
end; -- await termination of A, B, and G.all
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9.4 Protected Units and Protected Objects

A protected object provides coordinated access to shared data, through calls on its visible protected
operations, which can be protected subprograms or protected entries. A protected unit is declared by a
protected declaration, which has a corresponding protected_body. A protected declaration may be a
protected_type_declaration, in which case it declares a named protected type; alternatively, it may be a
single_protected_declaration, in which case it defines an anonymous protected type, as well as declaring
a named protected object of that type.

Syntax

protected_type_declaration ::=
protected type defining_identifier [known_discriminant_part]
[aspect_specification] is
[new interface_list with]
protected_definition;

single_protected_declaration ::=
protected defining_identifier
[aspect_specification] is
[new interface_list with]
protected_definition;

protected_definition ::=
{ protected_operation_declaration }
[ private
{ protected_element_declaration } |
end [protected_identifier]

protected_operation_declaration ::= subprogram_declaration
| entry_declaration
| aspect_clause

protected_element_declaration ::= protected_operation_declaration
| component_declaration
protected_body ::=
protected body defining_identifier
[aspect_specification] is
{ protected_operation_item }
end [protected_identifier];

protected_operation_item ::= subprogram_declaration
| subprogram_body
| entry_body
| aspect_clause

If a protected_identifier appears at the end of a protected_definition or protected_body, it shall
repeat the defining_identifier.

Paragraph 10 was deleted.

Static Semantics

A protected_definition defines a protected type and its first subtype. The list of protected_operation_-
declarations of a protected_definition, together with the known_discriminant_part, if any, is called the

215 13 December 2012 Protected Units and Protected Objects 9.4

2/3

313

51

713

8/1

1112



11.1/3

11.212

11.3/2

11.4/3

11.5/2

11.6/2

11.712

11.8/2

11.9/3

11.10/2

11.11/2

11.12/2

11.13/2

ISO/IEC 8652:2012(E) — Ada Reference Manual

visible part of the protected unit. The optional list of protected_element_declarations after the reserved
word private is called the private part of the protected unit.

For a protected declaration with an interface_list, the protected type inherits user-defined primitive
subprograms from each progenitor type (see 3.9.4), in the same way that a derived type inherits user-
defined primitive subprograms from its progenitor types (see 3.4). If the first parameter of a primitive
inherited subprogram is of the protected type or an access parameter designating the protected type, and
there is a protected_operation_declaration for a protected subprogram or single entry with the same
identifier within the protected declaration, whose profile is type conformant with the prefixed view profile
of the inherited subprogram, the inherited subprogram is said to be implemented by the conforming
protected subprogram or entry using an implicitly declared nonabstract subprogram which has the same
profile as the inherited subprogram and which overrides it.

Legality Rules

A protected declaration requires a completion, which shall be a protected_body, and every protected_-
body shall be the completion of some protected declaration.

Each interface_subtype_mark of an interface_list appearing within a protected declaration shall denote a
limited interface type that is not a task interface.

The prefixed view profile of an explicitly declared primitive subprogram of a tagged protected type shall
not be type conformant with any protected operation of the protected type, if the subprogram has the same
defining name as the protected operation and the first parameter of the subprogram is of the protected type
or is an access parameter designating the protected type.

For each primitive subprogram inherited by the type declared by a protected declaration, at most one of
the following shall apply:

e the inherited subprogram is overridden with a primitive subprogram of the protected type, in
which case the overriding subprogram shall be subtype conformant with the inherited
subprogram and not abstract; or

e the inherited subprogram is implemented by a protected subprogram or single entry of the
protected type, in which case its prefixed view profile shall be subtype conformant with that of
the protected subprogram or entry.

If neither applies, the inherited subprogram shall be a null procedure. In addition to the places where
Legality Rules normally apply (see 12.3), these rules also apply in the private part of an instance of a
generic unit.

If an inherited subprogram is implemented by a protected procedure or an entry, then the first parameter of
the inherited subprogram shall be of mode out or in out, or an access-to-variable parameter. If an inherited
subprogram is implemented by a protected function, then the first parameter of the inherited subprogram
shall be of mode in, but not an access-to-variable parameter.

If a protected subprogram declaration has an overriding_indicator, then at the point of the declaration:

e if the overriding_indicator is overriding, then the subprogram shall implement an inherited
subprogram;

o if the overriding_indicator is not overriding, then the subprogram shall not implement any
inherited subprogram.

In addition to the places where Legality Rules normally apply (see 12.3), these rules also apply in the
private part of an instance of a generic unit.
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Dynamic Semantics

The elaboration of a protected declaration elaborates the protected_definition. The elaboration of a
single_protected_declaration also creates an object of an (anonymous) protected type.

The elaboration of a protected_definition creates the protected type and its first subtype; it also includes
the elaboration of the component_declarations and protected_operation_declarations in the given order.

As part of the initialization of a protected object, any per-object constraints (see 3.8) are elaborated.

The elaboration of a protected_body has no other effect than to establish that protected operations of the
type can from then on be called without failing the Elaboration_Check.

The content of an object of a given protected type includes:

e The values of the components of the protected object, including (implicitly) an entry queue for
each entry declared for the protected object;

e A representation of the state of the execution resource associated with the protected object (one
such resource is associated with each protected object).

The execution resource associated with a protected object has to be acquired to read or update any
components of the protected object; it can be acquired (as part of a protected action — see 9.5.1) either for
concurrent read-only access, or for exclusive read-write access.

As the first step of the finalization of a protected object, each call remaining on any entry queue of the
object is removed from its queue and Program_Error is raised at the place of the corresponding entry_-
call_statement.

Bounded (Run-Time) Errors

It is a bounded error to call an entry or subprogram of a protected object after that object is finalized. If the
error is detected, Program_Error is raised. Otherwise, the call proceeds normally, which may leave a task
queued forever.

NOTES

13 Within the declaration or body of a protected unit other than in an access_definition, the name of the protected unit
denotes the current instance of the unit (see 8.6), rather than the first subtype of the corresponding protected type (and
thus the name cannot be used as a subtype_mark).

14 A selected_component can be used to denote a discriminant of a protected object (see 4.1.3). Within a protected unit,
the name of a discriminant of the protected type denotes the corresponding discriminant of the current instance of the unit.

15 A protected type is a limited type (see 7.5), and hence precludes use of assignment_statements and predefined
equality operators.

16 The bodies of the protected operations given in the protected_body define the actions that take place upon calls to the
protected operations.

17 The declarations in the private part are only visible within the private part and the body of the protected unit.

Examples
Example of declaration of protected type and corresponding body:

protected type Resource is

entry Seize;

procedure Release;
private

Busy : Boolean := False;
end Resource;
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protected body Resource is
entry Seize when not Busy is
begin
Busy := True;
end Seize;

procedure Release is
begin
Busy := False;
end Release;
end Resource;

Example of a single protected declaration and corresponding body:

protected Shared Array is
- - Index, Item, and Item_Array are global types

function Component (N : in Index) return Item;

procedure Set Component (N : in Index; E : in Item);
private

Table : Item Array(Index) := (others => Null Item);

end Shared Array;

protected body Shared Array is
function Component (N : in Index) return Item is
begin
return Table (N) ;
end Component;

procedure Set Component (N : in Index; E : in Item) is
begin
Table (N) := E;

end Set_Component;
end Shared Array;

Examples of protected objects:

Control : Resource;
Flags : array(l .. 100) of Resource;

9.5 Intertask Communication

The primary means for intertask communication is provided by calls on entries and protected
subprograms. Calls on protected subprograms allow coordinated access to shared data objects. Entry calls
allow for blocking the caller until a given condition is satisfied (namely, that the corresponding entry is
open — see 9.5.3), and then communicating data or control information directly with another task or
indirectly via a shared protected object.

Static Semantics

When a name or prefix denotes an entry, protected subprogram, or a prefixed view of a primitive
subprogram of a limited interface whose first parameter is a controlling parameter, the name or prefix
determines a farget object, as follows:

e Ifit is a direct_name or expanded name that denotes the declaration (or body) of the operation,
then the target object is implicitly specified to be the current instance of the task or protected
unit immediately enclosing the operation; a call using such a name is defined to be an internal
call,

e Ifitis a selected_component that is not an expanded name, then the target object is explicitly
specified to be the object denoted by the prefix of the name; a call using such a name is defined
to be an external call,
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o [fthe name or prefix is a dereference (implicit or explicit) of an access-to-protected-subprogram
value, then the target object is determined by the prefix of the Access attribute_reference that
produced the access value originally; a call using such a name is defined to be an external call;

o [f the name or prefix denotes a subprogram_renaming_declaration, then the target object is as
determined by the name of the renamed entity.

A call on an entry or a protected subprogram either uses a name or prefix that determines a target object
implicitly, as above, or is a call on (a non-prefixed view of) a primitive subprogram of a limited interface
whose first parameter is a controlling parameter, in which case the target object is identified explicitly by
the first parameter. This latter case is an external call.

A corresponding definition of target object applies to a requeue_statement (see 9.5.4), with a
corresponding distinction between an internal requeue and an external requeue.

Legality Rules

If a name or prefix determines a target object, and the name denotes a protected entry or procedure, then
the target object shall be a variable, unless the prefix is for an attribute_reference to the Count attribute
(see 9.9).

Dynamic Semantics
Within the body of a protected operation, the current instance (see 8.6) of the immediately enclosing

protected unit is determined by the target object specified (implicitly or explicitly) in the call (or requeue)
on the protected operation.

Any call on a protected procedure or entry of a target protected object is defined to be an update to the
object, as is a requeue on such an entry.

Syntax
synchronization_kind ::= By Entry | By Protected Procedure | Optional

Static Semantics

For the declaration of a primitive procedure of a synchronized tagged type the following language-defined
representation aspect may be specified with an aspect_specification (see 13.1.1):

Synchronization
If specified, the aspect definition shall be a synchronization_kind.

Inherited subprograms inherit the Synchronization aspect, if any, from the corresponding subprogram of
the parent or progenitor type. If an overriding operation does not have a directly specified Synchronization
aspect then the Synchronization aspect of the inherited operation is inherited by the overriding operation.

Legality Rules

The synchronization_kind By Protected Procedure shall not be applied to a primitive procedure of a task
interface.

A procedure for which the specified synchronization_kind is By Entry shall be implemented by an entry.
A procedure for which the specified synchronization_kind is By Protected Procedure shall be
implemented by a protected procedure. A procedure for which the specified synchronization_kind is
Optional may be implemented by an entry or by a procedure (including a protected procedure).

If a primitive procedure overrides an inherited operation for which the Synchronization aspect has been
specified to be By Entry or By Protected Procedure, then any specification of the aspect Synchronization
applied to the overriding operation shall have the same synchronization_kind.
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In addition to the places where Legality Rules normally apply (see 12.3), these rules also apply in the
private part of an instance of a generic unit.

NOTES
18 The synchronization_kind By_Protected Procedure implies that the operation will not block.

9.5.1 Protected Subprograms and Protected Actions

A protected subprogram is a subprogram declared immediately within a protected_definition. Protected
procedures provide exclusive read-write access to the data of a protected object; protected functions
provide concurrent read-only access to the data.

Static Semantics

Within the body of a protected function (or a function declared immediately within a protected_body), the
current instance of the enclosing protected unit is defined to be a constant (that is, its subcomponents may
be read but not updated). Within the body of a protected procedure (or a procedure declared immediately
within a protected_body), and within an entry_body, the current instance is defined to be a variable
(updating is permitted).
Dynamic Semantics

For the execution of a call on a protected subprogram, the evaluation of the name or prefix and of the
parameter associations, and any assigning back of in out or out parameters, proceeds as for a normal
subprogram call (see 6.4). If the call is an internal call (see 9.5), the body of the subprogram is executed as
for a normal subprogram call. If the call is an external call, then the body of the subprogram is executed as

part of a new protected action on the target protected object; the protected action completes after the body
of the subprogram is executed. A protected action can also be started by an entry call (see 9.5.3).

A new protected action is not started on a protected object while another protected action on the same
protected object is underway, unless both actions are the result of a call on a protected function. This rule
is expressible in terms of the execution resource associated with the protected object:

e Starting a protected action on a protected object corresponds to acquiring the execution resource
associated with the protected object, either for concurrent read-only access if the protected
action is for a call on a protected function, or for exclusive read-write access otherwise;

e Completing the protected action corresponds to releasing the associated execution resource.

After performing an operation on a protected object other than a call on a protected function, but prior to
completing the associated protected action, the entry queues (if any) of the protected object are serviced
(see 9.5.3).

Bounded (Run-Time) Errors

During a protected action, it is a bounded error to invoke an operation that is potentially blocking. The
following are defined to be potentially blocking operations:

e aselect_statement;

e an accept_statement;

e an entry_call_statement;
e adelay_statement;

e an abort_statement;

e task creation or activation;
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e an external call on a protected subprogram (or an external requeue) with the same target object 15
as that of the protected action;

e acall on a subprogram whose body contains a potentially blocking operation. 16

If the bounded error is detected, Program_Error is raised. If not detected, the bounded error might result in 17
deadlock or a (nested) protected action on the same target object.

Certain language-defined subprograms are potentially blocking. In particular, the subprograms of the 18
language-defined input-output packages that manipulate files (implicitly or explicitly) are potentially
blocking. Other potentially blocking subprograms are identified where they are defined. When not
specified as potentially blocking, a language-defined subprogram is nonblocking.

NOTES

19 If two tasks both try to start a protected action on a protected object, and at most one is calling a protected function, 19
then only one of the tasks can proceed. Although the other task cannot proceed, it is not considered blocked, and it might

be consuming processing resources while it awaits its turn. There is no language-defined ordering or queuing presumed

for tasks competing to start a protected action — on a multiprocessor such tasks might use busy-waiting; for
monoprocessor considerations, see D.3, “Priority Ceiling Locking”.

20 The body of a protected unit may contain declarations and bodies for local subprograms. These are not visible outside 20
the protected unit.

21 The body of a protected function can contain internal calls on other protected functions, but not protected procedures, 21
because the current instance is a constant. On the other hand, the body of a protected procedure can contain internal calls
on both protected functions and procedures.

22 From within a protected action, an internal call on a protected subprogram, or an external call on a protected 22
subprogram with a different target object is not considered a potentially blocking operation.

23 The pragma Detect Blocking may be used to ensure that all executions of potentially blocking operations during a  22.1/2
protected action raise Program_Error. See H.5.
Examples
Examples of protected subprogram calls (see 9.4): 23

Shared Array.Set Component (N, E); 24
E := Shared_Array.Component (M) ;
Control.Release;

9.5.2 Entries and Accept Statements

Entry_declarations, with the corresponding entry_bodies or accept_statements, are used to define
potentially queued operations on tasks and protected objects.

[N

Syntax

entry_declaration ::= 213
[overriding_indicator]
entry defining_identifier [(discrete_subtype_definition)] parameter_profile
[aspect_specification];

accept_statement ::= 3
accept entry_direct_name [(entry_index)] parameter_profile [do
handled_sequence_of statements
end [entry_identifier]];

entry_index ::= expression 4

221 13 December 2012 Protected Subprograms and Protected Actions 9.5.1



10

10.1/2

1

12

13

13.12

13.2/2

13.3/2

13.4/2

14

15

ISO/IEC 8652:2012(E) — Ada Reference Manual

entry_body ::=
entry defining_identifier entry_body formal_part entry_barrier is
declarative_part
begin
handled_sequence_of_statements
end [entry_identifier];
entry_body_formal_part ::= [(entry_index_specification)] parameter_profile
entry_barrier ::= when condition
entry_index_specification ::= for defining_identifier in discrete_subtype_definition
If an entry_identifier appears at the end of an accept_statement, it shall repeat the entry direct_-
name. If an entry_identifier appears at the end of an entry_body, it shall repeat the defining_-
identifier.

An entry_declaration is allowed only in a protected or task declaration.

An overriding_indicator is not allowed in an entry_declaration that includes a
discrete_subtype_definition.

Name Resolution Rules

In an accept_statement, the expected profile for the entry direct_name is that of the entry_declaration;
the expected type for an entry_index is that of the subtype defined by the discrete_subtype_definition of
the corresponding entry_declaration.

Within the handled_sequence_of_statements of an accept_statement, if a selected_component has a
prefix that denotes the corresponding entry_declaration, then the entity denoted by the prefix is the
accept_statement, and the selected_component is interpreted as an expanded name (see 4.1.3); the
selector_name of the selected_component has to be the identifier for some formal parameter of the
accept_statement.

Legality Rules

An entry_declaration in a task declaration shall not contain a specification for an access parameter (see
3.10).

If an entry_declaration has an overriding_indicator, then at the point of the declaration:

e if the overriding_indicator is overriding, then the entry shall implement an inherited
subprogram;

o if the overriding_indicator is not overriding, then the entry shall not implement any inherited
subprogram.

In addition to the places where Legality Rules normally apply (see 12.3), these rules also apply in the
private part of an instance of a generic unit.

For an accept_statement, the innermost enclosing body shall be a task_body, and the entry_direct_name
shall denote an entry_declaration in the corresponding task declaration; the profile of the accept_-
statement shall conform fully to that of the corresponding entry_declaration. An accept_statement shall
have a parenthesized entry_index if and only if the corresponding entry_declaration has a discrete_-
subtype_definition.

An accept_statement shall not be within another accept_statement that corresponds to the same entry_-
declaration, nor within an asynchronous_select inner to the enclosing task_body.
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An entry_declaration of a protected unit requires a completion, which shall be an entry_body, and every
entry_body shall be the completion of an entry_declaration of a protected unit. The profile of the entry_-
body shall conform fully to that of the corresponding declaration.

An entry_body_formal_part shall have an entry_index_specification if and only if the corresponding
entry_declaration has a discrete_subtype_definition. In this case, the discrete_subtype_definitions of the
entry_declaration and the entry_index_specification shall fully conform to one another (see 6.3.1).

A name that denotes a formal parameter of an entry_body is not allowed within the entry_barrier of the
entry_body.

Static Semantics

The parameter modes defined for parameters in the parameter_profile of an entry_declaration are the
same as for a subprogram_declaration and have the same meaning (see 6.2).

An entry_declaration with a discrete_subtype_definition (see 3.6) declares a family of distinct entries
having the same profile, with one such entry for each value of the entry index subtype defined by the
discrete_subtype_definition. A name for an entry of a family takes the form of an indexed_component,
where the prefix denotes the entry_declaration for the family, and the index value identifies the entry
within the family. The term single entry is used to refer to any entry other than an entry of an entry family.

In the entry_body for an entry family, the entry_index_specification declares a named constant whose
subtype is the entry index subtype defined by the corresponding entry_declaration; the value of the named
entry index identifies which entry of the family was called.

Dynamic Semantics

The elaboration of an entry_declaration for an entry family consists of the elaboration of the discrete_-
subtype_definition, as described in 3.8. The elaboration of an entry_declaration for a single entry has no
effect.

The actions to be performed when an entry is called are specified by the corresponding accept_-
statements (if any) for an entry of a task unit, and by the corresponding entry_body for an entry of a
protected unit.

For the execution of an accept_statement, the entry_index, if any, is first evaluated and converted to the
entry index subtype; this index value identifies which entry of the family is to be accepted. Further
execution of the accept_statement is then blocked until a caller of the corresponding entry is selected (see
9.5.3), whereupon the handled_sequence_of_statements, if any, of the accept_statement is executed,
with the formal parameters associated with the corresponding actual parameters of the selected entry call.
Upon completion of the handled_sequence_of_statements, the accept_statement completes and is left.
When an exception is propagated from the handled_sequence_of statements of an accept_statement,
the same exception is also raised by the execution of the corresponding entry_call_statement.

The above interaction between a calling task and an accepting task is called a rendezvous. After a
rendezvous, the two tasks continue their execution independently.

An entry_body is executed when the condition of the entry_barrier evaluates to True and a caller of the
corresponding single entry, or entry of the corresponding entry family, has been selected (see 9.5.3). For
the execution of the entry_body, the declarative_part of the entry_body is elaborated, and the handled_-
sequence_of_statements of the body is executed, as for the execution of a subprogram_body. The value
of the named entry index, if any, is determined by the value of the entry index specified in the entry_name
of the selected entry call (or intermediate requeue_statement — see 9.5.4).

223 13 December 2012 Entries and Accept Statements 9.5.2

16

17

18

19

20

21

22/1

23

24

25

26



27

28

29/2

30

31

w
N

33

w
5

35
36

37

ISO/IEC 8652:2012(E) — Ada Reference Manual

NOTES
24 A task entry has corresponding accept statements (zero or more), whereas a protected entry has a corresponding
entry_body (exactly one).

25 A consequence of the rule regarding the allowed placements of accept statements is that a task can execute
accept_statements only for its own entries.

26 A return statement (see 6.5) or a requeue_statement (see 9.5.4) may be used to complete the execution of an
accept_statement or an entry_body.

27 The condition in the entry_barrier may reference anything visible except the formal parameters of the entry. This
includes the entry index (if any), the components (including discriminants) of the protected object, the Count attribute of
an entry of that protected object, and data global to the protected unit.

The restriction against referencing the formal parameters within an entry_barrier ensures that all calls of the same entry
see the same barrier value. If it is necessary to look at the parameters of an entry call before deciding whether to handle it,
the entry_barrier can be “when True” and the caller can be requeued (on some private entry) when its parameters indicate
that it cannot be handled immediately.

Examples
Examples of entry declarations:
entry Read(V : out Item);
entry Seize;
entry Request (Level) (D : Item); -- afamily of entries

Examples of accept statements:
accept Shut Down;

accept Read(V : out Item) do
V := Local_ Item;
end Read;

accept Request (Low) (D : Item) do

end Request;

9.5.3 Entry Calls

An entry_call_statement (an entry call) can appear in various contexts. A simple entry call is a stand-
alone statement that represents an unconditional call on an entry of a target task or a protected object.
Entry calls can also appear as part of select_statements (see 9.7).

Syntax
entry_call_statement ::= entry_name [actual_parameter_part];

Name Resolution Rules

The entry name given in an entry_call_statement shall resolve to denote an entry. The rules for
parameter associations are the same as for subprogram calls (see 6.4 and 6.4.1).

Static Semantics

The entry_name of an entry_call_statement specifies (explicitly or implicitly) the target object of the call,
the entry or entry family, and the entry index, if any (see 9.5).

Dynamic Semantics

Under certain circumstances (detailed below), an entry of a task or protected object is checked to see
whether it is open or closed:
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e An entry of a task is open if the task is blocked on an accept_statement that corresponds to the
entry (see 9.5.2), or on a selective_accept (see 9.7.1) with an open accept_alternative that
corresponds to the entry; otherwise, it is closed.

e An entry of a protected object is open if the condition of the entry_barrier of the corresponding
entry_body evaluates to True; otherwise, it is closed. If the evaluation of the condition
propagates an exception, the exception Program_Error is propagated to all current callers of all
entries of the protected object.

For the execution of an entry_call_statement, evaluation of the name and of the parameter associations is
as for a subprogram call (see 6.4). The entry call is then issued: For a call on an entry of a protected object,
a new protected action is started on the object (see 9.5.1). The named entry is checked to see if it is open;
if open, the entry call is said to be selected immediately, and the execution of the call proceeds as follows:

e For a call on an open entry of a task, the accepting task becomes ready and continues the
execution of the corresponding accept_statement (see 9.5.2).

e For a call on an open entry of a protected object, the corresponding entry_body is executed (see
9.5.2) as part of the protected action.

If the accept_statement or entry_body completes other than by a requeue (see 9.5.4), return is made to
the caller (after servicing the entry queues — see below); any necessary assigning back of formal to actual
parameters occurs, as for a subprogram call (see 6.4.1); such assignments take place outside of any
protected action.

If the named entry is closed, the entry call is added to an entry queue (as part of the protected action, for a
call on a protected entry), and the call remains queued until it is selected or cancelled; there is a separate
(logical) entry queue for each entry of a given task or protected object (including each entry of an entry
family).

When a queued call is selected, it is removed from its entry queue. Selecting a queued call from a
particular entry queue is called servicing the entry queue. An entry with queued calls can be serviced
under the following circumstances:

e When the associated task reaches a corresponding accept_statement, or a selective_accept
with a corresponding open accept_alternative;

o [f after performing, as part of a protected action on the associated protected object, an operation
on the object other than a call on a protected function, the entry is checked and found to be open.

If there is at least one call on a queue corresponding to an open entry, then one such call is selected
according to the entry queuing policy in effect (see below), and the corresponding accept_statement or
entry_body is executed as above for an entry call that is selected immediately.

The entry queuing policy controls selection among queued calls both for task and protected entry queues.
The default entry queuing policy is to select calls on a given entry queue in order of arrival. If calls from
two or more queues are simultaneously eligible for selection, the default entry queuing policy does not
specify which queue is serviced first. Other entry queuing policies can be specified by pragmas (see D.4).

For a protected object, the above servicing of entry queues continues until there are no open entries with
queued calls, at which point the protected action completes.

For an entry call that is added to a queue, and that is not the triggering_statement of an asynchronous_-
select (see 9.7.4), the calling task is blocked until the call is cancelled, or the call is selected and a
corresponding accept_statement or entry_body completes without requeuing. In addition, the calling task
is blocked during a rendezvous.
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An attempt can be made to cancel an entry call upon an abort (see 9.8) and as part of certain forms of
select_statement (see 9.7.2, 9.7.3, and 9.7.4). The cancellation does not take place until a point (if any)
when the call is on some entry queue, and not protected from cancellation as part of a requeue (see 9.5.4);
at such a point, the call is removed from the entry queue and the call completes due to the cancellation.
The cancellation of a call on an entry of a protected object is a protected action, and as such cannot take
place while any other protected action is occurring on the protected object. Like any protected action, it
includes servicing of the entry queues (in case some entry barrier depends on a Count attribute).

A call on an entry of a task that has already completed its execution raises the exception Tasking_Error at
the point of the call; similarly, this exception is raised at the point of the call if the called task completes
its execution or becomes abnormal before accepting the call or completing the rendezvous (see 9.8). This
applies equally to a simple entry call and to an entry call as part of a select_statement.

Implementation Permissions

An implementation may perform the sequence of steps of a protected action using any thread of control; it
need not be that of the task that started the protected action. If an entry_body completes without
requeuing, then the corresponding calling task may be made ready without waiting for the entire protected
action to complete.

When the entry of a protected object is checked to see whether it is open, the implementation need not
reevaluate the condition of the corresponding entry_barrier if no variable or attribute referenced by the
condition (directly or indirectly) has been altered by the execution (or cancellation) of a protected
procedure or entry call on the object since the condition was last evaluated.

An implementation may evaluate the conditions of all entry_barriers of a given protected object any time
any entry of the object is checked to see if it is open.

When an attempt is made to cancel an entry call, the implementation need not make the attempt using the
thread of control of the task (or interrupt) that initiated the cancellation; in particular, it may use the thread
of control of the caller itself to attempt the cancellation, even if this might allow the entry call to be
selected in the interim.

NOTES
28 If an exception is raised during the execution of an entry_body, it is propagated to the corresponding caller (see 11.4).

29 For a call on a protected entry, the entry is checked to see if it is open prior to queuing the call, and again thereafter if
its Count attribute (see 9.9) is referenced in some entry barrier.

30 In addition to simple entry calls, the language permits timed, conditional, and asynchronous entry calls (see 9.7.2,
9.7.3, and see 9.7.4).

31 The condition of an entry_barrier is allowed to be evaluated by an implementation more often than strictly necessary,
even if the evaluation might have side effects. On the other hand, an implementation need not reevaluate the condition if
nothing it references was updated by an intervening protected action on the protected object, even if the condition
references some global variable that might have been updated by an action performed from outside of a protected action.

Examples
Examples of entry calls:
Agent.Shut_Down; -- see9.1
Parser.Next Lexeme (E) ; -- see 9.1
Pool (5) .Read (Next_Char) ; -- see 9.1
Controller.Request (Low) (Some_Item) ; -- see 9.1
Flags(3) .Seize; -- see 94
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9.5.4 Requeue Statements

A requeue_statement can be used to complete an accept_statement or entry_body, while redirecting the
corresponding entry call to a new (or the same) entry queue. Such a requeue can be performed with or
without allowing an intermediate cancellation of the call, due to an abort or the expiration of a delay.

Syntax

requeue_statement ::= requeue procedure_or_entry_name [with abort];

Name Resolution Rules

The procedure or_entry_name of a requeue_statement shall resolve to denote a procedure or an entry
(the requeue target). The profile of the entry, or the profile or prefixed profile of the procedure, shall
either have no parameters, or be type conformant (see 6.3.1) with the profile of the innermost enclosing
entry_body or accept_statement.

Legality Rules

A requeue_statement shall be within a callable construct that is either an entry_body or an
accept_statement, and this construct shall be the innermost enclosing body or callable construct.

If the requeue target has parameters, then its (prefixed) profile shall be subtype conformant with the profile
of the innermost enclosing callable construct.

If the target is a procedure, the name shall denote a renaming of an entry, or shall denote a view or a
prefixed view of a primitive subprogram of a synchronized interface, where the first parameter of the
unprefixed view of the primitive subprogram shall be a controlling parameter, and the Synchronization
aspect shall be specified with synchronization_kind By _Entry for the primitive subprogram.

In a requeue_statement of an accept_statement of some task unit, either the target object shall be a part
of a formal parameter of the accept_statement, or the accessibility level of the target object shall not be
equal to or statically deeper than any enclosing accept_statement of the task unit. In a requeue_-
statement of an entry_body of some protected unit, either the target object shall be a part of a formal
parameter of the entry_body, or the accessibility level of the target object shall not be statically deeper
than that of the entry_declaration for the entry_body.

Dynamic Semantics
The execution of a requeue_statement proceeds by first evaluating the procedure or entry name,
including the prefix identifying the target task or protected object and the expression identifying the entry
within an entry family, if any. The entry_body or accept_statement enclosing the requeue_statement is
then completed, finalized, and left (see 7.6.1).

For the execution of a requeue on an entry of a target task, after leaving the enclosing callable construct,
the named entry is checked to see if it is open and the requeued call is either selected immediately or
queued, as for a normal entry call (see 9.5.3).

For the execution of a requeue on an entry of a target protected object, after leaving the enclosing callable
construct:

e if the requeue is an internal requeue (that is, the requeue is back on an entry of the same
protected object — see 9.5), the call is added to the queue of the named entry and the ongoing
protected action continues (see 9.5.1);
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o if the requeue is an external requeue (that is, the target protected object is not implicitly the same
as the current object — see 9.5), a protected action is started on the target object and proceeds as
for a normal entry call (see 9.5.3).

If the requeue target named in the requeue_statement has formal parameters, then during the execution of
the accept_statement or entry_body corresponding to the new entry, the formal parameters denote the
same objects as did the corresponding formal parameters of the callable construct completed by the
requeue. In any case, no parameters are specified in a requeue_statement; any parameter passing is
implicit.

If the requeue_statement includes the reserved words with abort (it is a requeue-with-abort), then:

o if the original entry call has been aborted (see 9.8), then the requeue acts as an abort completion
point for the call, and the call is cancelled and no requeue is performed;

e if the original entry call was timed (or conditional), then the original expiration time is the
expiration time for the requeued call.

If the reserved words with abort do not appear, then the call remains protected against cancellation while
queued as the result of the requeue_statement.

NOTES

32 A requeue is permitted from a single entry to an entry of an entry family, or vice-versa. The entry index, if any, plays
no part in the subtype conformance check between the profiles of the two entries; an entry index is part of the entry_name
for an entry of a family.

Examples

Examples of requeue statements:

requeue Request (Medium) with abort;
- - requeue on a member of an entry family of the current task, see 9.1

requeue Flags (I).Seize;
- - requeue on an entry of an array component, see 9.4

9.6 Delay Statements, Duration, and Time

A delay_statement is used to block further execution until a specified expiration time is reached. The
expiration time can be specified either as a particular point in time (in a delay_until_statement), or in
seconds from the current time (in a delay_relative_statement). The language-defined package Calendar
provides definitions for a type Time and associated operations, including a function Clock that returns the
current time.

Syntax
delay_statement ::= delay_until_statement | delay_relative_statement

delay_until_statement ::= delay until delay_expression;
delay_relative_statement ::= delay delay expression;

Name Resolution Rules

The expected type for the delay expression in a delay_relative_statement is the predefined type
Duration. The delay_expression in a delay_until_statement is expected to be of any nonlimited type.

Legality Rules
There can be multiple time bases, each with a corresponding clock, and a corresponding time type. The
type of the delay expression in a delay_until_statement shall be a time type — either the type Time
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defined in the language-defined package Calendar (see below), the type Time in the package Real Time
(see D.8), or some other implementation-defined time type.

Static Semantics

There is a predefined fixed point type named Duration, declared in the visible part of package Standard; a
value of type Duration is used to represent the length of an interval of time, expressed in seconds. The type
Duration is not specific to a particular time base, but can be used with any time base.

A value of the type Time in package Calendar, or of some other time type, represents a time as reported by
a corresponding clock.

The following language-defined library package exists:

package Ada.Calendar is
type Time is private;

subtype Year Number is Integer range 1901 .. 2399;
subtype Month Number is Integer range 1 .. 12;

subtype Day Number is Integer range 1 .. 31;

subtype Day Duration is Duration range 0.0 .. 86 400.0;

function Clock return Time;

function Year (Date : Time) return Year Number;
function Month (Date : Time) return Month_ Number;
function Day Date : Time) return Day Number;

function Seconds (Date : Time) return Day Duration;

procedure Split (Date : in Time;

Year : out Year Number;

Month : out Month Number;

Day : out Day_ Number;

Seconds : out Day Duration);
function Time Of (Year : Year Number;

Month : Month Number;

Day : Day Number;

Seconds : Day Duration := 0.0)
return Time;
function "+" (Left : Time; Right : Duration) return Time;
function "+" (Left : Duration; Right : Time) return Time;
function "-" (Left : Time; Right : Duration) return Time;
function "-" (Left : Time; Right : Time) return Duration;

function "<"
function "<="
function ">"
function ">="

Left, Right : Time) return Boolean;
Left, Right : Time) return Boolean;
Left, Right : Time) return Boolean;
Left, Right : Time) return Boolean;

(
(
(
(
(
(
(
(
Time Error : exception;

private
... -- not specified by the language
end Ada.Calendar;

Dynamic Semantics

For the execution of a delay_statement, the delay expression is first evaluated. For a
delay_until_statement, the expiration time for the delay is the value of the delay_expression, in the time
base associated with the type of the expression. For a delay_relative_statement, the expiration time is
defined as the current time, in the time base associated with relative delays, plus the value of the
delay expression converted to the type Duration, and then rounded up to the next clock tick. The time
base associated with relative delays is as defined in D.9, “Delay Accuracy” or is implementation defined.
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The task executing a delay_statement is blocked until the expiration time is reached, at which point it
becomes ready again. If the expiration time has already passed, the task is not blocked.

If an attempt is made to cancel the delay_statement (as part of an asynchronous_select or abort — see
9.7.4 and 9.8), the statement is cancelled if the expiration time has not yet passed, thereby completing the
delay_statement.

The time base associated with the type Time of package Calendar is implementation defined. The function
Clock of package Calendar returns a value representing the current time for this time base. The
implementation-defined value of the named number System.Tick (see 13.7) is an approximation of the
length of the real-time interval during which the value of Calendar.Clock remains constant.

The functions Year, Month, Day, and Seconds return the corresponding values for a given value of the
type Time, as appropriate to an implementation-defined time zone; the procedure Split returns all four
corresponding values. Conversely, the function Time Of combines a year number, a month number, a day
number, and a duration, into a value of type Time. The operators "+" and "-" for addition and subtraction
of times and durations, and the relational operators for times, have the conventional meaning.

If Time_Of is called with a seconds value of 86_400.0, the value returned is equal to the value of Time Of
for the next day with a seconds value of 0.0. The value returned by the function Seconds or through the
Seconds parameter of the procedure Split is always less than 86_400.0.

The exception Time Error is raised by the function Time Of if the actual parameters do not form a proper
date. This exception is also raised by the operators "+" and "—" if the result is not representable in the type
Time or Duration, as appropriate. This exception is also raised by the functions Year, Month, Day, and
Seconds and the procedure Split if the year number of the given date is outside of the range of the subtype
Year Number.

Implementation Requirements

The implementation of the type Duration shall allow representation of time intervals (both positive and
negative) up to at least 86400 seconds (one day); Duration'Small shall not be greater than twenty
milliseconds. The implementation of the type Time shall allow representation of all dates with year
numbers in the range of Year Number; it may allow representation of other dates as well (both earlier and
later).

Implementation Permissions
An implementation may define additional time types.
An implementation may raise Time_Error if the value of a delay_expression in a delay_until_statement

of a select_statement represents a time more than 90 days past the current time. The actual limit, if any, is
implementation-defined.

Implementation Advice

Whenever possible in an implementation, the value of Duration'Small should be no greater than 100
microseconds.

The time base for delay_relative_statements should be monotonic; it need not be the same time base as
used for Calendar.Clock.

NOTES
33 A delay_relative_statement with a negative value of the delay expression is equivalent to one with a zero value.
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34 A delay_statement may be executed by the environment task; consequently delay_statements may be executed as
part of the elaboration of a library_item or the execution of the main subprogram. Such statements delay the environment

task (see 10.2).

35 A delay_statement is an abort completion point and a potentially blocking operation, even if the task is not actually

blocked.

36 There is no necessary relationship between System.Tick (the resolution of the clock of package Calendar) and

Duration'Small (the small of type Duration).

37 Additional requirements associated with delay_statements are given in D.9, “Delay Accuracy”.

Examples
Example of a relative delay statement:
delay 3.0; -- delay 3.0 seconds
Example of a periodic task:
declare
use Ada.Calendar;
Next_Time : Time := Clock + Period;
- - Period is a global constant of type Duration
begin
loop - - repeated every Period seconds

delay until Next_ Time;
... -- perform some actions
Next Time := Next Time + Period;
end loop;
end;

9.6.1 Formatting, Time Zones, and other operations for Time

Static Semantics
The following language-defined library packages exist:

package Ada.Calendar.Time_Zones is
-- Time zone manipulation:
type Time Offset is range -28*60 .. 28*%60;
Unknown_Zone Error : exception;
function UTC_Time_Offset (Date : Time := Clock) return Time_Offset;

end Ada.Calendar.Time_Zones;

package Ada.Calendar.Arithmetic is
- - Arithmetic on days:

type Day_ Count is range
-366* (1+Year Number'Last - Year Number'First)

366* (1+Year Number'Last - Year Number'First);
subtype Leap_Seconds_Count is Integer range -2047 .. 2047;

procedure Difference (Left, Right : in Time;
Days : out Day Count;
Seconds : out Duration;
Leap_Seconds : out Leap_ Seconds Count) ;

function "+" (Left : Time; Right : Day Count) return Time;
function "+" (Left : Day Count; Right : Time) return Time;
function "-" (Left : Time; Right : Day_Count) return Time;
function "-" (Left, Right : Time) return Day Count;
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end Ada.Calendar.Arithmetic;

with Ada.Calendar.Time Zones;

package Ada.Calendar.Formatting is

-- Day of the week:

type Day Name is (Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday) ;

function Day of Week (Date Time) return Day Name;

- - Hours:Minutes:Seconds access:

subtype
subtype
subtype
subtype

Hour_Number
Minute Number
Second Number
Second_Duration

(Date
Time_Zo

function Year

is
is
is
is
Ti
ne

Natural range 0
Natural range 0 59;
Natural range O 59;
Day Duration range 0.0 .. 1.

23;

0;

me;
Time_Zones.Time Offset := 0)

return Year Number;

Month (Date

Time_ Zo

function

Ti
ne

me;
Time_ Zones.Time Offset := 0)

return Month Number;

function (Date

Time_Zo

Day

Ti
ne

me;
Time_Zones.Time Offset := 0)

return Day Number;

(Date
Time Zo

function Hour

Ti
ne

me;
Time_ Zones.Time Offset := 0)

return Hour Number;

function Minute (Date

Time_Zo

Ti
ne

me;
Time_Zones.Time Offset := 0)

return Minute Number;

function Second (Date

Ti

me)

return Second Number;

function Sub_Second (Date

Ti

me)

return Second Duration;

function Seconds Of (Hour
Minute

Second

Sub_Second

return Day Duration;

procedure Split (Seconds
Hour

Minute
Second

Sub_Second

function Time Of (Year

Month

Day

Hour
Minute
Second
Sub_Second
Leap Secon
Time_Zone

d:

Hour_ Number;
Minute_ Number;
Second Number := 0;

Second Duration := 0.0)

in Day Duration;

out Hour Number;

out Minute Number;
out Second Number;
out Second Duration) ;

Year_ Number;

Month_ Number;

Day_ Number;

Hour_ Number;
Minute_Number;
Second_Number;

Second Duration := 0.
Boolean := False;
Time_Zones.Time_ Offset := 0)

0;

return Time;

(Year

Month

Day
Seconds
Leap_ Secon
Time_ Zone

function Time Of

4a:

Year_ Number;

Month Number;

Day_ Number;

Day Duration := 0.0;
Boolean := False;

Time Zones.Time Offset := 0)

return Time;

9.6.1 Formatting, Time Zones, and other operations for Time

13 December 2012

232



ISO/IEC 8652:2012(E) — Ada Reference Manual

procedure Split (Date : in Time;
Year : out Year Number;
Month : out Month Number;
Day : out Day_ Number;
Hour : out Hour Number;
Minute : out Minute Number;
Second : out Second Number;
Sub_Second : out Second Duration;
Time Zone : in Time Zones.Time Offset := 0);
procedure Split (Date : in Time;
Year : out Year Number;
Month : out Month Number;
Day : out Day_ Number;
Hour : out Hour Number;
Minute : out Minute Number;
Second : out Second Number;

Sub_Second : out Second Duration;
Leap_Second: out Boolean;

Time Zone : in Time Zones.Time Offset := 0);
procedure Split (Date : in Time;
Year : out Year Number;
Month : out Month Number;
Day : out Day_ Number;
Seconds : out Day Duration;
Leap_Second: out Boolean;
Time_Zone : in Time_ Zones.Time Offset := 0);
-~ Simple image and value:
function Image (Date : Time;
Include Time Fraction : Boolean := False;
Time Zone : Time Zones.Time Offset := 0) return String;
function Value (Date : String;
Time_Zone : Time_Zones.Time Offset := 0) return Time;
function Image (Elapsed Time : Duration;
Include Time Fraction : Boolean := False) return String;

function Value (Elapsed Time : String) return Duration;

end Ada.Calendar.Formatting;

Type Time Offset represents the number of minutes difference between the implementation-defined time
zone used by Calendar and another time zone.

233

function UTC_Time_Offset (Date : Time := Clock) return Time_Offset;

Returns, as a number of minutes, the result of subtracting the implementation-defined time zone
of Calendar from UTC time, at the time Date. If the time zone of the Calendar implementation is
unknown, then Unknown_Zone Error is raised.

procedure Difference (Left, Right : in Time;

Days : out Day Count;

Seconds : out Duration;

Leap_Seconds : out Leap_ Seconds_Count) ;
Returns the difference between Left and Right. Days is the number of days of difference,
Seconds is the remainder seconds of difference excluding leap seconds, and Leap Seconds is the
number of leap seconds. If Left < Right, then Seconds <= 0.0, Days <= 0, and Leap_Seconds <=
0. Otherwise, all values are nonnegative. The absolute value of Seconds is always less than
86_400.0. For the returned values, if Days = 0, then Seconds + Duration(Leap_ Seconds) =
Calendar."-" (Left, Right).
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function "+" (Left : Time; Right : Day Count) return Time;
function "+" (Left : Day Count; Right : Time) return Time;

Adds a number of days to a time value. Time_Error is raised if the result is not representable as a
value of type Time.

function "-" (Left : Time; Right : Day Count) return Time;
Subtracts a number of days from a time value. Time Error is raised if the result is not
representable as a value of type Time.

function "-" (Left, Right : Time) return Day Count;
Subtracts two time values, and returns the number of days between them. This is the same value
that Difference would return in Days.

function Day of Week (Date : Time) return Day Name;
Returns the day of the week for Time. This is based on the Year, Month, and Day values of

Time.

function Year (Date : Time;
Time_Zone : Time_Zones.Time Offset := 0)
return Year_ Number;

Returns the year for Date, as appropriate for the specified time zone offset.

function Month (Date : Time;
Time Zone : Time Zones.Time Offset := 0)
return Month Number;

Returns the month for Date, as appropriate for the specified time zone offset.

function Day (Date : Time;
Time Zone : Time_ Zones.Time Offset := 0)
return Day Number;

Returns the day number for Date, as appropriate for the specified time zone offset.

function Hour (Date : Time;
Time_Zone : Time_Zones.Time Offset := 0)
return Hour Number;

Returns the hour for Date, as appropriate for the specified time zone offset.

function Minute (Date : Time;
Time_Zone : Time_Zones.Time Offset := 0)
return Minute Number;

Returns the minute within the hour for Date, as appropriate for the specified time zone offset.

function Second (Date : Time)
return Second Number;

Returns the second within the hour and minute for Date.

function Sub_Second (Date : Time)
return Second Duration;

Returns the fraction of second for Date (this has the same accuracy as Day_Duration). The value
returned is always less than 1.0.
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function Seconds Of (Hour : Hour Number;
Minute : Minute Number;
Second : Second Number := 0;
Sub_Second : Second Duration := 0.0)

return Day Duration;

Returns a Day_ Duration value for the combination of the given Hour, Minute, Second, and
Sub_Second. This value can be used in Calendar.Time Of as well as the argument to
Calendar."+" and Calendar."-". If Seconds Of is called with a Sub_Second value of 1.0, the
value returned is equal to the value of Seconds_Of for the next second with a Sub_Second value
of 0.0.

procedure Split (Seconds : in Day Duration;
Hour : out Hour_ Number;
Minute : out Minute Number;
Second : out Second Number;

Sub_ Second : out Second Duration) ;

Splits Seconds into Hour, Minute, Second and Sub_Second in such a way that the resulting
values all belong to their respective subtypes. The value returned in the Sub_Second parameter
is always less than 1.0. If Seconds = 86400.0, Split propagates Time Error.

function Time Of (Year : Year Number;
Month : Month Number;
Day : Day Number;
Hour : Hour Number;
Minute : Minute Number;
Second : Second Number;
Sub_Second : Second Duration := 0.0;
Leap_Second: Boolean := False;
Time Zone : Time_Zones.Time Offset := 0)

return Time;

If Leap_Second is False, returns a Time built from the date and time values, relative to the
specified time zone offset. If Leap Second is True, returns the Time that represents the time
within the leap second that is one second later than the time specified by the other parameters.
Time Error is raised if the parameters do not form a proper date or time. If Time Of is called
with a Sub_Second value of 1.0, the value returned is equal to the value of Time Of for the next
second with a Sub_Second value of 0.0.

function Time Of (Year : Year Number;
Month : Month Number;
Day : Day_Number;
Seconds : Day Duration := 0.0;
Leap Second: Boolean := False;
Time_Zone : Time_Zones.Time_Offset := 0)

return Time;

If Leap Second is False, returns a Time built from the date and time values, relative to the
specified time zone offset. If Leap_Second is True, returns the Time that represents the time
within the leap second that is one second later than the time specified by the other parameters.
Time Error is raised if the parameters do not form a proper date or time. If Time Of is called
with a Seconds value of 86 400.0, the value returned is equal to the value of Time Of for the
next day with a Seconds value of 0.0.
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procedure Split (Date : in Time;
Year : out Year Number;
Month : out Month Number;
Day : out Day_ Number;
Hour : out Hour Number;
Minute : out Minute Number;
Second : out Second Number;

Sub_Second : out Second Duration;

Leap_Second: out Boolean;

Time Zone : in Time Zones.Time Offset := 0);
If Date does not represent a time within a leap second, splits Date into its constituent parts (Year,
Month, Day, Hour, Minute, Second, Sub_Second), relative to the specified time zone offset, and
sets Leap Second to False. If Date represents a time within a leap second, set the constituent
parts to values corresponding to a time one second earlier than that given by Date, relative to the
specified time zone offset, and sets Leap Seconds to True. The value returned in the
Sub_Second parameter is always less than 1.0.

procedure Split (Date : in Time;
Year : out Year_ Number;
Month : out Month Number;
Day : out Day Number;
Hour : out Hour Number;
Minute : out Minute Number;
Second : out Second Number;
Sub_Second : out Second Duration;
Time Zone : in Time Zones.Time Offset := 0);

Splits Date into its constituent parts (Year, Month, Day, Hour, Minute, Second, Sub_Second),
relative to the specified time zone offset. The value returned in the Sub_Second parameter is
always less than 1.0.

procedure Split (Date : in Time;
Year : out Year Number;
Month : out Month Number;
Day : out Day_ Number;
Seconds : out Day_Duration;
Leap Second: out Boolean;
Time_Zone : in Time_Zones.Time_ Offset := 0);

If Date does not represent a time within a leap second, splits Date into its constituent parts (Year,
Month, Day, Seconds), relative to the specified time zone offset, and sets Leap Second to False.
If Date represents a time within a leap second, set the constituent parts to values corresponding
to a time one second earlier than that given by Date, relative to the specified time zone offset,
and sets Leap_Seconds to True. The value returned in the Seconds parameter is always less than
86_400.0.

function Image (Date : Time;

Include Time_ Fraction : Boolean := False;

Time_ Zone : Time_ Zones.Time Offset := 0) return String;
Returns a string form of the Date relative to the given Time Zone. The format is "Year-Month-
Day Hour:Minute:Second", where the Year is a 4-digit value, and all others are 2-digit values, of
the functions defined in Calendar and Calendar.Formatting, including a leading zero, if needed.
The separators between the values are a minus, another minus, a colon, and a single space
between the Day and Hour. If Include Time Fraction is True, the integer part of
Sub_Seconds*100 is suffixed to the string as a point followed by a 2-digit value.
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function Value (Date : String;
Time Zone : Time_ Zones.Time Offset := 0) return Time;
Returns a Time value for the image given as Date, relative to the given time zone.
Constraint_Error is raised if the string is not formatted as described for Image, or the function
cannot interpret the given string as a Time value.

function Image (Elapsed Time : Duration;
Include Time Fraction : Boolean := False) return String;

Returns a string form of the Elapsed Time. The format is "Hour:Minute:Second", where all
values are 2-digit values, including a leading zero, if needed. The separators between the values
are colons. If Include Time Fraction is True, the integer part of Sub_Seconds*100 is suffixed to
the string as a point followed by a 2-digit value. If Elapsed Time < 0.0, the result is Image (abs
Elapsed_Time, Include Time Fraction) prefixed with a minus sign. If abs Elapsed Time
represents 100 hours or more, the result is implementation-defined.

function Value (Elapsed Time : String) return Duration;

Returns a Duration value for the image given as Elapsed Time. Constraint Error is raised if the
string is not formatted as described for Image, or the function cannot interpret the given string as
a Duration value.

Implementation Advice

An implementation should support leap seconds if the target system supports them. If leap seconds are not
supported, Difference should return zero for Leap Seconds, Split should return False for Leap Second,
and Time Of should raise Time_ Error if Leap Second is True.

NOTES

38 The implementation-defined time zone of package Calendar may, but need not, be the local time zone.
UTC_Time_Offset always returns the difference relative to the implementation-defined time zone of package Calendar. If
UTC_Time Offset does not raise Unknown_Zone Error, UTC time can be safely calculated (within the accuracy of the
underlying time-base).

39 Calling Split on the results of subtracting Duration(UTC_Time_Offset*60) from Clock provides the components
(hours, minutes, and so on) of the UTC time. In the United States, for example, UTC_Time Offset will generally be
negative.

9.7 Select Statements

There are four forms of the select_statement. One form provides a selective wait for one or more
select_alternatives. Two provide timed and conditional entry calls. The fourth provides asynchronous
transfer of control.

Syntax

select_statement ::=
selective_accept
| timed_entry_call
| conditional_entry_call
| asynchronous_select
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Examples
Example of a select statement:

select
accept Driver Awake Signal;
or
delay 30.0*Seconds;
Stop_The Train;
end select;

9.7.1 Selective Accept

This form of the select_statement allows a combination of waiting for, and selecting from, one or more
alternatives. The selection may depend on conditions associated with each alternative of the
selective_accept.

Syntax
selective_accept ::=
select
[guard]
select_alternative
{or
[guard]
select_alternative }
[ else
sequence_of_statements |
end select;
guard ::= when condition =>

select_alternative ::=
accept_alternative
| delay_alternative
| terminate_alternative

accept_alternative ::=
accept_statement [sequence_of_statements]

delay_alternative ::=
delay_statement [sequence_of statements]

terminate_alternative ::= terminate;

A selective_accept shall contain at least one accept_alternative. In addition, it can contain:
e aterminate_alternative (only one); or
e one or more delay_alternatives; or
e an else part (the reserved word else followed by a sequence_of_statements).

These three possibilities are mutually exclusive.

Legality Rules

If a selective_accept contains more than one delay_alternative, then all shall be delay_relative_-
statements, or all shall be delay_until_statements for the same time type.

Dynamic Semantics

A select_alternative is said to be open if it is not immediately preceded by a guard, or if the condition of
its guard evaluates to True. It is said to be closed otherwise.
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For the execution of a selective_accept, any guard conditions are evaluated; open alternatives are thus
determined. For an open delay_alternative, the delay expression is also evaluated. Similarly, for an open
accept_alternative for an entry of a family, the entry_index is also evaluated. These evaluations are
performed in an arbitrary order, except that a delay_expression or entry_index is not evaluated until after
evaluating the corresponding condition, if any. Selection and execution of one open alternative, or of the
else part, then completes the execution of the selective_accept; the rules for this selection are described
below.

Open accept_alternatives are first considered. Selection of one such alternative takes place immediately if
the corresponding entry already has queued calls. If several alternatives can thus be selected, one of them
is selected according to the entry queuing policy in effect (see 9.5.3 and D.4). When such an alternative is
selected, the selected call is removed from its entry queue and the handled_sequence_of_statements (if
any) of the corresponding accept_statement is executed; after the rendezvous completes any subsequent
sequence_of_statements of the alternative is executed. If no selection is immediately possible (in the
above sense) and there is no else part, the task blocks until an open alternative can be selected.

Selection of the other forms of alternative or of an else part is performed as follows:

e An open delay_alternative is selected when its expiration time is reached if no accept_-
alternative or other delay_alternative can be selected prior to the expiration time. If several
delay_alternatives have this same expiration time, one of them is selected according to the
queuing policy in effect (see D.4); the default queuing policy chooses arbitrarily among the
delay_alternatives whose expiration time has passed.

e The else part is selected and its sequence_of_statements is executed if no accept_alternative
can immediately be selected; in particular, if all alternatives are closed.

¢ An open terminate_alternative is selected if the conditions stated at the end of subclause 9.3 are
satisfied.

The exception Program_Error is raised if all alternatives are closed and there is no else part.

NOTES
40 A selective_accept is allowed to have several open delay_alternatives. A selective_accept is allowed to have several
open accept_alternatives for the same entry.

Examples
Example of a task body with a selective accept:
task body Server is
Current_Work Item : Work Item;
begin
loop
select
accept Next Work Item(WI : in Work Item) do
Current_Work Item := WI;
end;
Process_Work_Item(Current Work_Item) ;
or
accept Shut_ Down;
exit; - - Premature shut down requested
or
terminate; -- Normal shutdown at end of scope
end select;
end loop;

end Server;
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9.7.2 Timed Entry Calls

A timed_entry_call issues an entry call that is cancelled if the call (or a requeue-with-abort of the call) is
not selected before the expiration time is reached. A procedure call may appear rather than an entry call
for cases where the procedure might be implemented by an entry.

Syntax
timed_entry_call ::=
select
entry_call_alternative
or
delay_alternative
end select;

entry_call_alternative ::=
procedure_or_entry_call [sequence_of_statements]

procedure_or_entry_call ::=
procedure_call_statement | entry_call_statement

Legality Rules

If a procedure_call_statement is used for a procedure_or_entry call, the procedure name or
procedure_prefix of the procedure_call_statement shall statically denote an entry renamed as a procedure
or (a view of) a primitive subprogram of a limited interface whose first parameter is a controlling
parameter (see 3.9.2).

Dynamic Semantics

For the execution of a timed_entry_call, the entry_name, procedure_name, or procedure_prefix, and any
actual parameters are evaluated, as for a simple entry call (see 9.5.3) or procedure call (see 6.4). The
expiration time (see 9.6) for the call is determined by evaluating the delay expression of the
delay_alternative. If the call is an entry call or a call on a procedure implemented by an entry, the entry
call is then issued. Otherwise, the call proceeds as described in 6.4 for a procedure call, followed by the
sequence_of_statements of the entry call_alternative; the sequence_of statements of the delay -
alternative is ignored.

If the call is queued (including due to a requeue-with-abort), and not selected before the expiration time is
reached, an attempt to cancel the call is made. If the call completes due to the cancellation, the optional
sequence_of_statements of the delay_alternative is executed; if the entry call completes normally, the
optional sequence_of_statements of the entry_call_alternative is executed.

Examples
Example of a timed entry call:
select
Controller.Request (Medium) (Some_Item) ;
or
delay 45.0;

- - controller too busy, try something else
end select;
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9.7.3 Conditional Entry Calls

A conditional_entry_call issues an entry call that is then cancelled if it is not selected immediately (or if a
requeue-with-abort of the call is not selected immediately). A procedure call may appear rather than an
entry call for cases where the procedure might be implemented by an entry.

Syntax
conditional_entry_call ::=
select
entry_call_alternative
else
sequence_of_statements
end select;

Dynamic Semantics

The execution of a conditional_entry_call is defined to be equivalent to the execution of a timed_entry -
call with a delay_alternative specifying an immediate expiration time and the same sequence_of -
statements as given after the reserved word else.

NOTES

41 A conditional_entry_call may briefly increase the Count attribute of the entry, even if the conditional call is not
selected.

Examples
Example of a conditional entry call:
procedure Spin(R : in Resource) is
begin
loop
select
R.Seize;
return;
else
null; -- busy waiting
end select;
end loop;
end;

9.7.4 Asynchronous Transfer of Control

An asynchronous select_statement provides asynchronous transfer of control upon completion of an entry
call or the expiration of a delay.

Syntax
asynchronous_select ::=
select
triggering_alternative
then abort
abortable_part
end select;

triggering_alternative ::= triggering_statement [sequence_of_statements]
triggering_statement ::= procedure_or_entry call | delay_statement
abortable_part ::= sequence_of_statements
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Dynamic Semantics

For the execution of an asynchronous_select whose triggering_statement is a procedure_or_entry_call,
the entry_name, procedure_name, or procedure prefix, and actual parameters are evaluated as for a
simple entry call (see 9.5.3) or procedure call (see 6.4). If the call is an entry call or a call on a procedure
implemented by an entry, the entry call is issued. If the entry call is queued (or requeued-with-abort), then
the abortable_part is executed. If the entry call is selected immediately, and never requeued-with-abort,
then the abortable_part is never started. If the call is on a procedure that is not implemented by an entry,
the call proceeds as described in 6.4, followed by the sequence_of_statements of the triggering_-
alternative; the abortable_part is never started.

For the execution of an asynchronous_select whose triggering_statement is a delay_statement, the
delay expression is evaluated and the expiration time is determined, as for a normal delay_statement. If
the expiration time has not already passed, the abortable_part is executed.

If the abortable_part completes and is left prior to completion of the triggering_statement, an attempt to
cancel the triggering_statement is made. If the attempt to cancel succeeds (see 9.5.3 and 9.6), the
asynchronous_select is complete.

If the triggering_statement completes other than due to cancellation, the abortable_part is aborted (if
started but not yet completed — see 9.8). If the triggering_statement completes normally, the optional
sequence_of_statements of the triggering_alternative is executed after the abortable_part is left.

Examples
Example of a main command loop for a command interpreter:

loop
select
Terminal.Wait For Interrupt;
Put_Line("Interrupted") ;
then abort
- - This will be abandoned upon terminal interrupt
Put_Line("-> ");
Get_ Line (Command, Last) ;
Process_Command (Command (1. .Last)) ;
end select;
end loop;

Example of a time-limited calculation:

select

delay 5.0;

Put_Line ("Calculation does not converge");
then abort

- - This calculation should finish in 5.0 seconds;

-- ifnot, it is assumed to diverge.

Horribly Complicated Recursive_ Function(X, Y);
end select;

9.8 Abort of a Task - Abort of a Sequence of Statements

An abort_statement causes one or more tasks to become abnormal, thus preventing any further interaction
with such tasks. The completion of the triggering_statement of an asynchronous_select causes a
sequence_of_statements to be aborted.

Syntax
abort_statement ::= abort fask_name {, task_name};
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Name Resolution Rules

Each fask_name is expected to be of any task type; they need not all be of the same task type.

Dynamic Semantics
For the execution of an abort_statement, the given fask_names are evaluated in an arbitrary order. Each

named task is then aborted, which consists of making the task abnormal and aborting the execution of the
corresponding task_body, unless it is already completed.

When the execution of a construct is aborted (including that of a task_body or of a sequence_of -
statements), the execution of every construct included within the aborted execution is also aborted, except
for executions included within the execution of an abort-deferred operation; the execution of an abort-
deferred operation continues to completion without being affected by the abort; the following are the
abort-deferred operations:

e a protected action;

e waiting for an entry call to complete (after having initiated the attempt to cancel it — see
below);

e waiting for the termination of dependent tasks;

o the execution of an Initialize procedure as the last step of the default initialization of a controlled
object;
o the execution of a Finalize procedure as part of the finalization of a controlled object;

e an assignment operation to an object with a controlled part.

The last three of these are discussed further in 7.6.
When a master is aborted, all tasks that depend on that master are aborted.

The order in which tasks become abnormal as the result of an abort statement or the abort of a
sequence_of_statements is not specified by the language.

If the execution of an entry call is aborted, an immediate attempt is made to cancel the entry call (see
9.5.3). If the execution of a construct is aborted at a time when the execution is blocked, other than for an
entry call, at a point that is outside the execution of an abort-deferred operation, then the execution of the
construct completes immediately. For an abort due to an abort_statement, these immediate effects occur
before the execution of the abort_statement completes. Other than for these immediate cases, the
execution of a construct that is aborted does not necessarily complete before the abort_statement
completes. However, the execution of the aborted construct completes no later than its next abort
completion point (if any) that occurs outside of an abort-deferred operation; the following are abort
completion points for an execution:

e the point where the execution initiates the activation of another task;
o the end of the activation of a task;

e the start or end of the execution of an entry call, accept_statement, delay_statement, or
abort_statement;

e the start of the execution of a select_statement, or of the sequence_of statements of an
exception_handler.

Bounded (Run-Time) Errors

An attempt to execute an asynchronous_select as part of the execution of an abort-deferred operation is a
bounded error. Similarly, an attempt to create a task that depends on a master that is included entirely
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within the execution of an abort-deferred operation is a bounded error. In both cases, Program_Error is
raised if the error is detected by the implementation; otherwise, the operations proceed as they would
outside an abort-deferred operation, except that an abort of the abortable_part or the created task might or
might not have an effect.

Erroneous Execution

If an assignment operation completes prematurely due to an abort, the assignment is said to be disrupted;
the target of the assignment or its parts can become abnormal, and certain subsequent uses of the object
can be erroneous, as explained in 13.9.1.

NOTES
42 An abort_statement should be used only in situations requiring unconditional termination.

43 A task is allowed to abort any task it can name, including itself.

44 Additional requirements associated with abort are given in D.6, “Preemptive Abort”.

9.9 Task and Entry Attributes

Dynamic Semantics
For a prefix T that is of a task type (after any implicit dereference), the following attributes are defined:

T'Callable Yields the value True when the task denoted by T is callable, and False otherwise; a task is
callable unless it is completed or abnormal. The value of this attribute is of the predefined
type Boolean.

T'Terminated Yields the value True if the task denoted by T is terminated, and False otherwise. The value
of this attribute is of the predefined type Boolean.

For a prefix E that denotes an entry of a task or protected unit, the following attribute is defined. This
attribute is only allowed within the body of the task or protected unit, but excluding, in the case of an entry
of a task unit, within any program unit that is, itself, inner to the body of the task unit.

E'Count Yields the number of calls presently queued on the entry E of the current instance of the
unit. The value of this attribute is of the type universal_integer.

NOTES
45 For the Count attribute, the entry can be either a single entry or an entry of a family. The name of the entry or entry
family can be either a direct_name or an expanded name.

46 Within task units, algorithms interrogating the attribute E'Count should take precautions to allow for the increase of
the value of this attribute for incoming entry calls, and its decrease, for example with timed_entry_calls. Also, a
conditional_entry_call may briefly increase this value, even if the conditional call is not accepted.

47 Within protected units, algorithms interrogating the attribute E'Count in the entry_barrier for the entry E should take
precautions to allow for the evaluation of the condition of the barrier both before and after queuing a given caller.

9.10 Shared Variables

Static Semantics

If two different objects, including nonoverlapping parts of the same object, are independently addressable,
they can be manipulated concurrently by two different tasks without synchronization. Any two
nonoverlapping objects are independently addressable if either object is specified as independently
addressable (see C.6). Otherwise, two nonoverlapping objects are independently addressable except when
they are both parts of a composite object for which a nonconfirming value is specified for any of the
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case it is unspecified whether the parts are independently addressable.

Separate tasks normally proceed independently and concurrently with one another. However, task
interactions can be used to synchronize the actions of two or more tasks to allow, for example, meaningful
communication by the direct updating and reading of variables shared between the tasks. The actions of
two different tasks are synchronized in this sense when an action of one task signals an action of the other

Dynamic Semantics

task; an action Al is defined to signal an action A2 under the following circumstances:

Given an action of assigning to an object, and an action of reading or updating a part of the same object (or

If Al and A2 are part of the execution of the same task, and the language rules require Al to be
performed before A2;

If Al is the action of an activator that initiates the activation of a task, and A2 is part of the
execution of the task that is activated;

If Al is part of the activation of a task, and A2 is the action of waiting for completion of the
activation;

If A1 is part of the execution of a task, and A2 is the action of waiting for the termination of the
task;

If Al is the termination of a task T, and A2 is either an evaluation of the expression
T'Terminated that results in True, or a call to Ada.Task Identification.Is Terminated with an
actual parameter that identifies T and a result of True (see C.7.1);

If A1 is the action of issuing an entry call, and A2 is part of the corresponding execution of the
appropriate entry_body or accept_statement;

If Al is part of the execution of an accept_statement or entry_body, and A2 is the action of
returning from the corresponding entry call;

If Al is part of the execution of a protected procedure body or entry_body for a given protected
object, and A2 is part of a later execution of an entry_body for the same protected object;

If A1 signals some action that in turn signals A2.

Erroneous Execution

nual

of a neighboring object if the two are not independently addressable), then the execution of the actions is
erroneous unless the actions are sequential. Two actions are sequential if one of the following is true:

One action signals the other;
Both actions occur as part of the execution of the same task;

Both actions occur as part of protected actions on the same protected object, and at most one of
the actions is part of a call on a protected function of the protected object.

Aspect Atomic or aspect Atomic_Components may also be specified to ensure that certain reads and
updates are sequential — see C.6.
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9.11 Example of Tasking and Synchronization

Examples

The following example defines a buffer protected object to smooth variations between the speed of output
of a producing task and the speed of input of some consuming task. For instance, the producing task might
have the following structure:

task Producer;

task body Producer is
Person : Person Name; -- see3.10.]
begin
loop
.. -- simulate arrival of the next customer
Buffer Append Wait (Person) ;
exit when Person = null;
end loop;
end Producer;

and the consuming task might have the following structure:
task Consumer;

task body Consumer is
Person : Person_ Name;
begin
loop
Buffer.Remove First Wait (Person) ;
exit when Person = null;
- - simulate serving a customer
end loop;
end Consumer;

The buffer object contains an internal array of person names managed in a round-robin fashion. The array
has two indices, an In_Index denoting the index for the next input person name and an Out_Index denoting
the index for the next output person name.

The Buffer is defined as an extension of the Synchronized Queue interface (see 3.9.4), and as such
promises to implement the abstraction defined by that interface. By doing so, the Buffer can be passed to
the Transfer class-wide operation defined for objects of a type covered by Queue'Class.

protected Buffer is new Synchronized Queue with -- see3.9.4
entry Append Wait (Person : in Person Name) ;
entry Remove_First Wait (Person : out Person_ Name) ;
function Cur_Count return Natural;
function Max Count return Natural;
procedure Append (Person : in Person Name) ;
procedure Remove First (Person : out Person Name) ;

private
Pool : Person Name Array(l .. 100);
Count . Natural := 0;
In_Index, Out_Index : Positive := 1;

end Buffer;

protected body Buffer is
entry Append Wait (Person : in Person_ Name)
when Count < Pool'Length is
begin
Append (Person) ;
end Append Wait;
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procedure Append(Person : in Person Name) is 9.1/2
begin
if Count = Pool'Length then
raise Queue Error with "Buffer Full"; --seell.3
end if;
Pool (In_Index) := Person;
In Index := (In_Index mod Pool'Length) + 1;
Count := Count + 1;
end Append;
entry Remove First Wait (Person : out Person Name) 10/2
when Count > 0 is
begin

Remove_ First (Person) ;
end Remove First Wait;

procedure Remove First (Person : out Person Name) is 11/2
begin

if Count = 0 then

raise Queue Error with "Buffer Empty"; --seell.3

end if;

Person := Pool (Out_Index) ;

Out_Index := (Out_Index mod Pool'Length) + 1;

Count := Count - 1;
end Remove First;
function Cur Count return Natural is 12/2
begin

return Buffer.Count;
end Cur_Count;

function Max Count return Natural is 13/2
begin
return Pool'Length;
end Max_Count;
end Buffer;

247 13 December 2012 Example of Tasking and Synchronization 9.11






ISO/IEC 8652:2012(E) — Ada Reference Manual

10 Program Structure and Compilation Issues

The overall structure of programs and the facilities for separate compilation are described in this clause. A
program is a set of partitions, each of which may execute in a separate address space, possibly on a
separate computer.

As explained below, a partition is constructed from /ibrary units. Syntactically, the declaration of a library
unit is a library_item, as is the body of a library unit. An implementation may support a concept of a
program library (or simply, a “library”’), which contains library_items and their subunits. Library units
may be organized into a hierarchy of children, grandchildren, and so on.

This clause has two subclauses: 10.1, “Separate Compilation” discusses compile-time issues related to
separate compilation. 10.2, “Program Execution” discusses issues related to what is traditionally known as
“link time” and “run time” — building and executing partitions.

10.1 Separate Compilation

A program unit is either a package, a task unit, a protected unit, a protected entry, a generic unit, or an
explicitly declared subprogram other than an enumeration literal. Certain kinds of program units can be
separately compiled. Alternatively, they can appear physically nested within other program units.

The text of a program can be submitted to the compiler in one or more compilations. Each compilation is a
succession of compilation_units. A compilation_unit contains either the declaration, the body, or a
renaming of a program unit. The representation for a compilation is implementation-defined.

A library unit is a separately compiled program unit, and is always a package, subprogram, or generic unit.
Library units may have other (logically nested) library units as children, and may have other program units
physically nested within them. A root library unit, together with its children and grandchildren and so on,
form a subsystem.

Implementation Permissions

An implementation may impose implementation-defined restrictions on compilations that contain multiple
compilation_units.

10.1.1 Compilation Units - Library Units

A library_item is a compilation unit that is the declaration, body, or renaming of a library unit. Each
library unit (except Standard) has a parent unit, which is a library package or generic library package. A
library unit is a child of its parent unit. The root library units are the children of the predefined library
package Standard.

Syntax
compilation ::= {compilation_unit}
compilation_unit ::=

context_clause library_item
| context_clause subunit
library_item ::= [private] library_unit_declaration
| library_unit_body
| [private] library_unit_renaming_declaration
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library_unit_declaration ::=
subprogram_declaration | package_declaration
| generic_declaration | generic_instantiation

library_unit_renaming_declaration ::=
package_renaming_declaration

| generic_renaming_declaration

| subprogram_renaming_declaration

library_unit_body ::= subprogram_body | package_body
parent_unit_name ::= name

An overriding_indicator is not allowed in a subprogram_declaration, generic_instantiation, or
subprogram_renaming_declaration that declares a library unit.

A library unit is a program unit that is declared by a library_item. When a program unit is a library unit,
the prefix “library” is used to refer to it (or “generic library” if generic), as well as to its declaration and
body, as in “library procedure”, “library package_body”, or “generic library package”. The term
compilation unit is used to refer to a compilation_unit. When the meaning is clear from context, the term is
also used to refer to the library_item of a compilation_unit or to the proper_body of a subunit (that is, the
compilation_unit without the context_clause and the separate (parent_unit_name)).

The parent declaration of a library_item (and of the library unit) is the declaration denoted by the parent_-
unit_name, if any, of the defining_program_unit_name of the library_item. If there is no parent_-
unit_name, the parent declaration is the declaration of Standard, the library_item is a root library_item,
and the library unit (renaming) is a root library unit (renaming). The declaration and body of Standard
itself have no parent declaration. The parent unit of a library_item or library unit is the library unit
declared by its parent declaration.

The children of a library unit occur immediately within the declarative region of the declaration of the
library unit. The ancestors of a library unit are itself, its parent, its parent's parent, and so on. (Standard is
an ancestor of every library unit.) The descendant relation is the inverse of the ancestor relation.

A library_unit_declaration or a library_unit_renaming_declaration is private if the declaration is
immediately preceded by the reserved word private; it is otherwise public. A library unit is private or
public according to its declaration. The public descendants of a library unit are the library unit itself, and
the public descendants of its public children. Its other descendants are private descendants.

For each library package_declaration in the environment, there is an implicit declaration of a limited view
of that library package. The limited view of a package contains:

e For each package_declaration occurring immediately within the visible part, a declaration of
the limited view of that package, with the same defining_program_unit_name.

e For each type_declaration occurring immediately within the visible part that is not an
incomplete_type_declaration, an incomplete view of the type with no discriminant_part; if the
type_declaration is tagged, then the view is a tagged incomplete view.

The limited view of a library package_declaration is private if that library package_declaration is
immediately preceded by the reserved word private.

There is no syntax for declaring limited views of packages, because they are always implicit. The implicit
declaration of a limited view of a library package is not the declaration of a library unit (the library
package_declaration is); nonetheless, it is a library_item. The implicit declaration of the limited view of a
library package forms an (implicit) compilation unit whose context_clause is empty.

A library package_declaration is the completion of the declaration of its limited view.
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Legality Rules
The parent unit of a library_item shall be a library package or generic library package.

If a defining_program_unit_name of a given declaration or body has a parent_unit_name, then the given
declaration or body shall be a library_item. The body of a program unit shall be a library_item if and only
if the declaration of the program unit is a library_item. In a library_unit_renaming_declaration, the (old)
name shall denote a library_item.

A parent_unit_name (which can be used within a defining_program_unit_name of a library_item and in
the separate clause of a subunit), and each of its prefixes, shall not denote a renaming_declaration. On
the other hand, a name that denotes a library_unit_renaming_declaration is allowed in a
nonlimited_with_clause and other places where the name of a library unit is allowed.

If a library package is an instance of a generic package, then every child of the library package shall either
be itself an instance or be a renaming of a library unit.

A child of a generic library package shall either be itself a generic unit or be a renaming of some other
child of the same generic unit.

A child of a parent generic package shall be instantiated or renamed only within the declarative region of
the parent generic.

For each child C of some parent generic package P, there is a corresponding declaration C nested
immediately within each instance of P. For the purposes of this rule, if a child C itself has a child D, each
corresponding declaration for C has a corresponding child D. The corresponding declaration for a child
within an instance is visible only within the scope of a with_clause that mentions the (original) child
generic unit.

A library subprogram shall not override a primitive subprogram.

The defining name of a function that is a compilation unit shall not be an operator_symbol.

Static Semantics

A subprogram_renaming_declaration that is a library_unit_renaming_declaration is a renaming-as-
declaration, not a renaming-as-body.

There are two kinds of dependences among compilation units:

e The semantic dependences (see below) are the ones needed to check the compile-time rules
across compilation unit boundaries; a compilation unit depends semantically on the other
compilation units needed to determine its legality. The visibility rules are based on the semantic
dependences.

e The elaboration dependences (see 10.2) determine the order of elaboration of library_items.

A library_item depends semantically upon its parent declaration. A subunit depends semantically upon its
parent body. A library_unit_body depends semantically upon the corresponding library_unit_declaration,
if any. The declaration of the limited view of a library package depends semantically upon the declaration
of the limited view of its parent. The declaration of a library package depends semantically upon the
declaration of its limited view. A compilation unit depends semantically upon each library_item mentioned
in a with_clause of the compilation unit. In addition, if a given compilation unit contains an
attribute_reference of a type defined in another compilation unit, then the given compilation unit depends
semantically upon the other compilation unit. The semantic dependence relationship is transitive.
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Dynamic Semantics

The elaboration of the declaration of the limited view of a package has no effect.

NOTES

1 A simple program may consist of a single compilation unit. A compilation need not have any compilation units; for

example, its text can consist of pragmas.

2 The designator of a library function cannot be an operator_symbol, but a nonlibrary renaming_declaration is allowed
to rename a library function as an operator. Within a partition, two library subprograms are required to have distinct
names and hence cannot overload each other. However, renaming_declarations are allowed to define overloaded names
for such subprograms, and a locally declared subprogram is allowed to overload a library subprogram. The expanded
name Standard.L can be used to denote a root library unit L (unless the declaration of Standard is hidden) since root
library unit declarations occur immediately within the declarative region of package Standard.

Examples

Examples of library units:

package Rational Numbers.IO is - - public child of Rational Numbers, see 7.1

procedure Put (R : in Rational);
procedure Get (R : out Rational) ;
end Rational Numbers.IO;

private procedure Rational Numbers.Reduce(R : in out Rational);

- - private child of Rational Numbers

with Rational Numbers.Reduce; - - refer to a private child
package body Rational Numbers is

end Rational Numbers;

with Rational Numbers.IO; use Rational Numbers;

with Ada.Text io; --see A.10

procedure Main is - - aroot library procedure
R : Rational;

begin

R := 5/3; - - construct a rational number, see 7.1

Ada.Text_ IO.Put ("The answer is: ");
I0.Put (R) ;
Ada.Text IO.New_ Line;

end Main;

with Rational Numbers.IO;
package Rational IO renames Rational Numbers.IO;
- - a library unit renaming declaration

Each of the above library_items can be submitted to the compiler separately.

10.1.2 Context Clauses - With Clauses

A context_clause is used to specify the library_items whose names are needed within a compilation unit.

Syntax
context_clause ::= {context_item}

context_item ::= with_clause | use_clause
with_clause ::= limited_with_clause | nonlimited_with_clause

limited_with_clause ::= limited [private] with library unit name {, library unit name};

nonlimited_with_clause ::= [private] with library_unit name {, library_uni

10.1.1 Compilation Units - Library Units
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Name Resolution Rules

The scope of a with_clause that appears on a library_unit_declaration or library_unit_renaming_-
declaration consists of the entire declarative region of the declaration, which includes all children and
subunits. The scope of a with_clause that appears on a body consists of the body, which includes all
subunits.

A library_item (and the corresponding library unit) is named in a with_clause if it is denoted by a
library_unit_name in the with_clause. A library_item (and the corresponding library unit) is mentioned in
a with_clause if it is named in the with_clause or if it is denoted by a prefix in the with_clause.

Outside its own declarative region, the declaration or renaming of a library unit can be visible only within
the scope of a with_clause that mentions it. The visibility of the declaration or renaming of a library unit
otherwise follows from its placement in the environment.

Legality Rules

If a with_clause of a given compilation_unit mentions a private child of some library unit, then the given
compilation_unit shall be one of:

e the declaration, body, or subunit of a private descendant of that library unit;

e the body or subunit of a public descendant of that library unit, but not a subprogram body acting
as a subprogram declaration (see 10.1.4); or

e the declaration of a public descendant of that library unit, in which case the with_clause shall
include the reserved word private.

A name denoting a library_item (or the corresponding declaration for a child of a generic within an
instance — see 10.1.1), if it is visible only due to being mentioned in one or more with_clauses that
include the reserved word private, shall appear only within:

e aprivate part;

¢ abody, but not within the subprogram_specification of a library subprogram body;
e aprivate descendant of the unit on which one of these with_clauses appear; or

e apragma within a context clause.

A library_item mentioned in a limited_with_clause shall be the implicit declaration of the limited view of
a library package, not the declaration of a subprogram, generic unit, generic instance, or a renaming.

A limited_with_clause shall not appear on a library_unit_body, subunit, or library_unit_renaming_-
declaration.

A limited_with_clause that names a library package shall not appear:

e in the context_clause for the explicit declaration of the named library package or any of its
descendants;

e within a context_clause for a library_item that is within the scope of a nonlimited_with_clause
that mentions the same library package; or

e within a context_clause for a library_item that is within the scope of a use_clause that names
an entity declared within the declarative region of the library package.

NOTES

3 A library_item mentioned in a nonlimited_with_clause of a compilation unit is visible within the compilation unit and
hence acts just like an ordinary declaration. Thus, within a compilation unit that mentions its declaration, the name of a
library package can be given in use_clauses and can be used to form expanded names, a library subprogram can be
called, and instances of a generic library unit can be declared. If a child of a parent generic package is mentioned in a
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nonlimited_with_clause, then the corresponding declaration nested within each visible instance is visible within the
compilation unit. Similarly, a library_item mentioned in a limited_with_clause of a compilation unit is visible within the
compilation unit and thus can be used to form expanded names.

Examples

package Office is
end Office;

with Ada.Strings.Unbounded;
package Office.Locations is

type Location is new Ada.Strings.Unbounded.Unbounded String;
end Office.Locations;

limited with Office.Departments; -- fypes are incomplete
private with Office.Locations; - - only visible in private part
package Office.Employees is

type Employee is private;

function Dept Of (Emp : Employee) return access Departments.Department;
procedure Assign Dept (Emp : in out Employee;
Dept : access Departments.Department) ;

private
type Employee is
record
Dept : access Departments.Department;
Loc : Locations.Location;

end record;
end Office.Employees;

limited with Office.Employees;
package Office.Departments is
type Department is private;

function Manager Of (Dept : Department) return access Employees.Employee;
procedure Assign Manager (Dept : in out Department;
Mgr : access Employees.Employee) ;

end Office.Departments;

The limited_with_clause may be used to support mutually dependent abstractions that are split across
multiple packages. In this case, an employee is assigned to a department, and a department has a manager
who is an employee. If a with_clause with the reserved word private appears on one library unit and
mentions a second library unit, it provides visibility to the second library unit, but restricts that visibility to
the private part and body of the first unit. The compiler checks that no use is made of the second unit in
the visible part of the first unit.

10.1.3 Subunits of Compilation Units

Subunits are like child units, with these (important) differences: subunits support the separate compilation
of bodies only (not declarations); the parent contains a body_stub to indicate the existence and place of
each of its subunits; declarations appearing in the parent's body can be visible within the subunits.

Syntax

body_stub ::=
subprogram_body_stub | package_body_stub | task_body_stub | protected_body_stub
subprogram_body_stub ::=
[overriding_indicator]
subprogram_specification is separate
[aspect_specification];
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package_body_stub ::=
package body defining_identifier is separate
[aspect_specification];
task_body_stub ::=
task body defining_identifier is separate
[aspect_specification];
protected_body_stub ::=
protected body defining_identifier is separate
[aspect_specification];

subunit ::= separate (parent_unit_name) proper_body

Legality Rules

The parent body of a subunit is the body of the program unit denoted by its parent_unit_name. The term
subunit is used to refer to a subunit and also to the proper_body of a subunit. The subunits of a program
unit include any subunit that names that program unit as its parent, as well as any subunit that names such
a subunit as its parent (recursively).

The parent body of a subunit shall be present in the current environment, and shall contain a corresponding
body_stub with the same defining_identifier as the subunit.

A package_body stub shall be the completion of a package_declaration or generic_package -
declaration; a task_body_stub shall be the completion of a task declaration; a protected_body_stub shall
be the completion of a protected declaration.

In contrast, a subprogram_body_stub need not be the completion of a previous declaration, in which case
the _stub declares the subprogram. If the _stub is a completion, it shall be the completion of a
subprogram_declaration or generic_subprogram_declaration. The profile of a subprogram_body_stub
that completes a declaration shall conform fully to that of the declaration.

A subunit that corresponds to a body_stub shall be of the same kind (package_, subprogram_, task_, or
protected_) as the body_stub. The profile of a subprogram_body subunit shall be fully conformant to that
of the corresponding body_stub.

A body_stub shall appear immediately within the declarative_part of a compilation unit body. This rule
does not apply within an instance of a generic unit.

The defining_identifiers of all body_stubs that appear immediately within a particular declarative_part
shall be distinct.

Post-Compilation Rules
For each body_stub, there shall be a subunit containing the corresponding proper_body.

NOTES
4 The rules in 10.1.4, “The Compilation Process” say that a body_stub is equivalent to the corresponding proper_body.
This implies:

e Visibility within a subunit is the visibility that would be obtained at the place of the corresponding body_stub
(within the parent body) if the context_clause of the subunit were appended to that of the parent body.

e The effect of the elaboration of a body_stub is to elaborate the subunit.
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Examples
The package Parent is first written without subunits:

package Parent is
procedure Inner;
end Parent;

with Ada.Text IO;
package body Parent is

Variable : String := "Hello, there.";
procedure Inner is
begin

Ada.Text_ IO.Put_ Line(Variable) ;
end Inner;
end Parent;

The body of procedure Inner may be turned into a subunit by rewriting the package body as follows (with
the declaration of Parent remaining the same):

package body Parent is
Variable : String := "Hello, there.";
procedure Inner is separate;

end Parent;

with Ada.Text IO;

separate (Parent)

procedure Inner is

begin
Ada.Text_ IO.Put Line(Variable) ;

end Inner;

10.1.4 The Compilation Process

Each compilation unit submitted to the compiler is compiled in the context of an environment
declarative_part (or simply, an environment), which is a conceptual declarative_part that forms the
outermost declarative region of the context of any compilation. At run time, an environment forms the
declarative_part of the body of the environment task of a partition (see 10.2, “Program Execution”).

The declarative_items of the environment are library_items appearing in an order such that there are no
forward semantic dependences. Each included subunit occurs in place of the corresponding stub. The
visibility rules apply as if the environment were the outermost declarative region, except that with_clauses
are needed to make declarations of library units visible (see 10.1.2).

The mechanisms for creating an environment and for adding and replacing compilation units within an
environment are implementation defined. The mechanisms for adding a compilation unit mentioned in a
limited_with_clause to an environment are implementation defined.

Name Resolution Rules
If a library_unit_body that is a subprogram_body is submitted to the compiler, it is interpreted only as a
completion if a library_unit_declaration with the same defining_program_unit_name already exists in the
environment for a subprogram other than an instance of a generic subprogram or for a generic subprogram
(even if the profile of the body is not type conformant with that of the declaration); otherwise, the
subprogram_body is interpreted as both the declaration and body of a library subprogram.

Legality Rules
When a compilation unit is compiled, all compilation units upon which it depends semantically shall
already exist in the environment; the set of these compilation units shall be consistent in the sense that the
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new compilation unit shall not semantically depend (directly or indirectly) on two different versions of the
same compilation unit, nor on an earlier version of itself.

Implementation Permissions

The implementation may require that a compilation unit be legal before it can be mentioned in a
limited_with_clause or it can be inserted into the environment.

When a compilation unit that declares or renames a library unit is added to the environment, the
implementation may remove from the environment any preexisting library_item or subunit with the same
full expanded name. When a compilation unit that is a subunit or the body of a library unit is added to the
environment, the implementation may remove from the environment any preexisting version of the same
compilation unit. When a compilation unit that contains a body_stub is added to the environment, the
implementation may remove any preexisting library_item or subunit with the same full expanded name as
the body_stub. When a given compilation unit is removed from the environment, the implementation may
also remove any compilation unit that depends semantically upon the given one. If the given compilation
unit contains the body of a subprogram for which aspect Inline is True, the implementation may also
remove any compilation unit containing a call to that subprogram.

NOTES
5 The rules of the language are enforced across compilation and compilation unit boundaries, just as they are enforced
within a single compilation unit.

6 An implementation may support a concept of a /ibrary, which contains library_items. If multiple libraries are supported,
the implementation has to define how a single environment is constructed when a compilation unit is submitted to the
compiler. Naming conflicts between different libraries might be resolved by treating each library as the root of a hierarchy
of child library units.

7 A compilation unit containing an instantiation of a separately compiled generic unit does not semantically depend on
the body of the generic unit. Therefore, replacing the generic body in the environment does not result in the removal of the
compilation unit containing the instantiation.

10.1.5 Pragmas and Program Units

This subclause discusses pragmas related to program units, library units, and compilations.

Name Resolution Rules

Certain pragmas are defined to be program unit pragmas. A name given as the argument of a program
unit pragma shall resolve to denote the declarations or renamings of one or more program units that occur
immediately within the declarative region or compilation in which the pragma immediately occurs, or it
shall resolve to denote the declaration of the immediately enclosing program unit (if any); the pragma
applies to the denoted program unit(s). If there are no names given as arguments, the pragma applies to
the immediately enclosing program unit.

Legality Rules
A program unit pragma shall appear in one of these places:

e At the place of a compilation_unit, in which case the pragma shall immediately follow in the
same compilation (except for other pragmas) a library_unit_declaration that is a subprogram_-
declaration, generic_subprogram_declaration, or generic_instantiation, and the pragma shall
have an argument that is a name denoting that declaration.

e Immediately within the visible part of a program unit and before any nested declaration (but not
within a generic formal part), in which case the argument, if any, shall be a direct_name that
denotes the immediately enclosing program unit declaration.
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e At the place of a declaration other than the first, of a declarative_part or program unit
declaration, in which case the pragma shall have an argument, which shall be a direct_name
that denotes one or more of the following (and nothing else): a subprogram_declaration, a
generic_subprogram_declaration, or a generic_instantiation, of the same declarative_part or
program unit declaration.

Certain program unit pragmas are defined to be library unit pragmas. If a library unit pragma applies to a
program unit, the program unit shall be a library unit.

Static Semantics

A library unit pragma that applies to a generic unit does not apply to its instances, unless a specific rule for
the pragma specifies the contrary.

Post-Compilation Rules

Certain pragmas are defined to be configuration pragmas; they shall appear before the first
compilation_unit of a compilation. They are generally used to select a partition-wide or system-wide
option. The pragma applies to all compilation_units appearing in the compilation, unless there are none, in
which case it applies to all future compilation_units compiled into the same environment.

Implementation Permissions

An implementation may require that configuration pragmas that select partition-wide or system-wide
options be compiled when the environment contains no library_items other than those of the predefined
environment. In this case, the implementation shall still accept configuration pragmas in individual
compilations that confirm the initially selected partition-wide or system-wide options.

Implementation Advice

When applied to a generic unit, a program unit pragma that is not a library unit pragma should apply to
each instance of the generic unit for which there is not an overriding pragma applied directly to the
instance.

10.1.6 Environment-Level Visibility Rules

The normal visibility rules do not apply within a parent_unit_name or a context_clause, nor within a
pragma that appears at the place of a compilation unit. The special visibility rules for those contexts are
given here.

Static Semantics

Within the parent_unit_name at the beginning of an explicit library item, and within a
nonlimited_with_clause, the only declarations that are visible are those that are explicit library_items of
the environment, and the only declarations that are directly visible are those that are explicit root
library_items of the environment. Within a limited_with_clause, the only declarations that are visible are
those that are the implicit declaration of the limited view of a library package of the environment, and the
only declarations that are directly visible are those that are the implicit declaration of the limited view of a
root library package.

Within a use_clause or pragma that is within a context_clause, each library_item mentioned in a
previous with_clause of the same context_clause is visible, and each root library_item so mentioned is
directly visible. In addition, within such a use_clause, if a given declaration is visible or directly visible,
each declaration that occurs immediately within the given declaration's visible part is also visible. No
other declarations are visible or directly visible.
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Within the parent_unit_name of a subunit, library_items are visible as they are in the parent_unit_name
of a library_item; in addition, the declaration corresponding to each body_stub in the environment is also
visible.

Within a pragma that appears at the place of a compilation unit, the immediately preceding library_item
and each of its ancestors is visible. The ancestor root library_item is directly visible.

Notwithstanding the rules of 4.1.3, an expanded name in a with_clause, a pragma in a context_clause, or
a pragma that appears at the place of a compilation unit may consist of a prefix that denotes a generic
package and a selector_name that denotes a child of that generic package. (The child is necessarily a
generic unit; see 10.1.1.)

10.2 Program Execution

An Ada program consists of a set of partitions, which can execute in parallel with one another, possibly in
a separate address space, and possibly on a separate computer.

Post-Compilation Rules

A partition is a program or part of a program that can be invoked from outside the Ada implementation.
For example, on many systems, a partition might be an executable file generated by the system linker. The
user can explicitly assign library units to a partition. The assignment is done in an implementation-defined
manner. The compilation units included in a partition are those of the explicitly assigned library units, as
well as other compilation units needed by those library units. The compilation units needed by a given
compilation unit are determined as follows (unless specified otherwise via an implementation-defined
pragma, or by some other implementation-defined means):

e A compilation unit needs itself;

e If a compilation unit is needed, then so are any compilation units upon which it depends
semantically;

e Ifalibrary_unit_declaration is needed, then so is any corresponding library_unit_body;
e [facompilation unit with stubs is needed, then so are any corresponding subunits;

e If the (implicit) declaration of the limited view of a library package is needed, then so is the
explicit declaration of the library package.

The user can optionally designate (in an implementation-defined manner) one subprogram as the main
subprogram for the partition. A main subprogram, if specified, shall be a subprogram.

Each partition has an anonymous environment task, which is an implicit outermost task whose execution
elaborates the library_items of the environment declarative_part, and then calls the main subprogram, if
there is one. A partition's execution is that of its tasks.

The order of elaboration of library units is determined primarily by the elaboration dependences. There is
an elaboration dependence of a given library_item upon another if the given library_item or any of its
subunits depends semantically on the other library_item. In addition, if a given library_item or any of its
subunits has a pragma Elaborate or Elaborate All that names another library unit, then there is an
claboration dependence of the given library_item upon the body of the other library unit, and, for
Elaborate_All only, upon each library_item needed by the declaration of the other library unit.

The environment task for a partition has the following structure:

task Environment Task;
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task body Environment Task is
(1) -- The environment declarative_part
- - (that is, the sequence of library_items) goes here.
begin
... (2) -- Call the main subprogram, if there is one.

end Environment Task;
The environment declarative_part at (1) is a sequence of declarative_items consisting of copies of the
library_items included in the partition. The order of elaboration of library_items is the order in which they

appear in the environment declarative_part:

e The order of all included library_items is such that there are no forward elaboration
dependences.

e Any included library_unit_declaration for which aspect Elaborate Body is True (including when
a pragma Elaborate Body applies) is immediately followed by its library_unit_body, if
included.

e Alllibrary_items declared pure occur before any that are not declared pure.
e All preelaborated library_items occur before any that are not preelaborated.

There shall be a total order of the library_items that obeys the above rules. The order is otherwise
implementation defined.

The full expanded names of the library units and subunits included in a given partition shall be distinct.

The sequence_of_statements of the environment task (see (2) above) consists of either:

e A call to the main subprogram, if the partition has one. If the main subprogram has parameters,
they are passed; where the actuals come from is implementation defined. What happens to the
result of a main function is also implementation defined.

or:

e A null_statement, if there is no main subprogram.

The mechanisms for building and running partitions are implementation defined. These might be
combined into one operation, as, for example, in dynamic linking, or “load-and-go” systems.

Dynamic Semantics

The execution of a program consists of the execution of a set of partitions. Further details are
implementation defined. The execution of a partition starts with the execution of its environment task,
ends when the environment task terminates, and includes the executions of all tasks of the partition. The
execution of the (implicit) task_body of the environment task acts as a master for all other tasks created as
part of the execution of the partition. When the environment task completes (normally or abnormally), it
waits for the termination of all such tasks, and then finalizes any remaining objects of the partition.

Bounded (Run-Time) Errors

Once the environment task has awaited the termination of all other tasks of the partition, any further
attempt to create a task (during finalization) is a bounded error, and may result in the raising of
Program_Error either upon creation or activation of the task. If such a task is activated, it is not specified
whether the task is awaited prior to termination of the environment task.

Implementation Requirements

The implementation shall ensure that all compilation units included in a partition are consistent with one
another, and are legal according to the rules of the language.
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Implementation Permissions

The kind of partition described in this subclause is known as an active partition. An implementation is
allowed to support other kinds of partitions, with implementation-defined semantics.

An implementation may restrict the kinds of subprograms it supports as main subprograms. However, an
implementation is required to support all main subprograms that are public parameterless library
procedures.

If the environment task completes abnormally, the implementation may abort any dependent tasks.

NOTES

8 An implementation may provide inter-partition communication mechanism(s) via special packages and pragmas.
Standard pragmas for distribution and methods for specifying inter-partition communication are defined in Annex E,
“Distributed Systems”. If no such mechanisms are provided, then each partition is isolated from all others, and behaves as
a program in and of itself.

9 Partitions are not required to run in separate address spaces. For example, an implementation might support dynamic
linking via the partition concept.

10 An order of elaboration of library_items that is consistent with the partial ordering defined above does not always
ensure that each library_unit_body is elaborated before any other compilation unit whose elaboration necessitates that the
library_unit_body be already elaborated. (In particular, there is no requirement that the body of a library unit be elaborated
as soon as possible after the library_unit_declaration is elaborated, unless the pragmas in subclause 10.2.1 are used.)

11 A partition (active or otherwise) need not have a main subprogram. In such a case, all the work done by the partition
would be done by elaboration of various library_items, and by tasks created by that elaboration. Passive partitions, which
cannot have main subprograms, are defined in Annex E, “Distributed Systems”.

10.2.1 Elaboration Control

This subclause defines pragmas that help control the elaboration order of library_items.

Syntax
The form of a pragma Preelaborate is as follows:
pragma Preelaborate[(/ibrary_unit_name)];
A pragma Preelaborate is a library unit pragma.

The form of a pragma Preelaborable_Initialization is as follows:
pragma Preelaborable Initialization(direct_name);

Legality Rules

An elaborable construct is preelaborable unless its elaboration performs any of the following actions:

The execution of a statement other than a null_statement.
A call to a subprogram other than a static function.

The evaluation of a primary that is a name of an object, unless the name is a static expression,
or statically denotes a discriminant of an enclosing type.

The creation of an object (including a component) that is initialized by default, if its type does
not have preelaborable initialization. Similarly, the evaluation of an extension_aggregate with
an ancestor subtype_mark denoting a subtype of such a type.

A generic body is preelaborable only if elaboration of a corresponding instance body would not perform
any such actions, presuming that:
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the actual for each discriminated formal derived type, formal private type, or formal private
extension declared within the formal part of the generic unit is a type that does not have
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preelaborable initialization, unless pragma Preelaborable Initialization has been applied to the
formal type;

e the actual for each formal type is nonstatic;
o the actual for each formal object is nonstatic; and
e the actual for each formal subprogram is a user-defined subprogram.

A pragma Preelaborate (or pragma Pure — see below) is used to specify that a library unit is
preelaborated, namely that the Preelaborate aspect of the library unit is True; all compilation units of the
library unit are preelaborated. The declaration and body of a preelaborated library unit, and all subunits
that are elaborated as part of elaborating the library unit, shall be preelaborable. All compilation units of a
preelaborated library unit shall depend semantically only on declared pure or preelaborated library_items.
In addition to the places where Legality Rules normally apply (see 12.3), these rules also apply in the
private part of an instance of a generic unit. If a library unit is preelaborated, then its declaration, if any,
and body, if any, are elaborated prior to all nonpreelaborated library_items of the partition.

The following rules specify which entities have preelaborable initialization:

e The partial view of a private type or private extension, a protected type without
entry_declarations, a generic formal private type, or a generic formal derived type, has
preelaborable initialization if and only if the pragma Preelaborable Initialization has been
applied to them. A protected type with entry_declarations or a task type never has preelaborable
initialization.

e A component (including a discriminant) of a record or protected type has preelaborable
initialization if its declaration includes a default_expression whose execution does not perform
any actions prohibited in preelaborable constructs as described above, or if its declaration does
not include a default expression and its type has preelaborable initialization.

e A derived type has preelaborable initialization if its parent type has preelaborable initialization
and if the noninherited components all have preelaborable initialization. However, a controlled
type with an Initialize procedure that is not a null procedure does not have preelaborable
initialization.

e A view of a type has preelaborable initialization if it is an elementary type, an array type whose
component type has preelaborable initialization, a record type whose components all have
preelaborable initialization, or an interface type.

A pragma Preelaborable Initialization specifies that a type has preelaborable initialization. This pragma
shall appear in the visible part of a package or generic package.

If the pragma appears in the first list of basic_declarative_items of a package_specification, then the
direct_name shall denote the first subtype of a composite type, and the type shall be declared immediately
within the same package as the pragma. If the pragma is applied to a private type or a private extension,
the full view of the type shall have preelaborable initialization. If the pragma is applied to a protected
type, the protected type shall not have entries, and each component of the protected type shall have
preelaborable initialization. For any other composite type, the type shall have preelaborable initialization.
In addition to the places where Legality Rules normally apply (see 12.3), these rules apply also in the
private part of an instance of a generic unit.

If the pragma appears in a generic_formal_part, then the direct_name shall denote a generic formal
private type or a generic formal derived type declared in the same generic_formal_part as the pragma. In
a generic_instantiation the corresponding actual type shall have preelaborable initialization.
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Implementation Advice

In an implementation, a type declared in a preelaborated package should have the same representation in
every elaboration of a given version of the package, whether the elaborations occur in distinct executions
of the same program, or in executions of distinct programs or partitions that include the given version.

Syntax
The form of a pragma Pure is as follows:
pragma Pure[(library_unit_ name)];
A pragma Pure is a library unit pragma.

Static Semantics

A pure compilation unit is a preelaborable compilation unit whose elaboration does not perform any of the
following actions:

o the elaboration of a variable declaration;

o the evaluation of an allocator of an access-to-variable type; for the purposes of this rule, the
partial view of a type is presumed to have nonvisible components whose default initialization
evaluates such an allocator;

e the elaboration of the declaration of a nonderived named access-to-variable type unless the
Storage Size of the type has been specified by a static expression with value zero or is defined
by the language to be zero;

o the elaboration of the declaration of a nonderived named access-to-constant type for which the
Storage Size has been specified by an expression other than a static expression with value zero.

A generic body is pure only if elaboration of a corresponding instance body would not perform any such
actions presuming any composite formal types have nonvisible components whose default initialization
evaluates an allocator of an access-to-variable type.

The Storage Size for an anonymous access-to-variable type declared at library level in a library unit that
is declared pure is defined to be zero.

Legality Rules
This paragraph was deleted.

A pragma Pure is used to specify that a library unit is declared pure, namely that the Pure aspect of the
library unit is True; all compilation units of the library unit are declared pure. In addition, the limited view
of any library package is declared pure. The declaration and body of a declared pure library unit, and all
subunits that are elaborated as part of elaborating the library unit, shall be pure. All compilation units of a
declared pure library unit shall depend semantically only on declared pure library_items. In addition to the
places where Legality Rules normally apply (see 12.3), these rules also apply in the private part of an
instance of a generic unit. Furthermore, the full view of any partial view declared in the visible part of a
declared pure library unit that has any available stream attributes shall support external streaming (see
13.13.2).

Implementation Permissions

If a library unit is declared pure, then the implementation is permitted to omit a call on a library-level
subprogram of the library unit if the results are not needed after the call. In addition, the implementation
may omit a call on such a subprogram and simply reuse the results produced by an earlier call on the same
subprogram, provided that none of the parameters nor any object accessible via access values from the
parameters have any part that is of a type whose full type is an immutably limited type, and the addresses
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and values of all by-reference actual parameters, the values of all by-copy-in actual parameters, and the
values of all objects accessible via access values from the parameters, are the same as they were at the
earlier call. This permission applies even if the subprogram produces other side effects when called.

Syntax
The form of a pragma Elaborate, Elaborate All, or Elaborate_Body is as follows:
pragma Elaborate(/ibrary_unit_ name{, library unit name});
pragma Elaborate All(library unit name{, library unit name});
pragma Elaborate Body[(/ibrary_unit name)];
A pragma Elaborate or Elaborate All is only allowed within a context_clause.
A pragma Elaborate Body is a library unit pragma.

Legality Rules

If the aspect Elaborate Body is True for a declaration (including when pragma Elaborate Body applies),
then the declaration requires a completion (a body).

The library unit name of a pragma Elaborate or Elaborate All shall denote a nonlimited view of a
library unit.

Static Semantics

A pragma Elaborate specifies that the body of the named library unit is elaborated before the current
library_item. A pragma Elaborate All specifies that each library_item that is needed by the named library
unit declaration is elaborated before the current library_item.

A pragma Elaborate Body sets the Elaborate Body representation aspect of the library unit to which it
applies to the value True. If the Elaborate Body aspect of a library unit is True, the body of the library
unit is elaborated immediately after its declaration.

NOTES
12 A preelaborated library unit is allowed to have nonpreelaborable children.

13 A library unit that is declared pure is allowed to have impure children.
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11 Exceptions

This clause defines the facilities for dealing with errors or other exceptional situations that arise during
program execution. An exception represents a kind of exceptional situation; an occurrence of such a
situation (at run time) is called an exception occurrence. To raise an exception is to abandon normal
program execution so as to draw attention to the fact that the corresponding situation has arisen.
Performing some actions in response to the arising of an exception is called handling the exception.

An exception_declaration declares a name for an exception. An exception can be raised explicitly (for
example, by a raise_statement) or implicitly (for example, by the failure of a language-defined check).
When an exception arises, control can be transferred to a user-provided exception_handler at the end of a
handled_sequence_of statements, or it can be propagated to a dynamically enclosing execution.

11.1 Exception Declarations

An exception_declaration declares a name for an exception.

Syntax
exception_declaration ::= defining_identifier_list : exception
[aspect_specification];
Static Semantics

Each single exception_declaration declares a name for a different exception. If a generic unit includes an
exception_declaration, the exception_declarations implicitly generated by different instantiations of the
generic unit refer to distinct exceptions (but all have the same defining_identifier). The particular
exception denoted by an exception name is determined at compilation time and is the same regardless of
how many times the exception_declaration is elaborated.

The predefined exceptions are the ones declared in the declaration of package Standard: Constraint_Error,
Program_Error, Storage Error, and Tasking_Error; one of them is raised when a language-defined check
fails.

Dynamic Semantics
The elaboration of an exception_declaration has no effect.

The execution of any construct raises Storage Error if there is insufficient storage for that execution. The
amount of storage needed for the execution of constructs is unspecified.

Examples
Examples of user-defined exception declarations:

Singular : exception;
Error : exception;
Overflow, Underflow : exception;
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11.2 Exception Handlers

The response to one or more exceptions is specified by an exception_handler.

Syntax

handled_sequence_of_statements ::=
sequence_of_statements
[exception
exception_handler
{exception_handler}]

exception_handler ::=
when [choice_parameter_specification:] exception_choice {| exception_choice} =>
sequence_of statements
choice_parameter_specification ::= defining_identifier

exception_choice ::= exception_name | others

Legality Rules
A choice with an exception_name covers the named exception. A choice with others covers all exceptions
not named by previous choices of the same handled_sequence_of_statements. Two choices in different
exception_handlers of the same handled_sequence_of_statements shall not cover the same exception.

A choice with others is allowed only for the last handler of a handled_sequence_of_statements and as
the only choice of that handler.

An exception_name of a choice shall not denote an exception declared in a generic formal package.

Static Semantics
A choice_parameter_specification declares a choice parameter, which is a constant object of type

Exception_Occurrence (see 11.4.1). During the handling of an exception occurrence, the choice parameter,
if any, of the handler represents the exception occurrence that is being handled.

Dynamic Semantics
The execution of a handled_sequence_of_statements consists of the execution of the sequence_of -

statements. The optional handlers are used to handle any exceptions that are propagated by the
sequence_of_statements.

Examples
Example of an exception handler:
begin
Open(File, In File, "input.txt"); --seeA.8.2
exception
when E : Name Error =>
Put ("Cannot open input file : ");
Put_Line (Exception Message(E)); --seell.4.]

raise;
end;
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11.3 Raise Statements

A raise_statement raises an exception.

Syntax

raise_statement ::= raise;
| raise exception_name [with string_expression];

Legality Rules
The name, if any, in a raise_statement shall denote an exception. A raise_statement with no
exception_name (that is, a re-raise statement) shall be within a handler, but not within a body enclosed by
that handler.

Name Resolution Rules

The expression, if any, in a raise_statement, is expected to be of type String.

Dynamic Semantics

To raise an exception is to raise a new occurrence of that exception, as explained in 11.4. For the
execution of a raise_statement with an exception name, the named exception is raised. If a
string_expression is present, the expression is evaluated and its value is associated with the exception
occurrence. For the execution of a re-raise statement, the exception occurrence that caused transfer of
control to the innermost enclosing handler is raised again.

Examples
Examples of raise statements:
raise Ada.IO Exceptions.Name Error; --seeA. 13
raise Queue Error with "Buffer Full"; --see9.ll
raise; - - re-raise the current exception

11.4 Exception Handling

When an exception occurrence is raised, normal program execution is abandoned and control is transferred
to an applicable exception_handler, if any. To handle an exception occurrence is to respond to the
exceptional event. To propagate an exception occurrence is to raise it again in another context; that is, to
fail to respond to the exceptional event in the present context.

Dynamic Semantics
Within a given task, if the execution of construct a is defined by this International Standard to consist (in
part) of the execution of construct b, then while b is executing, the execution of a is said to dynamically
enclose the execution of b. The innermost dynamically enclosing execution of a given execution is the
dynamically enclosing execution that started most recently.

When an exception occurrence is raised by the execution of a given construct, the rest of the execution of
that construct is abandoned, that is, any portions of the execution that have not yet taken place are not
performed. The construct is first completed, and then left, as explained in 7.6.1. Then:

e Ifthe construct is a task_body, the exception does not propagate further;

o If the construct is the sequence_of_statements of a handled_sequence_of_statements that
has a handler with a choice covering the exception, the occurrence is handled by that handler;
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e Otherwise, the occurrence is propagated to the innermost dynamically enclosing execution,
which means that the occurrence is raised again in that context.

When an occurrence is handled by a given handler, the choice_parameter_specification, if any, is first
elaborated, which creates the choice parameter and initializes it to the occurrence. Then, the
sequence_of_statements of the handler is executed; this execution replaces the abandoned portion of the
execution of the sequence_of statements.

NOTES
1 Note that exceptions raised in a declarative_part of a body are not handled by the handlers of the handled_-
sequence_of_statements of that body.

11.4.1 The Package Exceptions

Static Semantics
The following language-defined library package exists:

with Ada.Streams;
package Ada.Exceptions is
pragma Preelaborate (Exceptions) ;
type Exception_ Id is private;
pragma Preelaborable Initialization (Exception Id);
Null Id : constant Exception Id;
function Exception Name (Id : Exception Id) return String;
function Wide Exception Name(Id : Exception_ Id) return Wide String;
function Wide Wide Exception Name (Id : Exception Id)
return Wide Wide String;

type Exception Occurrence is limited private;

pragma Preelaborable Initialization (Exception_ Occurrence) ;

type Exception Occurrence Access is access all Exception_ Occurrence;
Null Occurrence : constant Exception Occurrence;

procedure Raise Exception(E : in Exception Id;
Message : in String := "")
with No Return;
function Exception Message (X : Exception Occurrence) return String;
procedure Reraise Occurrence(X : in Exception Occurrence) ;

function Exception Identity (X : Exception Occurrence)
return Exception Id;
function Exception Name (X : Exception Occurrence) return String;
- - Same as Exception_Name(Exception_Identity(X)).
function Wide Exception Name (X : Exception Occurrence)
return Wide String;
- - Same as Wide_Exception_Name(Exception Identity(X)).
function Wide Wide Exception Name (X : Exception_Occurrence)
return Wide Wide String;
- - Same as Wide_Wide_Exception_Name(Exception_Identity(X)).
function Exception Information(X : Exception_Occurrence) return String;

procedure Save_Occurrence (Target : out Exception_Occurrence;
Source : in Exception_Occurrence) ;

function Save Occurrence (Source : Exception Occurrence)
return Exception Occurrence Access;

procedure Read Exception Occurrence
(Stream : not null access Ada.Streams.Root_ Stream Type'Class;
Item : out Exception_ Occurrence) ;

procedure Write Exception Occurrence
(Stream : not null access Ada.Streams.Root Stream Type'Class;
Item : in Exception_Occurrence) ;

for Exception_Occurrence'Read use Read_ Exception_Occurrence;
for Exception Occurrence'Write use Write Exception_ Occurrence;
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private
... ~-- not specified by the language
end Ada.Exceptions;
Each distinct exception is represented by a distinct value of type Exception_Id. Null _Id does not represent
any exception, and is the default initial value of type Exception_Id. Each occurrence of an exception is
represented by a value of type Exception_Occurrence. Null Occurrence does not represent any exception
occurrence, and is the default initial value of type Exception Occurrence.

For a prefix E that denotes an exception, the following attribute is defined:

E'ldentity E'ldentity returns the unique identity of the exception. The type of this attribute is
Exception_Id.

Raise Exception raises a new occurrence of the identified exception.

Exception_Message returns the message associated with the given Exception Occurrence. For an
occurrence raised by a call to Raise Exception, the message is the Message parameter passed to
Raise_Exception. For the occurrence raised by a raise_statement with an exception_ name and a
string_expression, the message is the string_expression. For the occurrence raised by a raise_statement
with an exception_name but without a string expression, the message is a string giving implementation-
defined information about the exception occurrence. For an occurrence originally raised in some other
manner (including by the failure of a language-defined check), the message is an unspecified string. In all
cases, Exception_Message returns a string with lower bound 1.

Reraise_Occurrence reraises the specified exception occurrence.
Exception_Identity returns the identity of the exception of the occurrence.

The Wide Wide Exception_Name functions return the full expanded name of the exception, in upper
case, starting with a root library unit. For an exception declared immediately within package Standard, the
defining_identifier is returned. The result is implementation defined if the exception is declared within an
unnamed block_statement.

The Exception Name functions (respectively, Wide Exception Name) return the same sequence of
graphic characters as that defined for Wide Wide Exception Name, if all the graphic characters are
defined in Character (respectively, Wide Character); otherwise, the sequence of characters is
implementation defined, but no shorter than that returned by Wide Wide Exception Name for the same
value of the argument.

The string returned by the Exception Name, Wide Exception Name, and Wide Wide Exception Name
functions has lower bound 1.

Exception_Information returns implementation-defined information about the exception occurrence. The
returned string has lower bound 1.

Reraise_Occurrence has no effect in the case of Null Occurrence. Raise Exception and Exception Name
raise Constraint Error for a Null Id. Exception Message, Exception Name, and Exception_Information
raise Constraint Error for a Null Occurrence. Exception_Identity applied to Null Occurrence returns
Null_Id.

The Save Occurrence procedure copies the Source to the Target. The Save Occurrence function uses an
allocator of type Exception Occurrence Access to create a new object, copies the Source to this new
object, and returns an access value designating this new object; the result may be deallocated using an
instance of Unchecked Deallocation.
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Write Exception Occurrence writes a representation of an exception occurrence to a stream;
Read Exception_Occurrence reconstructs an exception occurrence from a stream (including one written in
a different partition).

Paragraph 16 was deleted.

Implementation Permissions

An implementation of Exception Name in a space-constrained environment may return the defining_-
identifier instead of the full expanded name.

The string returned by Exception Message may be truncated (to no less than 200 characters) by the
Save Occurrence procedure (not the function), the Reraise Occurrence procedure, and the re-raise
statement.

Implementation Advice

Exception_Message (by default) and Exception Information should produce information useful for
debugging. Exception_Message should be short (about one line), whereas Exception Information can be
long. Exception_Message should not include the Exception_Name. Exception_Information should include
both the Exception Name and the Exception Message.

11.4.2 Pragmas Assert and Assertion_Policy

Pragma Assert is used to assert the truth of a boolean expression at a point within a sequence of
declarations or statements.

Assert pragmas, subtype predicates (see 3.2.4), preconditions and postconditions (see 6.1.1), and type
invariants (see 7.3.2) are collectively referred to as assertions; their boolean expressions are referred to as
assertion expressions.

Pragma Assertion_Policy is used to control whether assertions are to be ignored by the implementation,
checked at run time, or handled in some implementation-defined manner.

Syntax
The form of a pragma Assert is as follows:
pragma Assert([Check =>] boolean_expression[, [Message =>] string_expression]);
A pragma Assert is allowed at the place where a declarative_item or a statement is allowed.
The form of a pragma Assertion_Policy is as follows:
pragma Assertion_Policy(policy_identifier);
pragma Assertion_Policy(

assertion_aspect_mark => policy_identifier
{, assertion_aspect_mark => policy_identifier});

A pragma Assertion_Policy is allowed only immediately within a declarative_part, immediately
within a package_specification, or as a configuration pragma.
Name Resolution Rules

The expected type for the boolean _expression of a pragma Assert is any boolean type. The expected type
for the string_expression of a pragma Assert is type String.
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Legality Rules

The assertion_aspect_mark of a pragma Assertion Policy shall be one of Assert, Static Predicate,
Dynamic_Predicate, Pre, Pre'Class, Post, Post'Class, Type Invariant, Type Invariant'Class, or some
implementation defined aspect_mark. The policy identifier shall be either Check, Ignore, or some
implementation-defined identifier.

Static Semantics

A pragma Assertion Policy determines for each assertion aspect named in the
pragma_argument_associations whether assertions of the given aspect are to be enforced by a run-time
check. The policy identifier Check requires that assertion expressions of the given aspect be checked that
they evaluate to True at the points specified for the given aspect; the policy_identifier Ignore requires that
the assertion expression not be evaluated at these points, and the run-time checks not be performed. Note
that for subtype predicate aspects (see 3.2.4), even when the applicable Assertion Policy is Ignore, the
predicate will still be evaluated as part of membership tests and Valid attribute_references, and if static,
will still have an effect on loop iteration over the subtype, and the selection of
case_statement_alternatives and variants.

If no assertion_aspect_marks are specified in the pragma, the specified policy applies to all assertion
aspects.

A pragma Assertion_Policy applies to the named assertion aspects in a specific region, and applies to all
assertion expressions specified in that region. A pragma Assertion_Policy given in a declarative_part or
immediately within a package_specification applies from the place of the pragma to the end of the
innermost enclosing declarative region. The region for a pragma Assertion Policy given as a
configuration pragma is the declarative region for the entire compilation unit (or units) to which it applies.

If a pragma Assertion Policy applies to a generic_instantiation, then the pragma Assertion Policy
applies to the entire instance.

If multiple Assertion_Policy pragmas apply to a given construct for a given assertion aspect, the assertion
policy is determined by the one in the innermost enclosing region of a pragma Assertion Policy
specifying a policy for the assertion aspect. If no such Assertion Policy pragma exists, the policy is
implementation defined.

The following language-defined library package exists:

package Ada.Assertions is
pragma Pure (Assertions);

AssertionfError : exception;

procedure Assert (Check : in Boolean) ;
procedure Assert (Check : in Boolean; Message : in String) ;

end Ada.Assertions;

A compilation unit containing a check for an assertion (including a pragma Assert) has a semantic
dependence on the Assertions library unit.

This paragraph was deleted.

Dynamic Semantics
If performing checks is required by the Assert assertion policy in effect at the place of a pragma Assert,
the elaboration of the pragma consists of evaluating the boolean expression, and if the result is False,
evaluating the Message argument, if any, and raising the exception Assertions.Assertion Error, with a
message if the Message argument is provided.
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Calling the procedure Assertions.Assert without a Message parameter is equivalent to:

if Check = False then
raise Ada.Assertions.Assertion_ Error;
end if;

Calling the procedure Assertions.Assert with a Message parameter is equivalent to:

if Check = False then
raise Ada.Assertions.Assertion Error with Message;
end if;

The procedures Assertions.Assert have these effects independently of the assertion policy in effect.

Bounded (Run-Time) Errors

It is a bounded error to invoke a potentially blocking operation (see 9.5.1) during the evaluation of an
assertion expression associated with a call on, or return from, a protected operation. If the bounded error is
detected, Program_Error is raised. If not detected, execution proceeds normally, but if it is invoked within
a protected action, it might result in deadlock or a (nested) protected action.

Implementation Permissions

Assertion_Error may be declared by renaming an implementation-defined exception from another
package.

Implementations may define their own assertion policies.

If the result of a function call in an assertion is not needed to determine the value of the assertion
expression, an implementation is permitted to omit the function call. This permission applies even if the
function has side effects.

An implementation need not allow the specification of an assertion expression if the evaluation of the
expression has a side effect such that an immediate reevaluation of the expression could produce a
different value. Similarly, an implementation need not allow the specification of an assertion expression
that is checked as part of a call on or return from a callable entity C, if the evaluation of the expression has
a side effect such that the evaluation of some other assertion expression associated with the same call of
(or return from) C could produce a different value than it would if the first expression had not been
evaluated.

NOTES

2 Normally, the boolean expression in a pragma Assert should not call functions that have significant side effects when
the result of the expression is True, so that the particular assertion policy in effect will not affect normal operation of the
program.
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11.4.3 Example of Exception Handling

Examples
Exception handling may be used to separate the detection of an error from the response to that error:

package File System is
type File Handle is limited private;

File Not Found : exception;
procedure Open(F : in out File Handle; Name : String);
- - raises File Not Found if named file does not exist

End Of File : exception;
procedure Read(F : in out File Handle; Data : out Data Type) ;
- - raises End_Of File if the file is not open

end File System;
package body File System is

procedure Open(F : in out File Handle; Name : String) is
begin
if File Exists(Name) then
else
raise File Not Found with "File not found: " & Name & ".";
end if;
end Open;
procedure Read(F : in out File Handle; Data : out Data Type) is
begin
if F.Current_Position <= F.Last_Position then
else
raise End Of File;
end if;
end Read;

end File System;

with Ada.Text IO;
with Ada.Exceptions;
with File System; use File System;
use Ada;
procedure Main is
begin
- - call operations in File_System
exception
when End_Of File =»>
Close (Some_File) ;
when Not Found Error : File Not Found =>
Text_IO.Put_Line (Exceptions.Exception_Message (Not_Found_Error)) ;
when The_ Error : others =>
Text IO.Put_Line("Unknown error:");
if Verbosity Desired then
Text_ IO.Put_Line (Exceptions.Exception Information(The_ Error)) ;
else
Text IO.Put_ Line (Exceptions.Exception Name (The Error)) ;
Text IO.Put Line (Exceptions.Exception Message (The Error)) ;
end if;
raise;
end Main;

In the above example, the File System package contains information about detecting certain exceptional
situations, but it does not specify how to handle those situations. Procedure Main specifies how to handle
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them; other clients of File System might have different handlers, even though the exceptional situations
arise from the same basic causes.

11.5 Suppressing Checks

Checking pragmas give instructions to an implementation on handling language-defined checks. A
pragma Suppress gives permission to an implementation to omit certain language-defined checks, while a
pragma Unsuppress revokes the permission to omit checks..

A language-defined check (or simply, a “check”) is one of the situations defined by this International
Standard that requires a check to be made at run time to determine whether some condition is true. A
check fails when the condition being checked is False, causing an exception to be raised.

Syntax
The forms of checking pragmas are as follows:
pragma Suppress(identifier);
pragma Unsuppress(identifier);

A checking pragma is allowed only immediately within a declarative_part, immediately within a
package_specification, or as a configuration pragma.

Legality Rules
The identifier shall be the name of a check.

This paragraph was deleted.

Static Semantics

A checking pragma applies to the named check in a specific region, and applies to all entities in that
region. A checking pragma given in a declarative_part or immediately within a package_specification
applies from the place of the pragma to the end of the innermost enclosing declarative region. The region
for a checking pragma given as a configuration pragma is the declarative region for the entire compilation
unit (or units) to which it applies.

If a checking pragma applies to a generic_instantiation, then the checking pragma also applies to the
entire instance.

A pragma Suppress gives permission to an implementation to omit the named check (or every check in the
case of All_Checks) for any entities to which it applies. If permission has been given to suppress a given
check, the check is said to be suppressed.

A pragma Unsuppress revokes the permission to omit the named check (or every check in the case of
All_Checks) given by any pragma Suppress that applies at the point of the pragma Unsuppress. The
permission is revoked for the region to which the pragma Unsuppress applies. If there is no such
permission at the point of a pragma Unsuppress, then the pragma has no effect. A later pragma Suppress
can renew the permission.

The following are the language-defined checks:

e The following checks correspond to situations in which the exception Constraint Error is raised
upon failure.
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Access_Check
When evaluating a dereference (explicit or implicit), check that the value of the name
is not null. When converting to a subtype that excludes null, check that the converted
value is not null.

Discriminant Check
Check that the discriminants of a composite value have the values imposed by a
discriminant constraint. Also, when accessing a record component, check that it exists
for the current discriminant values.

Division_Check
Check that the second operand is not zero for the operations /, rem and mod.

Index_Check
Check that the bounds of an array value are equal to the corresponding bounds of an
index constraint. Also, when accessing a component of an array object, check for each
dimension that the given index value belongs to the range defined by the bounds of the
array object. Also, when accessing a slice of an array object, check that the given
discrete range is compatible with the range defined by the bounds of the array object.

Length Check
Check that two arrays have matching components, in the case of array subtype
conversions, and logical operators for arrays of boolean components.

Overflow_Check
Check that a scalar value is within the base range of its type, in cases where the
implementation chooses to raise an exception instead of returning the correct
mathematical result.

Range Check
Check that a scalar value satisfies a range constraint. Also, for the elaboration of a
subtype_indication, check that the constraint (if present) is compatible with the
subtype denoted by the subtype _mark. Also, for an aggregate, check that an index or
discriminant value belongs to the corresponding subtype. Also, check that when the
result of an operation yields an array, the value of each component belongs to the
component subtype.

Tag_Check
Check that operand tags in a dispatching call are all equal. Check for the correct tag on
tagged type conversions, for an assignment_statement, and when returning a tagged
limited object from a function.

The following checks correspond to situations in which the exception Program_Error is raised
upon failure.

Accessibility_Check
Check the accessibility level of an entity or view.

Allocation_Check
For an allocator, check that the master of any tasks to be created by the allocator is not
yet completed or some dependents have not yet terminated, and that the finalization of
the collection has not started.

Elaboration_Check
When a subprogram or protected entry is called, a task activation is accomplished, or a
generic instantiation is elaborated, check that the body of the corresponding unit has
already been elaborated.

This paragraph was deleted.
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e The following check corresponds to situations in which the exception Storage Error is raised
upon failure.
Storage Check
Check that evaluation of an allocator does not require more space than is available for

a storage pool. Check that the space available for a task or subprogram has not been
exceeded.

e The following check corresponds to all situations in which any predefined exception is raised.

All_Checks
Represents the union of all checks; suppressing All_Checks suppresses all checks
other than those associated with assertions. In addition, an implementation is allowed
(but not required) to behave as if a pragma Assertion_Policy(Ignore) applies to any
region to which pragma Suppress(All_Checks) applies.

Erroneous Execution

If a given check has been suppressed, and the corresponding error situation occurs, the execution of the
program is erroneous.

Implementation Permissions

An implementation is allowed to place restrictions on checking pragmas, subject only to the requirement
that pragma Unsuppress shall allow any check names supported by pragma Suppress. An implementation
is allowed to add additional check names, with implementation-defined semantics. When Overflow Check
has been suppressed, an implementation may also suppress an unspecified subset of the Range Checks.

An implementation may support an additional parameter on pragma Unsuppress similar to the one
allowed for pragma Suppress (see J.10). The meaning of such a parameter is implementation-defined.

Implementation Advice

The implementation should minimize the code executed for checks that have been suppressed.

NOTES
3 There is no guarantee that a suppressed check is actually removed; hence a pragma Suppress should be used only for
efficiency reasons.

4 Tt is possible to give both a pragma Suppress and Unsuppress for the same check immediately within the same
declarative_part. In that case, the last pragma given determines whether or not the check is suppressed. Similarly, it is
possible to resuppress a check which has been unsuppressed by giving a pragma Suppress in an inner declarative region.
Examples
Examples of suppressing and unsuppressing checks:

pragma Suppress (Index Check) ;
pragma Unsuppress (Overflow Check) ;
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11.6 Exceptions and Optimization

This subclause gives permission to the implementation to perform certain “optimizations” that do not
necessarily preserve the canonical semantics.

Dynamic Semantics

The rest of this International Standard (outside this subclause) defines the canonical semantics of the
language. The canonical semantics of a given (legal) program determines a set of possible external effects
that can result from the execution of the program with given inputs.

As explained in 1.1.3, “Conformity of an Implementation with the Standard”, the external effect of a
program is defined in terms of its interactions with its external environment. Hence, the implementation
can perform any internal actions whatsoever, in any order or in parallel, so long as the external effect of
the execution of the program is one that is allowed by the canonical semantics, or by the rules of this
subclause.

Implementation Permissions
The following additional permissions are granted to the implementation:

e An implementation need not always raise an exception when a language-defined check fails.
Instead, the operation that failed the check can simply yield an undefined result. The exception
need be raised by the implementation only if, in the absence of raising it, the value of this
undefined result would have some effect on the external interactions of the program. In
determining this, the implementation shall not presume that an undefined result has a value that
belongs to its subtype, nor even to the base range of its type, if scalar. Having removed the raise
of the exception, the canonical semantics will in general allow the implementation to omit the
code for the check, and some or all of the operation itself.

e If an exception is raised due to the failure of a language-defined check, then upon reaching the
corresponding exception_handler (or the termination of the task, if none), the external
interactions that have occurred need reflect only that the exception was raised somewhere within
the execution of the sequence_of_statements with the handler (or the task_body), possibly
carlier (or later if the interactions are independent of the result of the checked operation) than
that defined by the canonical semantics, but not within the execution of some abort-deferred
operation or independent subprogram that does not dynamically enclose the execution of the
construct whose check failed. An independent subprogram is one that is defined outside the
library unit containing the construct whose check failed, and for which the Inline aspect is False.
Any assignment that occurred outside of such abort-deferred operations or independent
subprograms can be disrupted by the raising of the exception, causing the object or its parts to
become abnormal, and certain subsequent uses of the object to be erroneous, as explained in
13.9.1.

NOTES
5 The permissions granted by this subclause can have an effect on the semantics of a program only if the program fails a
language-defined check.
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12 Generic Units

A generic unit is a program unit that is either a generic subprogram or a generic package. A generic unit is
a template, which can be parameterized, and from which corresponding (nongeneric) subprograms or
packages can be obtained. The resulting program units are said to be instances of the original generic unit.

A generic unit is declared by a generic_declaration. This form of declaration has a generic_formal_part
declaring any generic formal parameters. An instance of a generic unit is obtained as the result of a
generic_instantiation with appropriate generic actual parameters for the generic formal parameters. An
instance of a generic subprogram is a subprogram. An instance of a generic package is a package.

Generic units are templates. As templates they do not have the properties that are specific to their
nongeneric counterparts. For example, a generic subprogram can be instantiated but it cannot be called. In
contrast, an instance of a generic subprogram is a (nongeneric) subprogram; hence, this instance can be
called but it cannot be used to produce further instances.

12.1 Generic Declarations

A generic_declaration declares a generic unit, which is either a generic subprogram or a generic package.
A generic_declaration includes a generic_formal_part declaring any generic formal parameters. A
generic formal parameter can be an object; alternatively (unlike a parameter of a subprogram), it can be a
type, a subprogram, or a package.

Syntax
generic_declaration ::= generic_subprogram_declaration | generic_package_declaration
generic_subprogram_declaration ::=
generic_formal_part subprogram_specification
[aspect_specification];
generic_package_declaration ::=
generic_formal_part package_specification;
generic_formal_part ::= generic {generic_formal_parameter_declaration | use_clause}
generic_formal_parameter_declaration ::=
formal_object_declaration
| formal_type_declaration

| formal_subprogram_declaration
| formal_package_declaration

The only form of subtype_indication allowed within a generic_formal_part is a subtype_mark (that
is, the subtype_indication shall not include an explicit constraint). The defining name of a generic
subprogram shall be an identifier (not an operator_symbol).

Static Semantics

A generic_declaration declares a generic unit — a generic package, generic procedure, or generic
function, as appropriate.

An entity is a generic formal entity if it is declared by a generic_formal_parameter_declaration. “Generic
formal,” or simply “formal,” is used as a prefix in referring to objects, subtypes (and types), functions,
procedures and packages, that are generic formal entities, as well as to their respective declarations.
Examples: “generic formal procedure” or a “formal integer type declaration.”
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Dynamic Semantics

The elaboration of a generic_declaration has no effect.

NOTES
1 Outside a generic unit a name that denotes the generic_declaration denotes the generic unit. In contrast, within the
declarative region of the generic unit, a name that denotes the generic_declaration denotes the current instance.

2 Within a generic subprogram_body, the name of this program unit acts as the name of a subprogram. Hence this name
can be overloaded, and it can appear in a recursive call of the current instance. For the same reason, this name cannot
appear after the reserved word new in a (recursive) generic_instantiation.

3 A default_expression or default_name appearing in a generic_formal_part is not evaluated during elaboration of the
generic_formal_part; instead, it is evaluated when used. (The usual visibility rules apply to any name used in a default:
the denoted declaration therefore has to be visible at the place of the expression.)

Examples
Examples of generic formal parts:
generic - - parameterless
generic
Size : Natural; -- formal object
generic
Length : Integer := 200; - - formal object with a default expression
Area : Integer := Length*Length; -- formal object with a default expression
generic
type Item is private; - - formal type
type Index is (<>); - - formal type
type Row is array(Index range <>) of Item; -- formaltype
with function "<" (X, Y : Item) return Boolean; - - formal subprogram

Examples of generic declarations declaring generic subprograms Exchange and Squaring:

generic
type Elem is private;
procedure Exchange (U, V : in out Elem);

generic

type Item is private;

with function "*" (U, V : Item) return Item is <>;
function Squaring(X : Item) return Item;

Example of a generic declaration declaring a generic package:

generic
type Item is private;
type Vector is array (Positive range <>) of Item;
with function Sum(X, Y : Item) return Item;
package On Vectors is
function Sum (A, B : Vector) return Vector;
function Sigma (A : Vector) return Item;
Length Error : exception;
end On Vectors;
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12.2 Generic Bodies

The body of a generic unit (a generic body) is a template for the instance bodies. The syntax of a generic
body is identical to that of a nongeneric body.

Dynamic Semantics

The elaboration of a generic body has no other effect than to establish that the generic unit can from then
on be instantiated without failing the Elaboration Check. If the generic body is a child of a generic
package, then its elaboration establishes that each corresponding declaration nested in an instance of the
parent (see 10.1.1) can from then on be instantiated without failing the Elaboration_Check.

NOTES
4 The syntax of generic subprograms implies that a generic subprogram body is always the completion of a declaration.

Examples
Example of a generic procedure body:
procedure Exchange (U, V : in out Elem) is --seel2.]
T : Elem; -- the generic formal type
begin
T := U;
U :=V;
VvV := T;
end Exchange;
Example of a generic function body:
function Squaring (X : Item) return Item is -- seel2.]
begin
return X*X; -- theformal operator "*"
end Squaring;
Example of a generic package body:
package body On Vectors is -- seel2.]
function Sum(A, B : Vector) return Vector is
Result : Vector (A'Range); -- theformal type Vector
Bias : constant Integer := B'First - A'First;
begin

if A'Length /= B'Length then
raise Length Error;

end if;
for N in A'Range loop
Result (N) := Sum(A(N), B(N + Bias)); -- theformal function Sum
end loop;
return Result;
end Sum;
function Sigma (A : Vector) return Item is
Total : Item := A(A'First); -- theformal type Item
begin
for N in A'First + 1 .. A'Last loop
Total := Sum(Total, A(N)); -- theformal function Sum
end loop;

return Total;
end Sigma;
end On_Vectors;
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12.3 Generic Instantiation

An instance of a generic unit is declared by a generic_instantiation.

Syntax
generic_instantiation ::=
package defining_program_unit_name is
new generic_package name [generic_actual_part]
[aspect_specification];
| [overriding_indicator]
procedure defining_program_unit_name is
new generic_procedure_name [generic_actual_part]
[aspect_specification];
| [overriding_indicator]
function defining_designator is
new generic_function_name [generic_actual_part]
[aspect_specification];
generic_actual_part ::=
(generic_association {, generic_association})
generic_association ::=
[generic_formal parameter selector_name =>] explicit_generic_actual_parameter
explicit_generic_actual_parameter ::= expression | variable name
| subprogram_name | entry_name | subtype_mark
| package_instance_name

A generic_association is named or positional according to whether or not the generic_formal -
parameter_selector_name is specified. Any positional associations shall precede any named
associations.

The generic actual parameter is either the explicit_generic_actual_parameter given in a generic_-
association for each formal, or the corresponding default_expression or default_name if no generic_-
association is given for the formal. When the meaning is clear from context, the term “generic actual,” or
simply “actual,” is used as a synonym for “generic actual parameter” and also for the view denoted by one,
or the value of one.

Legality Rules

In a generic_instantiation for a particular kind of program unit (package, procedure, or function), the
name shall denote a generic unit of the corresponding kind (generic package, generic procedure, or
generic function, respectively).

The generic_formal parameter_selector_name of a named generic_association shall denote a
generic_formal_parameter_declaration of the generic unit being instantiated. If two or more formal
subprograms have the same defining name, then named associations are not allowed for the corresponding
actuals.

The generic_formal_parameter_declaration for a positional generic_association is the parameter with
the corresponding position in the generic_formal_part of the generic unit being instantiated.

A generic_instantiation shall contain at most one generic_association for each formal. Each formal
without an association shall have a default_expression or subprogram_default.

12.3 Generic Instantiation 13 December 2012 282



ISO/IEC 8652:2012(E) — Ada Reference Manual

In a generic unit Legality Rules are enforced at compile time of the generic_declaration and generic body,
given the properties of the formals. In the visible part and formal part of an instance, Legality Rules are
enforced at compile time of the generic_instantiation, given the properties of the actuals. In other parts of
an instance, Legality Rules are not enforced; this rule does not apply when a given rule explicitly specifies
otherwise.

Static Semantics

A generic_instantiation declares an instance; it is equivalent to the instance declaration (a package_-
declaration or subprogram_declaration) immediately followed by the instance body, both at the place of
the instantiation.

The instance is a copy of the text of the template. Each use of a formal parameter becomes (in the copy) a
use of the actual, as explained below. An instance of a generic package is a package, that of a generic
procedure is a procedure, and that of a generic function is a function.

The interpretation of each construct within a generic declaration or body is determined using the
overloading rules when that generic declaration or body is compiled. In an instance, the interpretation of
each (copied) construct is the same, except in the case of a name that denotes the generic_declaration or
some declaration within the generic unit; the corresponding name in the instance then denotes the
corresponding copy of the denoted declaration. The overloading rules do not apply in the instance.

In an instance, a generic_formal_parameter_declaration declares a view whose properties are identical to
those of the actual, except as specified in 12.4, “Formal Objects” and 12.6, “Formal Subprograms”.
Similarly, for a declaration within a generic_formal_parameter_declaration, the corresponding
declaration in an instance declares a view whose properties are identical to the corresponding declaration
within the declaration of the actual.

Implicit declarations are also copied, and a name that denotes an implicit declaration in the generic
denotes the corresponding copy in the instance. However, for a type declared within the visible part of the
generic, a whole new set of primitive subprograms is implicitly declared for use outside the instance, and
may differ from the copied set if the properties of the type in some way depend on the properties of some
actual type specified in the instantiation. For example, if the type in the generic is derived from a formal
private type, then in the instance the type will inherit subprograms from the corresponding actual type.

These new implicit declarations occur immediately after the type declaration in the instance, and override
the copied ones. The copied ones can be called only from within the instance; the new ones can be called
only from outside the instance, although for tagged types, the body of a new one can be executed by a call
to an old one.

In the visible part of an instance, an explicit declaration overrides an implicit declaration if they are
homographs, as described in 8.3. On the other hand, an explicit declaration in the private part of an
instance overrides an implicit declaration in the instance, only if the corresponding explicit declaration in
the generic overrides a corresponding implicit declaration in the generic. Corresponding rules apply to the
other kinds of overriding described in 8.3.

Post-Compilation Rules
Recursive generic instantiation is not allowed in the following sense: if a given generic unit includes an
instantiation of a second generic unit, then the instance generated by this instantiation shall not include an
instance of the first generic unit (whether this instance is generated directly, or indirectly by intermediate
instantiations).
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Dynamic Semantics

For the elaboration of a generic_instantiation, each generic_association is first evaluated. If a default is
used, an implicit generic_association is assumed for this rule. These evaluations are done in an arbitrary
order, except that the evaluation for a default actual takes place after the evaluation for another actual if
the default includes a name that denotes the other one. Finally, the instance declaration and body are
elaborated.

For the evaluation of a generic_association the generic actual parameter is evaluated. Additional actions
are performed in the case of a formal object of mode in (see 12.4).

NOTES

5 If a formal type is not tagged, then the type is treated as an untagged type within the generic body. Deriving from such a
type in a generic body is permitted; the new type does not get a new tag value, even if the actual is tagged. Overriding
operations for such a derived type cannot be dispatched to from outside the instance.

Examples
Examples of generic instantiations (see 12.1):

procedure Swap is new Exchange (Elem => Integer) ;

procedure Swap is new Exchange (Character) ; -- Swap is overloaded

function Square is new Squaring(Integer) ; -- "*"of Integer used by default
function Square is new Squaring(Item => Matrix, "*" => Matrix Product) ;
function Square is new Squaring(Matrix, Matrix Product); -- same as previous

package Int Vectors is new On_Vectors(Integer, Table, "+");

Examples of uses of instantiated units:

Swap (A, B);

A := Square(d);

T : Table(1 .. 5) := (10, 20, 30, 40, 50);

N : Integer := Int Vectors.Sigma(T); -- 150 (see12.2, “Generic Bodies” for the body of
Sigma)

use Int_Vectors;
M : Integer := Sigma(T); -- 150

12.4 Formal Objects

A generic formal object can be used to pass a value or variable to a generic unit.

Syntax

formal_object_declaration ::=
defining_identifier_list : mode [null_exclusion] subtype_mark [:= default_expression]
[aspect_specification];
| defining_identifier_list : mode access_definition [:= default_expression]
[aspect_specification];

Name Resolution Rules
The expected type for the default_expression, if any, of a formal object is the type of the formal object.

For a generic formal object of mode in, the expected type for the actual is the type of the formal.

For a generic formal object of mode in out, the type of the actual shall resolve to the type determined by
the subtype_mark, or for a formal_object_declaration with an access_definition, to a specific anonymous
access type. If the anonymous access type is an access-to-object type, the type of the actual shall have the
same designated type as that of the access_definition. If the anonymous access type is an access-to-
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subprogram type, the type of the actual shall have a designated profile which is type conformant with that
of the access_definition.

Legality Rules

If a generic formal object has a default_expression, then the mode shall be in (either explicitly or by
default); otherwise, its mode shall be either in or in out.

For a generic formal object of mode in, the actual shall be an expression. For a generic formal object of
mode in out, the actual shall be a name that denotes a variable for which renaming is allowed (see 8.5.1).

In the case where the type of the formal is defined by an access_definition, the type of the actual and the
type of the formal:

o shall both be access-to-object types with statically matching designated subtypes and with both
or neither being access-to-constant types; or

e shall both be access-to-subprogram types with subtype conformant designated profiles.

For a formal_object_declaration with a null_exclusion or an access_definition that has a null_exclusion:

e if the actual matching the formal_object_declaration denotes the generic formal object of
another generic unit G, and the instantiation containing the actual occurs within the body of G or
within the body of a generic unit declared within the declarative region of G, then the
declaration of the formal object of G shall have a null_exclusion;

o otherwise, the subtype of the actual matching the formal_object_declaration shall exclude null.
In addition to the places where Legality Rules normally apply (see 12.3), this rule applies also in
the private part of an instance of a generic unit.

Static Semantics

A formal_object_declaration declares a generic formal object. The default mode is in. For a formal object
of mode in, the nominal subtype is the one denoted by the subtype_mark or access_definition in the
declaration of the formal. For a formal object of mode in out, its type is determined by the subtype_mark
or access_definition in the declaration; its nominal subtype is nonstatic, even if the subtype mark
denotes a static subtype; for a composite type, its nominal subtype is unconstrained if the first subtype of
the type is unconstrained, even if the subtype_mark denotes a constrained subtype.

In an instance, a formal_object_declaration of mode in is a full constant declaration and declares a new
stand-alone  constant object whose initialization expression is the actual, whereas a
formal_object_declaration of mode in out declares a view whose properties are identical to those of the
actual.

Dynamic Semantics

For the evaluation of a generic_association for a formal object of mode in, a constant object is created,
the value of the actual parameter is converted to the nominal subtype of the formal object, and assigned to
the object, including any value adjustment — see 7.6.

NOTES

6 The constraints that apply to a generic formal object of mode in out are those of the corresponding generic actual
parameter (not those implied by the subtype_mark that appears in the formal_object_declaration). Therefore, to avoid
confusion, it is recommended that the name of a first subtype be used for the declaration of such a formal object.

285 13 December 2012 Formal Objects 12.4

8/2

8.1/2

8.2/2

8.3/2

8.4/2

8.5/2

912

10/2

11

12



12

2/3

2113

2213

32

6/3

72

8/3

ISO/IEC 8652:2012(E) — Ada Reference Manual

12.5 Formal Types

A generic formal subtype can be used to pass to a generic unit a subtype whose type is in a certain
category of types.

Syntax
formal_type_declaration ::=
formal_complete_type_declaration
| formal_incomplete_type_declaration

formal_complete_type_declaration ::=

type defining_identifier[discriminant_part] is formal_type_definition

[aspect_specification];

formal_incomplete_type_declaration ::=

type defining_identifier[discriminant_part] [is tagged];
formal_type_definition ::=

formal_private_type_definition

| formal_derived_type_definition

| formal_discrete_type_definition

| formal_signed_integer_type_definition

| formal_modular_type_definition

| formal_floating_point_definition

| formal_ordinary_fixed_point_definition

| formal_decimal_fixed_point_definition

| formal_array_type_definition

| formal_access_type_definition

| formal_interface_type_definition

Legality Rules
For a generic formal subtype, the actual shall be a subtype_mark; it denotes the (generic) actual subtype.

Static Semantics
A formal_type_declaration declares a (generic) formal type, and its first subtype, the (generic) formal
subtype.

The form of a formal_type_definition determines a category (of types) to which the formal type belongs.
For a formal_private_type_definition the reserved words tagged and limited indicate the category of types
(see 12.5.1). The reserved word tagged also plays this role in the case of a
formal_incomplete_type_declaration. For a formal_derived_type_definition the category of types is the
derivation class rooted at the ancestor type. For other formal types, the name of the syntactic category
indicates the category of types; a formal_discrete_type_definition defines a discrete type, and so on.

Legality Rules
The actual type shall be in the category determined for the formal.

Static Semantics
The formal type also belongs to each category that contains the determined category. The primitive
subprograms of the type are as for any type in the determined category. For a formal type other than a
formal derived type, these are the predefined operators of the type. For an elementary formal type, the
predefined operators are implicitly declared immediately after the declaration of the formal type. For a

12.5 Formal Types 13 December 2012 286



ISO/IEC 8652:2012(E) — Ada Reference Manual

composite formal type, the predefined operators are implicitly declared either immediately after the
declaration of the formal type, or later immediately within the declarative region in which the type is
declared according to the rules of 7.3.1. In an instance, the copy of such an implicit declaration declares a
view of the predefined operator of the actual type, even if this operator has been overridden for the actual
type and even if it is never declared for the actual type. The rules specific to formal derived types are
given in 12.5.1.

NOTES

7 Generic formal types, like all types, are not named. Instead, a name can denote a generic formal subtype. Within a
generic unit, a generic formal type is considered as being distinct from all other (formal or nonformal) types.

8 A discriminant_part is allowed only for certain kinds of types, and therefore only for certain kinds of generic formal
types. See 3.7.

Examples

Examples of generic formal types:

type Item is private;
type Buffer (Length : Natural) is limited private;

type Enum is (<>);

type Int is range <>;

type Angle is delta <>;

type Mass is digits <>;

type Table is array (Enum) of Item;

Example of a generic formal part declaring a formal integer type:

generic
type Rank is range <>;
First : Rank := Rank'First;
Second : Rank := First + 1; -- theoperator "+" of the type Rank

12.5.1 Formal Private and Derived Types

In its most general form, the category determined for a formal private type is all types, but the category
can be restricted to only nonlimited types or to only tagged types. Similarly, the category for a formal
incomplete type is all types but the category can be restricted to only tagged types; unlike other formal
types, the actual type does not need to be able to be frozen (see 13.14). The category determined for a
formal derived type is the derivation class rooted at the ancestor type.

Syntax
formal_private_type_definition ::= [[abstract] tagged] [limited] private

formal_derived_type_definition ::=
[abstract] [limited | synchronized] new subtype_mark [[and interface_list]with private]

Legality Rules

If a generic formal type declaration has a known_discriminant_part, then it shall not include a
default_expression for a discriminant.

The ancestor subtype of a formal derived type is the subtype denoted by the subtype_mark of the
formal_derived_type_definition. For a formal derived type declaration, the reserved words with private
shall appear if and only if the ancestor type is a tagged type; in this case the formal derived type is a
private extension of the ancestor type and the ancestor shall not be a class-wide type. Similarly, an
interface_list or the optional reserved words abstract or synchronized shall appear only if the ancestor
type is a tagged type. The reserved word limited or synchronized shall appear only if the ancestor type
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and any progenitor types are limited types. The reserved word synchronized shall appear (rather than
limited) if the ancestor type or any of the progenitor types are synchronized interfaces. The ancestor type
shall be a limited interface if the reserved word synchronized appears.

The actual type for a formal derived type shall be a descendant of the ancestor type and every progenitor
of the formal type. If the formal type is nonlimited, the actual type shall be nonlimited. If the reserved
word synchronized appears in the declaration of the formal derived type, the actual type shall be a
synchronized tagged type.

If a formal private or derived subtype is definite, then the actual subtype shall also be definite.

A formal_incomplete_type_declaration declares a formal incomplete type. The only view of a formal
incomplete type is an incomplete view. Thus, a formal incomplete type is subject to the same usage
restrictions as any other incomplete type — see 3.10.1.

For a generic formal derived type with no discriminant_part:

e If the ancestor subtype is constrained, the actual subtype shall be constrained, and shall be
statically compatible with the ancestor;

e If the ancestor subtype is an unconstrained access or composite subtype, the actual subtype shall
be unconstrained.

o If the ancestor subtype is an unconstrained discriminated subtype, then the actual shall have the
same number of discriminants, and each discriminant of the actual shall correspond to a
discriminant of the ancestor, in the sense of 3.7.

o If the ancestor subtype is an access subtype, the actual subtype shall exclude null if and only if
the ancestor subtype excludes null.

The declaration of a formal derived type shall not have a known_discriminant_part. For a generic formal
private or incomplete type with a known_discriminant_part:

e The actual type shall be a type with the same number of discriminants.
e The actual subtype shall be unconstrained.

e The subtype of each discriminant of the actual type shall statically match the subtype of the
corresponding discriminant of the formal type.

For a generic formal type with an unknown_discriminant_part, the actual may, but need not, have

discriminants, and may be definite or indefinite.

Static Semantics

The category determined for a formal private type is as follows:

Type Definition Determined Category

limited private the category of all types

private the category of all nonlimited types
tagged limited private the category of all tagged types

tagged private the category of all nonlimited tagged types

The presence of the reserved word abstract determines whether the actual type may be abstract.

The category determined for a formal incomplete type is the category of all types, unless the
formal_type_declaration includes the reserved word tagged; in this case, it is the category of all tagged

types.
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A formal private or derived type is a private or derived type, respectively. A formal derived tagged type is
a private extension. A formal private or derived type is abstract if the reserved word abstract appears in its
declaration.

For a formal derived type, the characteristics (including components, but excluding discriminants if there
is a new discriminant_part), predefined operators, and inherited user-defined primitive subprograms are
determined by its ancestor type and its progenitor types (if any), in the same way that those of a derived
type are determined by those of its parent type and its progenitor types (see 3.4 and 7.3.1).

In an instance, the copy of an implicit declaration of a primitive subprogram of a formal derived type
declares a view of the corresponding primitive subprogram of the ancestor or progenitor of the formal
derived type, even if this primitive has been overridden for the actual type and even if it is never declared
for the actual type. When the ancestor or progenitor of the formal derived type is itself a formal type, the
copy of the implicit declaration declares a view of the corresponding copied operation of the ancestor or
progenitor. In the case of a formal private extension, however, the tag of the formal type is that of the
actual type, so if the tag in a call is statically determined to be that of the formal type, the body executed
will be that corresponding to the actual type.

For a prefix S that denotes a formal indefinite subtype, the following attribute is defined:

S'Definite S'Definite yields True if the actual subtype corresponding to S is definite; otherwise, it
yields False. The value of this attribute is of the predefined type Boolean.

Dynamic Semantics

In the case where a formal type has unknown discriminants, and the actual type is a class-wide type
T'Class:

e For the purposes of defining the primitive operations of the formal type, each of the primitive
operations of the actual type is considered to be a subprogram (with an intrinsic calling
convention — see 6.3.1) whose body consists of a dispatching call upon the corresponding
operation of 7, with its formal parameters as the actual parameters. If it is a function, the result
of the dispatching call is returned.

o [If'the corresponding operation of 7 has no controlling formal parameters, then the controlling tag
value is determined by the context of the call, according to the rules for tag-indeterminate calls
(see 3.9.2 and 5.2). In the case where the tag would be statically determined to be that of the
formal type, the call raises Program_Error. If such a function is renamed, any call on the
renaming raises Program_Error.

NOTES
9 In accordance with the general rule that the actual type shall belong to the category determined for the formal (see 12.5,
“Formal Types”):
e Ifthe formal type is nonlimited, then so shall be the actual;
e For a formal derived type, the actual shall be in the class rooted at the ancestor subtype.
10 The actual type can be abstract only if the formal type is abstract (see 3.9.3).

11 If the formal has a discriminant_part, the actual can be either definite or indefinite. Otherwise, the actual has to be
definite.
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12.5.2 Formal Scalar Types

A formal scalar type is one defined by any of the formal_type_definitions in this subclause. The category
determined for a formal scalar type is the category of all discrete, signed integer, modular, floating point,
ordinary fixed point, or decimal types.

Syntax
formal_discrete_type_definition ::= (<>)
formal_signed_integer_type_definition ::= range <>
formal_modular_type_definition ::= mod <>
formal_floating_point_definition ::= digits <>
formal_ordinary_fixed_point_definition ::= delta <>
formal_decimal_fixed_point_definition ::= delta <> digits <>

Legality Rules
The actual type for a formal scalar type shall not be a nonstandard numeric type.

NOTES
12 The actual type shall be in the class of types implied by the syntactic category of the formal type definition (see 12.5,
“Formal Types”). For example, the actual for a formal_modular_type_definition shall be a modular type.

12.5.3 Formal Array Types

The category determined for a formal array type is the category of all array types.

Syntax
formal_array_type_definition ::= array_type_definition
Legality Rules

The only form of discrete_subtype_definition that is allowed within the declaration of a generic formal
(constrained) array subtype is a subtype_mark.

For a formal array subtype, the actual subtype shall satisfy the following conditions:

e The formal array type and the actual array type shall have the same dimensionality; the formal
subtype and the actual subtype shall be either both constrained or both unconstrained.

e For each index position, the index types shall be the same, and the index subtypes (if
unconstrained), or the index ranges (if constrained), shall statically match (see 4.9.1).

e The component subtypes of the formal and actual array types shall statically match.

e Ifthe formal type has aliased components, then so shall the actual.

Examples
Example of formal array types:

- - given the generic package
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generic
type Item is private;
type Index is (<>);
type Vector is array (Index range <>) of Item;
type Table 1is array (Index) of Item;
package P is
end P;
-- and the types

type Mix is array (Color range <>) of Boolean;
type Option is array (Color) of Boolean;

- - then Mix can match Vector and Option can match Table

package R is new P(Item => Boolean, Index => Color,
Vector => Mix, Table => Option);

- - Note that Mix cannot match Table and Option cannot match Vector

12.5.4 Formal Access Types

The category determined for a formal access type is the category of all access types.

Syntax
formal_access_type_definition ::= access_type_definition

Legality Rules

For a formal access-to-object type, the designated subtypes of the formal and actual types shall statically
match.

If and only if the general_access_modifier constant applies to the formal, the actual shall be an access-
to-constant type. If the general_access_modifier all applies to the formal, then the actual shall be a
general access-to-variable type (see 3.10). If and only if the formal subtype excludes null, the actual
subtype shall exclude null.

For a formal access-to-subprogram subtype, the designated profiles of the formal and the actual shall be
subtype conformant.

Examples
Example of formal access types:

- - the formal types of the generic package
generic

type Node is private;

type Link is access Node;
package P is
end P;
- - can be matched by the actual types

type Car;
type Car_Name is access Car;

type Car is

record
Pred, Succ : Car_Name;
Number : License Number;
Owner : Person;

end record;

- - in the following generic instantiation
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package R is new P(Node => Car, Link => Car Name) ;

12.5.5 Formal Interface Types

The category determined for a formal interface type is the category of all interface types.

Syntax
formal_interface_type_definition ::= interface_type_definition

Legality Rules
The actual type shall be a descendant of every progenitor of the formal type.

The actual type shall be a limited, task, protected, or synchronized interface if and only if the formal type
is also, respectively, a limited, task, protected, or synchronized interface.

Examples
type Root Work Item is tagged private;

generic
type Managed Task is task interface;
type Work Item(<>) is new Root Work Item with private;
package Server Manager is
task type Server is new Managed Task with
entry Start(Data : in out Work Item);
end Server;
end Server Manager;
This generic allows an application to establish a standard interface that all tasks need to implement so they

can be managed appropriately by an application-specific scheduler.

12.6 Formal Subprograms

Formal subprograms can be used to pass callable entities to a generic unit.

Syntax

formal_subprogram_declaration ::= formal_concrete_subprogram_declaration
| formal_abstract_subprogram_declaration

formal_concrete_subprogram_declaration ::=
with subprogram_specification [is subprogram_default]
[aspect_specification];

formal_abstract_subprogram_declaration ::=
with subprogram_specification is abstract [subprogram_default]
[aspect_specification];

subprogram_default ::= default_name | <> | null
default_name ::= name

A subprogram_default of null shall not be specified for a formal function or for a
formal_abstract_subprogram_declaration.

Name Resolution Rules

The expected profile for the default_name, if any, is that of the formal subprogram.

For a generic formal subprogram, the expected profile for the actual is that of the formal subprogram.
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Legality Rules
The profiles of the formal and any named default shall be mode conformant.

The profiles of the formal and actual shall be mode conformant.

For a parameter or result subtype of a formal_subprogram_declaration that has an explicit null_exclusion:

e if the actual matching the formal_subprogram_declaration denotes a generic formal object of
another generic unit G, and the instantiation containing the actual that occurs within the body of
a generic unit G or within the body of a generic unit declared within the declarative region of the
generic unit G, then the corresponding parameter or result type of the formal subprogram of G
shall have a null_exclusion;

o otherwise, the subtype of the corresponding parameter or result type of the actual matching the
formal_subprogram_declaration shall exclude null. In addition to the places where Legality
Rules normally apply (see 12.3), this rule applies also in the private part of an instance of a
generic unit.

If a formal parameter of a formal_abstract_subprogram_declaration is of a specific tagged type T or of
an anonymous access type designating a specific tagged type 7, T is called a controlling type of the
formal_abstract_subprogram_declaration. Similarly, if the result of a formal_abstract_subprogram_-
declaration for a function is of a specific tagged type T or of an anonymous access type designating a
specific tagged type 7, T is called a controlling type of the formal_abstract_subprogram_declaration. A
formal_abstract_subprogram_declaration shall have exactly one controlling type, and that type shall not
be incomplete.

The actual subprogram for a formal_abstract_subprogram_declaration shall be a dispatching operation of
the controlling type or of the actual type corresponding to the controlling type.

Static Semantics

A formal_subprogram_declaration declares a generic formal subprogram. The types of the formal
parameters and result, if any, of the formal subprogram are those determined by the subtype_marks given
in the formal_subprogram_declaration; however, independent of the particular subtypes that are denoted
by the subtype_marks, the nominal subtypes of the formal parameters and result, if any, are defined to be
nonstatic, and unconstrained if of an array type (no applicable index constraint is provided in a call on a
formal subprogram). In an instance, a formal_subprogram_declaration declares a view of the actual. The
profile of this view takes its subtypes and calling convention from the original profile of the actual entity,
while taking the formal parameter names and default_expressions from the profile given in the formal_-
subprogram_declaration. The view is a function or procedure, never an entry.

If a subtype_mark in the profile of the formal_subprogram_declaration denotes a formal private or
formal derived type and the actual type for this formal type is a class-wide type T'Class, then for the
purposes of resolving the corresponding actual subprogram at the point of the instantiation, certain implicit
declarations may be available as possible resolutions as follows:

For each primitive subprogram of 7 that is directly visible at the point of the instantiation, and
that has at least one controlling formal parameter, a corresponding implicitly declared
subprogram with the same defining name, and having the same profile as the primitive
subprogram except that 7 is systematically replaced by T'Class in the types of its profile, is
potentially use-visible. The body of such a subprogram is as defined in 12.5.1 for primitive
subprograms of a formal type when the actual type is class-wide.
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If a generic unit has a subprogram_default specified by a box, and the corresponding actual parameter is
omitted, then it is equivalent to an explicit actual parameter that is a usage name identical to the defining
name of the formal.

If a generic unit has a subprogram_default specified by the reserved word null, and the corresponding
actual parameter is omitted, then it is equivalent to an explicit actual parameter that is a null procedure
having the profile given in the formal_subprogram_declaration.

The subprogram declared by a formal_abstract_subprogram_declaration with a controlling type 7 is a
dispatching operation of type 7.

NOTES

13 The matching rules for formal subprograms state requirements that are similar to those applying to
subprogram_renaming_declarations (see 8.5.4). In particular, the name of a parameter of the formal subprogram need not
be the same as that of the corresponding parameter of the actual subprogram; similarly, for these parameters,
default_expressions need not correspond.

14 The constraints that apply to a parameter of a formal subprogram are those of the corresponding formal parameter of
the matching actual subprogram (not those implied by the corresponding subtype_mark in the _specification of the formal
subprogram). A similar remark applies to the result of a function. Therefore, to avoid confusion, it is recommended that
the name of a first subtype be used in any declaration of a formal subprogram.

15 The subtype specified for a formal parameter of a generic formal subprogram can be any visible subtype, including a
generic formal subtype of the same generic_formal_part.

16 A formal subprogram is matched by an attribute of a type if the attribute is a function with a matching specification.
An enumeration literal of a given type matches a parameterless formal function whose result type is the given type.

17 A default_name denotes an entity that is visible or directly visible at the place of the generic_declaration; a box used
as a default is equivalent to a name that denotes an entity that is directly visible at the place of the _instantiation.

18 The actual subprogram cannot be abstract unless the formal subprogram is a formal_abstract_subprogram_-
declaration (see 3.9.3).

19 The subprogram declared by a formal_abstract_subprogram_declaration is an abstract subprogram. All calls on a
subprogram declared by a formal_abstract_subprogram_declaration must be dispatching calls. See 3.9.3.

20 A null procedure as a subprogram default has convention Intrinsic (see 6.3.1).

Examples
Examples of generic formal subprograms:

with function "+" (X, Y : Item) return Item is <>;
with function Image (X : Enum) return String is Enum'Image;
with procedure Update is Default Update;

with procedure Pre Action(X : in Item) is null; -- defaults to no action
with procedure Write(S : not null access Root_Stream Type'Class;
Desc : Descriptor)
is abstract Descriptor'Write; --seel3.13.2

- - Dispatching operation on Descriptor with default
- - given the generic procedure declaration

generic
with procedure Action (X : in Item);
procedure Iterate(Seq : in Item Sequence) ;

- - and the procedure
procedure Put Item(X : in Item);
- - the following instantiation is possible

procedure Put List is new Iterate(Action => Put_ Item);
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12.7 Formal Packages

Formal packages can be used to pass packages to a generic unit. The formal_package_declaration 1
declares that the formal package is an instance of a given generic package. Upon instantiation, the actual
package has to be an instance of that generic package.

Syntax

formal_package_declaration ::= 213
with package defining_identifier is new generic_package name formal_package_actual_part
[aspect_specification];

formal_package_actual_part ::= 3/2
([others =>] <>)
| [generic_actual_part]
| (formal_package_association {, formal_package_association} [, others => <>])

formal_package_association ::= 3.1/2
generic_association
| generic_formal parameter selector_name => <>

Any positional formal_package_associations shall precede any named 3.212
formal_package_associations.

Legality Rules

The generic_package name shall denote a generic package (the template for the formal package); the 4
formal package is an instance of the template.

The generic_formal parameter_selector_name of a formal_package_association shall denote a 4.3
generic_formal_parameter_declaration of the template. If two or more formal subprograms of the
template have the same defining name, then named associations are not allowed for the corresponding
actuals.

A formal_package_actual_part shall contain at most one formal_package_association for each formal 4.2/3
parameter. If the formal_package_actual_part does not include “others => <>”, each formal parameter
without an association shall have a default_expression or subprogram_default.

The rules for matching between formal_package_associations and the generic formals of the template are  4.3/3
as follows:

If all of the formal_package_associations are given by generic associations, the 4.4/3
explicit_generic_actual_parameters of the formal_package_associations shall be legal for an
instantiation of the template.

If a formal_package_association for a formal type T of the template is given by <>, then the 45/3
formal_package_association for any other generic_formal_parameter_declaration of the
template that mentions 7 directly or indirectly must be given by <> as well.

The actual shall be an instance of the template. If the formal_package_actual_part is (<>) or (others => 512
<>), then the actual may be any instance of the template; otherwise, certain of the actual parameters of the
actual instance shall match the corresponding actual parameters of the formal package, determined as
follows:

295

If the formal_package_actual_part includes generic_associations as well as associations with 5.1/2
<>, then only the actual parameters specified explicitly with generic_associations are required
to match;
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e Otherwise, all actual parameters shall match, whether any actual parameter is given explicitly or
by default.

The rules for matching of actual parameters between the actual instance and the formal package are as
follows:

e For a formal object of mode in, the actuals match if they are static expressions with the same
value, or if they statically denote the same constant, or if they are both the literal null.

e For a formal subtype, the actuals match if they denote statically matching subtypes.
o For other kinds of formals, the actuals match if they statically denote the same entity.

For the purposes of matching, any actual parameter that is the name of a formal object of mode in is
replaced by the formal object's actual expression (recursively).

Static Semantics

A formal_package_declaration declares a generic formal package.

The visible part of a formal package includes the first list of basic_declarative_items of the package_-
specification. In addition, for each actual parameter that is not required to match, a copy of the declaration
of the corresponding formal parameter of the template is included in the visible part of the formal package.
If the copied declaration is for a formal type, copies of the implicit declarations of the primitive
subprograms of the formal type are also included in the visible part of the formal package.

For the purposes of matching, if the actual instance 4 is itself a formal package, then the actual parameters
of A are those specified explicitly or implicitly in the formal_package_actual_part for 4, plus, for those
not specified, the copies of the formal parameters of the template included in the visible part of A.

Examples
Example of a generic package with formal package parameters:

with Ada.Containers.Ordered Maps; --seed.18.6
generic
with package Mapping 1 is new Ada.Containers.Ordered Maps (<>) ;
with package Mapping 2 is new Ada.Containers.Ordered Maps
(Key Type => Mapping 1.Element Type,
others => <>);
package Ordered Join is
- - Provide a "join" between two mappings

subtype Key Type is Mapping 1.Key Type;
subtype Element Type is Mapping 2.Element Type;

function Lookup (Key : Key Type) return Element Type;

end.éfderediJoin;
Example of an instantiation of a package with formal packages:

with Ada.Containers.Ordered Maps;
package Symbol Package is

type String Id is
type Symbol Info is

package String Table is new Ada.Containers.Ordered Maps
(Key Type => String,
Element Type => String Id);

package Symbol Table is new Ada.Containers.Ordered Maps
(Key_Type => String Id,
Element Type => Symbol Info);
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package String Info is new Ordered Join(Mapping 1 => String Table,
Mapping 2 => Symbol Table) ;

Apple Info : constant Symbol Info := String Info.Lookup ("Apple");
end Symbol Package;

12.8 Example of a Generic Package

The following example provides a possible formulation of stacks by means of a generic package. The size
of each stack and the type of the stack elements are provided as generic formal parameters.

Examples
This paragraph was deleted.

generic
Size : Positive;
type Item is private;
package Stack is
procedure Push(E : in Item);
procedure Pop (E : out Item);
Overflow, Underflow : exception;
end Stack;

package body Stack is

type Table is array (Positive range <>) of Item;
Space : Table(l .. Size);
Index : Natural := 0;

procedure Push(E : in Item) is
begin
if Index >= Size then
raise Overflow;

end if;

Index := Index + 1;

Space (Index) := E;
end Push;

procedure Pop(E : out Item) is
begin
if Index = 0 then
raise Underflow;

end if;
E := Space (Index) ;
Index := Index - 1;
end Pop;
end Stack;

Instances of this generic package can be obtained as follows:
package Stack Int is new Stack(Size => 200, Item => Integer);
package Stack Bool is new Stack (100, Boolean);

Thereafter, the procedures of the instantiated packages can be called as follows:

Stack_Int.Push(N) ;
Stack_Bool.Push (True) ;
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Alternatively, a generic formulation of the type Stack can be given as follows (package body omitted):

14 generic

type Item is private;

package On_Stacks is
type Stack(Size : Positive) is limited private;
procedure Push(S : in out Stack; E : in Item);
procedure Pop (S : in out Stack; E : out Item);
Overflow, Underflow : exception;

private
type Table is array (Positive range <>) of Item;
type Stack(Size : Positive) is

record
Space : Table(l .. Size);
Index : Natural := 0;

end record;
end On_Stacks;

15 In order to use such a package, an instance has to be created and thereafter stacks of the corresponding
type can be declared:

16 declare
package Stack Real is new On_Stacks(Real); use Stack Real;
S : Stack(100) ;
begin
Push (S, 2.54);

end;
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13 Representation Issues

This clause describes features for querying and controlling certain aspects of entities and for interfacing to
hardware.

13.1 Operational and Representation Aspects

Two kinds of aspects of entities can be specified: representation aspects and operational aspects.
Representation aspects affect how the types and other entities of the language are to be mapped onto the
underlying machine. Operational aspects determine other properties of entities.

Either kind of aspect of an entity may be specified by means of an aspect_specification (see 13.1.1),
which is an optional element of most kinds of declarations and applies to the entity or entities being
declared. Aspects may also be specified by certain other constructs occurring subsequent to the declaration
of the affected entity: a representation aspect value may be specified by means of a representation item
and an operational aspect value may be specified by means of an operational item.

There are six kinds of representation items: attribute_definition_clauses for representation attributes,
enumeration_representation_clauses, record_representation_clauses, at_clauses, component_clauses,
and representation pragmas. They can be provided to give more efficient representation or to interface
with features that are outside the domain of the language (for example, peripheral hardware).

An operational item is an attribute_definition_clause for an operational attribute.

An operational item or a representation item applies to an entity identified by a local_name, which
denotes an entity declared local to the current declarative region, or a library unit declared immediately
preceding a representation pragma in a compilation.

Syntax
aspect_clause ::= attribute_definition_clause
| enumeration_representation_clause
| record_representation_clause
| at_clause

local_name ::= direct_name

| direct_name'attribute_designator

| library _unit_name
A representation pragma is allowed only at places where an aspect_clause or compilation_unit is
allowed.

Name Resolution Rules

In an operational item or representation item, if the local_name is a direct_name, then it shall resolve to
denote a declaration (or, in the case of a pragma, one or more declarations) that occurs immediately within
the same declarative region as the item. If the local_name has an attribute_designator, then it shall
resolve to denote an implementation-defined component (see 13.5.1) or a class-wide type implicitly
declared immediately within the same declarative region as the item. A local_name that is a
library_unit name (only permitted in a representation pragma) shall resolve to denote the library_item
that immediately precedes (except for other pragmas) the representation pragma.
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Legality Rules

The local_name of an aspect_clause or representation pragma shall statically denote an entity (or, in the
case of a pragma, one or more entities) declared immediately preceding it in a compilation, or within the
same declarative_part, package_specification, task_definition, protected_definition, or record_definition
as the representation or operational item. If a local_name denotes a local callable entity, it may do so
through a local subprogram_renaming_declaration (as a way to resolve ambiguity in the presence of
overloading); otherwise, the local_name shall not denote a renaming_declaration.

The representation of an object consists of a certain number of bits (the size of the object). For an object of
an elementary type, these are the bits that are normally read or updated by the machine code when loading,
storing, or operating-on the value of the object. For an object of a composite type, these are the bits
reserved for this object, and include bits occupied by subcomponents of the object. If the size of an object
is greater than that of its subtype, the additional bits are padding bits. For an elementary object, these
padding bits are normally read and updated along with the others. For a composite object, padding bits
might not be read or updated in any given composite operation, depending on the implementation.

A representation item directly specifies a representation aspect of the entity denoted by the local_name,
except in the case of a type-related representation item, whose local_name shall denote a first subtype,
and which directly specifies an aspect of the subtype's type. A representation item that names a subtype is
either subtype-specific (Size and Alignment clauses) or type-related (all others). Subtype-specific aspects
may differ for different subtypes of the same type.

An operational item directly specifies an operational aspect of the entity denoted by the local_name,
except in the case of a type-related operational item, whose local_name shall denote a first subtype, and
which directly specifies an aspect of the type of the subtype.

A representation item that directly specifies an aspect of a subtype or type shall appear after the type is
completely defined (see 3.11.1), and before the subtype or type is frozen (see 13.14). If a representation
item or aspect_specification is given that directly specifies an aspect of an entity, then it is illegal to give
another representation item or aspect_specification that directly specifies the same aspect of the entity.

An operational item that directly specifies an aspect of an entity shall appear before the entity is frozen
(see 13.14). If an operational item or aspect_specification is given that directly specifies an aspect of an
entity, then it is illegal to give another operational item or aspect_specification that directly specifies the
same aspect of the entity.

Unless otherwise specified, it is illegal to specify an operational or representation aspect of a generic
formal parameter.

For an untagged derived type, it is illegal to specify a type-related representation aspect if the parent type
is a by-reference type, or has any user-defined primitive subprograms.

Operational and representation aspects of a generic formal parameter are the same as those of the actual.
Operational and representation aspects are the same for all views of a type. Specification of a type-related
representation aspect is not allowed for a descendant of a generic formal untagged type.

The specification of the Size aspect for a given subtype, or the size or storage place for an object
(including a component) of a given subtype, shall allow for enough storage space to accommodate any
value of the subtype.

If a specification of a representation or operational aspect is not supported by the implementation, it is
illegal or raises an exception at run time.
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A type_declaration is illegal if it has one or more progenitors, and a nonconfirming value was specified
for a representation aspect of an ancestor, and this conflicts with the representation of some other ancestor.
The cases that cause conflicts are implementation defined.

Static Semantics

If two subtypes statically match, then their subtype-specific aspects (Size and Alignment) are the same.

A derived type inherits each type-related representation aspect of its parent type that was directly specified
before the declaration of the derived type, or (in the case where the parent is derived) that was inherited by
the parent type from the grandparent type. A derived subtype inherits each subtype-specific representation
aspect of its parent subtype that was directly specified before the declaration of the derived type, or (in the
case where the parent is derived) that was inherited by the parent subtype from the grandparent subtype,
but only if the parent subtype statically matches the first subtype of the parent type. An inherited
representation aspect is overridden by a subsequent aspect_specification or representation item that
specifies a different value for the same aspect of the type or subtype.

In contrast, whether operational aspects are inherited by a derived type depends on each specific aspect;
unless specified, an operational aspect is not inherited. When operational aspects are inherited by a derived
type, aspects that were directly specified by aspect_specifications or operational items that are visible at
the point of the derived type declaration, or (in the case where the parent is derived) that were inherited by
the parent type from the grandparent type are inherited. An inherited operational aspect is overridden by a
subsequent aspect_specification or operational item that specifies the same aspect of the type.

When an aspect that is a subprogram is inherited, the derived type inherits the aspect in the same way that
a derived type inherits a user-defined primitive subprogram from its parent (see 3.4).

Each aspect of representation of an entity is as follows:

o If the aspect is specified for the entity, meaning that it is either directly specified or inherited,
then that aspect of the entity is as specified, except in the case of Storage Size, which specifies a
minimum.

e If an aspect of representation of an entity is not specified, it is chosen by default in an
unspecified manner.

If an operational aspect is specified for an entity (meaning that it is either directly specified or inherited),
then that aspect of the entity is as specified. Otherwise, the aspect of the entity has the default value for
that aspect.

An aspect_specification or representation item that specifies a representation aspect that would have been
chosen in the absence of the aspect_specification or representation item is said to be confirming. The
aspect value specified in this case is said to be a confirming representation aspect value. Other values of
the aspect are said to be nonconfirming, as are the aspect_specifications and representation items that
specified them.

Dynamic Semantics

For the elaboration of an aspect_clause, any evaluable constructs within it are evaluated.

Implementation Permissions
An implementation may interpret representation aspects in an implementation-defined manner. An
implementation may place implementation-defined restrictions on the specification of representation
aspects. A recommended level of support is defined for the specification of representation aspects and
related features in each subclause. These recommendations are changed to requirements for
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implementations that support the Systems Programming Annex (see C.2, “Required Representation
Support”).

Implementation Advice

The recommended level of support for the specification of all representation aspects is qualified as
follows:

® A confirming specification for a representation aspect should be supported.

e An implementation need not support the specification for a representation aspect that contains
nonstatic expressions, unless each nonstatic expression is a name that statically denotes a
constant declared before the entity.

e An implementation need not support a specification for the Size for a given composite subtype,
nor the size or storage place for an object (including a component) of a given composite subtype,
unless the constraints on the subtype and its composite subcomponents (if any) are all static
constraints.

e An implementation need not support specifying a nonconfirming representation aspect value if it
could cause an aliased object or an object of a by-reference type to be allocated at a
nonaddressable location or, when the alignment attribute of the subtype of such an object is
nonzero, at an address that is not an integral multiple of that alignment.

e An implementation need not support specifying a nonconfirming representation aspect value if it
could cause an aliased object of an elementary type to have a size other than that which would
have been chosen by default.

e An implementation need not support specifying a nonconfirming representation aspect value if it
could cause an aliased object of a composite type, or an object whose type is by-reference, to
have a size smaller than that which would have been chosen by default.

e An implementation need not support specifying a nonconfirming subtype-specific representation
aspect value for an indefinite or abstract subtype.

For purposes of these rules, the determination of whether specifying a representation aspect value for a
type could cause an object to have some property is based solely on the properties of the type itself, not on
any available information about how the type is used. In particular, it presumes that minimally aligned
objects of this type might be declared at some point.

NOTES
1 Aspects that can be specified are defined throughout this International Standard, and are summarized in K.1.

13.1.1 Aspect Specifications

Certain representation or operational aspects of an entity may be specified as part of its declaration using
an aspect_specification, rather than using a separate representation or operational item. The declaration
with the aspect_specification is termed the associated declaration.

Syntax
aspect_specification ::=
with aspect_mark [=> aspect_definition] {,
aspect_mark [=> aspect_definition] }

aspect_mark ::= aspect_identifier['Class]
aspect_definition ::= name | expression | identifier
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Name Resolution Rules

An aspect_mark identifies an aspect of the entity defined by the associated declaration (the associated
entity); the aspect denotes an object, a value, an expression, a subprogram, or some other kind of entity. If
the aspect_mark identifies:

e an aspect that denotes an object, the aspect_definition shall be a name. The expected type for
the name is the type of the identified aspect of the associated entity;

e an aspect that is a value or an expression, the aspect_definition shall be an expression. The
expected type for the expression is the type of the identified aspect of the associated entity;

e an aspect that denotes a subprogram, the aspect_definition shall be a name; the expected profile
for the name is the profile required for the aspect of the associated entity;

e an aspect that denotes some other kind of entity, the aspect_definition shall be a name, and the
name shall resolve to denote an entity of the appropriate kind;

e an aspect that is given by an identifier specific to the aspect, the aspect_definition shall be an
identifier, and the identifier shall be one of the identifiers specific to the identified aspect.

The usage names in an aspect_definition are not resolved at the point of the associated declaration, but
rather are resolved at the end of the immediately enclosing declaration list.

If the associated declaration is for a subprogram or entry, the names of the formal parameters are directly
visible within the aspect_definition, as are certain attributes, as specified elsewhere in this International
Standard for the identified aspect. If the associated declaration is a type_declaration, within the
aspect_definition the names of any components are directly visible, and the name of the first subtype
denotes the current instance of the type (see 8.6). If the associated declaration is a subtype_declaration,
within the aspect_definition the name of the new subtype denotes the current instance of the subtype.

Legality Rules
If the first freezing point of the associated entity comes before the end of the immediately enclosing
declaration list, then each usage name in the aspect_definition shall resolve to the same entity at the first
freezing point as it does at the end of the immediately enclosing declaration list.

At most one occurrence of each aspect_mark is allowed within a single aspect_specification. The aspect
identified by the aspect_mark shall be an aspect that can be specified for the associated entity (or view of
the entity defined by the associated declaration).

The aspect_definition associated with a given aspect_mark may be omitted only when the aspect_mark
identifies an aspect of a boolean type, in which case it is equivalent to the aspect_definition being
specified as True.

If the aspect_mark includes 'Class, then the associated entity shall be a tagged type or a primitive
subprogram of a tagged type.

There are no language-defined aspects that may be specified on a renaming_declaration, a
generic_formal_parameter_declaration, a subunit, a package_body, a task_body, a protected_body, or
a body_stub other than a subprogram_body_stub.

A language-defined aspect shall not be specified in an aspect_specification given on a subprogram_body
or subprogram_body_stub that is a completion of another declaration.

Static Semantics

Depending on which aspect is identified by the aspect_mark, an aspect_definition specifies:

303 13 December 2012 Aspect Specifications 13.1.1

5/3

6/3

713

8/3

913

10/3

1173

12/3

13/3

14/3

15/3

16/3

1713

18/3

19/3



20/3

21/3

22/3

23/3

24/3

25/3

26/3

27/3

28/3

29/3

30/3

31/3

32/3

33/3

34/3

35/3

36/3

3713

ISO/IEC 8652:2012(E) — Ada Reference Manual

e aname that denotes a subprogram, object, or other kind of entity;

e an expression, which is either evaluated to produce a single value, or which (as in a
precondition) is to be evaluated at particular points during later execution; or

e an identifier specific to the aspect.

The identified aspect of the associated entity, or in some cases, the view of the entity defined by the
declaration, is as specified by the aspect_definition (or by the default of True when boolean). Whether an
aspect_specification applies to an entity or only to the particular view of the entity defined by the
declaration is determined by the aspect_mark and the kind of entity. The following aspects are view
specific:

e An aspect specified on an object_declaration;

e An aspect specified on a subprogram_declaration;

e An aspect specified on a renaming_declaration.
All other aspect_specifications are associated with the entity, and apply to all views of the entity, unless
otherwise specified in this International Standard.
If the aspect_mark includes 'Class, then:

o if'the associated entity is a tagged type, the specification applies to all descendants of the type;

e if the associated entity is a primitive subprogram of a tagged type 7, the specification applies to
the corresponding primitive subprogram of all descendants of T.

All specifiable operational and representation attributes may be specified with an aspect_specification
instead of an attribute_definition_clause (see 13.3).

Any aspect specified by a representation pragma or library unit pragma that has a local_name as its single
argument may be specified by an aspect_specification, with the entity being the local_name. The
aspect_definition is expected to be of type Boolean. The expression shall be static.

In addition, other operational and representation aspects not associated with specifiable attributes or
representation pragmas may be specified, as specified elsewhere in this International Standard.

If an aspect of a derived type is inherited from an ancestor type and has the boolean value True, the
inherited value shall not be overridden to have the value False for the derived type, unless otherwise
specified in this International Standard.

If a Legality Rule or Static Semantics rule only applies when a particular aspect has been specified, the
aspect is considered to have been specified only when the aspect_specification or
attribute_definition_clause is visible (see 8.3) at the point of the application of the rule.

Alternative legality and semantics rules may apply for particular aspects, as specified elsewhere in this
International Standard.

Dynamic Semantics

At the freezing point of the associated entity, the aspect_specification is elaborated. The elaboration of
the aspect_specification includes the evaluation of the name or expression, if any, unless the aspect itself
is an expression. If the corresponding aspect represents an expression (as in a precondition), the
claboration has no effect; the expression is evaluated later at points within the execution as specified
elsewhere in this International Standard for the particular aspect.
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Implementation Permissions

Implementations may support implementation-defined aspects. The aspect_specification for an
implementation-defined aspect may use an implementation-defined syntax for the aspect_definition, and
may follow implementation-defined legality and semantics rules.

13.2 Packed Types

The Pack aspect having the value True specifies that storage minimization should be the main criterion
when selecting the representation of a composite type.

Paragraphs 2 through 4 were moved to Annex J, “Obsolescent Features”.

Static Semantics

For a full type declaration of a composite type, the following language-defined representation aspect may
be specified:

Pack The type of aspect Pack is Boolean. When aspect Pack is True for a type, the type (or the
extension part) is said to be packed. For a type extension, the parent part is packed as for
the parent type, and specifying Pack causes packing only of the extension part.

If directly specified, the aspect_definition shall be a static expression. If not specified
(including by inheritance), the aspect is False.

Implementation Advice

If a type is packed, then the implementation should try to minimize storage allocated to objects of the type,
possibly at the expense of speed of accessing components, subject to reasonable complexity in addressing
calculations.

If a packed type has a component that is not of a by-reference type and has no aliased part, then such a
component need not be aligned according to the Alignment of its subtype; in particular it need not be
allocated on a storage element boundary.

The recommended level of support for the Pack aspect is:

e For a packed record type, the components should be packed as tightly as possible subject to the
Sizes of the component subtypes, and subject to any record_representation_clause that applies
to the type; the implementation may, but need not, reorder components or cross aligned word
boundaries to improve the packing. A component whose Size is greater than the word size may
be allocated an integral number of words.

e For a packed array type, if the Size of the component subtype is less than or equal to the word
size, Component_Size should be less than or equal to the Size of the component subtype,
rounded up to the nearest factor of the word size.

305 13 December 2012 Aspect Specifications 13.1.1

38/3

13

5/3

5.1/3

5.2/3

6.1/2

713

9/3



17

5/3

712

8.1/3

9/3

10/1

1

ISO/IEC 8652:2012(E) — Ada Reference Manual

13.3 Operational and Representation Attributes

The values of certain implementation-dependent characteristics can be obtained by interrogating
appropriate operational or representation attributes. Some of these attributes are specifiable via an
attribute_definition_clause.

Syntax
attribute_definition_clause ::=

for local_name'attribute_designator use expression;
| for local_name'attribute_designator use name;

Name Resolution Rules

For an attribute_definition_clause that specifies an attribute that denotes a value, the form with an
expression shall be used. Otherwise, the form with a name shall be used.

For an attribute_definition_clause that specifies an attribute that denotes a value or an object, the expected
type for the expression or name is that of the attribute. For an attribute_definition_clause that specifies an
attribute that denotes a subprogram, the expected profile for the name is the profile required for the
attribute. For an attribute_definition_clause that specifies an attribute that denotes some other kind of
entity, the name shall resolve to denote an entity of the appropriate kind.

Legality Rules

An attribute_designator is allowed in an attribute_definition_clause only if this International Standard
explicitly allows it, or for an implementation-defined attribute if the implementation allows it. Each
specifiable attribute constitutes an operational aspect or aspect of representation; the name of the aspect is
that of the attribute.

For an attribute_definition_clause that specifies an attribute that denotes a subprogram, the profile shall be
mode conformant with the one required for the attribute, and the convention shall be Ada. Additional
requirements are defined for particular attributes.

Static Semantics

A Size clause is an attribute_definition_clause whose attribute_designator is Size. Similar definitions
apply to the other specifiable attributes.

A storage element is an addressable element of storage in the machine. A word is the largest amount of
storage that can be conveniently and efficiently manipulated by the hardware, given the implementation's
run-time model. A word consists of an integral number of storage elements.

A machine scalar is an amount of storage that can be conveniently and efficiently loaded, stored, or
operated upon by the hardware. Machine scalars consist of an integral number of storage elements. The set
of machine scalars is implementation defined, but includes at least the storage element and the word.
Machine scalars are used to interpret component_clauses when the nondefault bit ordering applies.

The following representation attributes are defined: Address, Alignment, Size, Storage Size,
Component_Size, Has Same_Storage, and Overlaps_Storage.
For a prefix X that denotes an object, program unit, or label:

X'Address Denotes the address of the first of the storage elements allocated to X. For a program unit or
label, this value refers to the machine code associated with the corresponding body or
statement. The value of this attribute is of type System.Address.
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The prefix of X'Address shall not statically denote a subprogram that has convention
Intrinsic. X'Address raises Program_Error if X denotes a subprogram that has convention
Intrinsic.

Address may be specified for stand-alone objects and for program units via an
attribute_definition_clause.

Erroneous Execution

If an Address is specified, it is the programmer's responsibility to ensure that the address is valid and
appropriate for the entity and its use; otherwise, program execution is erroneous.

Implementation Advice

For an array X, X'Address should point at the first component of the array, and not at the array bounds.

The recommended level of support for the Address attribute is:

e X'Address should produce a useful result if X is an object that is aliased or of a by-reference
type, or is an entity whose Address has been specified.

e An implementation should support Address clauses for imported subprograms.

®  This paragraph was deleted.

e [f the Address of an object is specified, or it is imported or exported, then the implementation
should not perform optimizations based on assumptions of no aliases.

NOTES

2 The specification of a link name with the Link Name aspect (see B.1) for a subprogram or object is an alternative to
explicit specification of its link-time address, allowing a link-time directive to place the subprogram or object within

memory.

3 The rules for the Size attribute imply, for an aliased object X, that if X'Size = Storage Unit, then X'Address points at a
storage element containing all of the bits of X, and only the bits of X.

Static Semantics

For a prefix X that denotes an object:

X'Alignment The value of this attribute is of type universal integer, and nonnegative; zero means that

the object is not necessarily aligned on a storage element boundary. If X'Alignment is not
zero, then X is aligned on a storage unit boundary and X'Address is an integral multiple of
X'Alignment (that is, the Address modulo the Alignment is zero).

This paragraph was deleted.

Alignment may be specified for stand-alone objects via an attribute_definition_clause; the
expression of such a clause shall be static, and its value nonnegative.

This paragraph was deleted.

For every subtype S:

S'Alignment

The value of this attribute is of type universal_integer, and nonnegative.

For an object X of subtype S, if S'Alignment is not zero, then X'Alignment is a nonzero
integral multiple of S'Alignment unless specified otherwise by a representation item.

Alignment may be specified for first subtypes via an attribute_definition_clause; the
expression of such a clause shall be static, and its value nonnegative.

Erroneous Execution

Program execution is erroneous if an Address clause is given that conflicts with the Alignment.
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For an object that is not allocated under control of the implementation, execution is erroneous if the object
is not aligned according to its Alignment.

Implementation Advice

For any tagged specific subtype S, S'Class'Alignment should equal S'Alignment.
The recommended level of support for the Alignment attribute for subtypes is:

e An implementation should support an Alignment clause for a discrete type, fixed point type,
record type, or array type, specifying an Alignment value that is zero or a power of two, subject
to the following:

e An implementation need not support an Alignment clause for a signed integer type specifying an
Alignment greater than the largest Alignment value that is ever chosen by default by the
implementation for any signed integer type. A corresponding limitation may be imposed for
modular integer types, fixed point types, enumeration types, record types, and array types.

e An implementation need not support a nonconfirming Alignment clause which could enable the
creation of an object of an elementary type which cannot be easily loaded and stored by
available machine instructions.

e An implementation need not support an Alignment specified for a derived tagged type which is
not a multiple of the Alignment of the parent type. An implementation need not support a
nonconfirming Alignment specified for a derived untagged by-reference type.

The recommended level of support for the Alignment attribute for objects is:
® This paragraph was deleted.

e For stand-alone library-level objects of statically constrained subtypes, the implementation
should support all Alignments supported by the target linker. For example, page alignment is
likely to be supported for such objects, but not for subtypes.

e For other objects, an implementation should at least support the alignments supported for their
subtype, subject to the following:

e An implementation need not support Alignments specified for objects of a by-reference type or
for objects of types containing aliased subcomponents if the specified Alignment is not a
multiple of the Alignment of the subtype of the object.

NOTES
4 Alignment is a subtype-specific attribute.

This paragraph was deleted.
5 A component_clause, Component_Size clause, or specifying the Pack aspect as True can override a specified
Alignment.
Static Semantics
For a prefix X that denotes an object:

X'Size Denotes the size in bits of the representation of the object. The value of this attribute is of
the type universal_integer.

Size may be specified for stand-alone objects via an attribute_definition_clause; the
expression of such a clause shall be static and its value nonnegative.

Implementation Advice

The size of an array object should not include its bounds.
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The recommended level of support for the Size attribute of objects is the same as for subtypes (see below),
except that only a confirming Size clause need be supported for an aliased elementary object.

®  This paragraph was deleted.

Static Semantics
For every subtype S:
S'Size If S is definite, denotes the size (in bits) that the implementation would choose for the
following objects of subtype S:
e A record component of subtype S when the record type is packed.

e The formal parameter of an instance of Unchecked Conversion that converts
from subtype S to some other subtype.

If S is indefinite, the meaning is implementation defined. The value of this attribute is of
the type universal _integer. The Size of an object is at least as large as that of its subtype,
unless the object's Size is determined by a Size clause, a component clause, or a
Component_Size clause. Size may be specified for first subtypes via an attribute_-
definition_clause; the expression of such a clause shall be static and its value nonnegative.

Implementation Requirements

In an implementation, Boolean'Size shall be 1.

Implementation Advice

If the Size of a subtype allows for efficient independent addressability (see 9.10) on the target architecture,
then the Size of the following objects of the subtype should equal the Size of the subtype:

e Aliased objects (including components).

e Unaliased components, unless the Size of the component is determined by a component_clause
or Component_Size clause.

A Size clause on a composite subtype should not affect the internal layout of components.

The recommended level of support for the Size attribute of subtypes is:

e The Size (if not specified) of a static discrete or fixed point subtype should be the number of bits
needed to represent each value belonging to the subtype using an unbiased representation,
leaving space for a sign bit only if the subtype contains negative values. If such a subtype is a
first subtype, then an implementation should support a specified Size for it that reflects this
representation.

e For a subtype implemented with levels of indirection, the Size should include the size of the
pointers, but not the size of what they point at.

e An implementation should support a Size clause for a discrete type, fixed point type, record
type, or array type, subject to the following:

« An implementation need not support a Size clause for a signed integer type specifying a
Size greater than that of the largest signed integer type supported by the implementation in
the absence of a size clause (that is, when the size is chosen by default). A corresponding
limitation may be imposed for modular integer types, fixed point types, enumeration types,
record types, and array types.

« A nonconfirming size clause for the first subtype of a derived untagged by-reference type
need not be supported.
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NOTES
6 Size is a subtype-specific attribute.

7 A component_clause or Component_Size clause can override a specified Size. Aspect Pack cannot.

Static Semantics

For a prefix T that denotes a task object (after any implicit dereference):

T'Storage Size
Denotes the number of storage elements reserved for the task. The value of this attribute is
of the type universal _integer. The Storage Size includes the size of the task's stack, if any.
The language does not specify whether or not it includes other storage associated with the
task (such as the “task control block™ used by some implementations.) If the aspect
Storage Size is specified for the type of the object, the value of the Storage Size attribute
is at least the value determined by the aspect.

Aspect Storage Size specifies the amount of storage to be reserved for the execution of a task.

Paragraphs 62 through 65 were moved to Annex J, “Obsolescent Features”.

Static Semantics

For a task type (including the anonymous type of a single_task_declaration), the following language-
defined representation aspect may be specified:

Storage Size The Storage Size aspect is an expression, which shall be of any integer type.

Legality Rules
The Storage Size aspect shall not be specified for a task interface type.

Dynamic Semantics
When a task object is created, the expression (if any) associated with the Storage Size aspect of its type is
evaluated; the Storage Size attribute of the newly created task object is at least the value of the
expression.

At the point of task object creation, or upon task activation, Storage Error is raised if there is insufficient
free storage to accommodate the requested Storage Size.

Static Semantics
For a prefix X that denotes an array subtype or array object (after any implicit dereference):

X'Component_Size
Denotes the size in bits of components of the type of X. The value of this attribute is of type
universal_integer.

Component_Size may be specified for array types via an attribute_definition_clause; the
expression of such a clause shall be static, and its value nonnegative.
Implementation Advice
The recommended level of support for the Component_Size attribute is:

e An implementation need not support specified Component_Sizes that are less than the Size of
the component subtype.

e An implementation should support specified Component_Sizes that are factors and multiples of
the word size. For such Component Sizes, the array should contain no gaps between
components. For other Component Sizes (if supported), the array should contain no gaps
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between components when Pack is also specified; the implementation should forbid this
combination in cases where it cannot support a no-gaps representation.

For a prefix X that denotes an object:

X'Has_Same_ Storage
X'Has Same_Storage denotes a function with the following specification:

Static Semantics

function X'Has_ Same_ Storage (4rg : any_type)

return Boolean

The actual parameter shall be a name that denotes an object. The object denoted by the
actual parameter can be of any type. This function evaluates the names of the objects
involved and returns True if the representation of the object denoted by the actual
parameter occupies exactly the same bits as the representation of the object denoted by X;

otherwise, it returns False.

For a prefix X that denotes an object:

X'Overlaps_Storage
X'Overlaps_Storage denotes a function with the following specification:

function X'Overlaps_Storage (A4Arg : any_type)

return Boolean

The actual parameter shall be a name that denotes an object. The object denoted by the
actual parameter can be of any type. This function evaluates the names of the objects
involved and returns True if the representation of the object denoted by the actual

parameter shares at least
otherwise, it returns False.

NOTES

one bit with the representation of the object denoted by X;

8 X'Has_Same_Storage(Y) implies X'Overlaps_Storage(Y).

9 X'Has_Same_Storage(Y) and X'Overlaps_Storage(Y) are not considered to be reads of X and Y.

Static Semantics

The following type-related operational attribute is defined: External Tag.

For every subtype S of a tagged type T (specific or class-wide):

S'External_Tag
S'External_Tag denotes an external string representation for S'Tag; it is of the predefined
type String. External Tag may be specified for a specific tagged type via an
attribute_definition_clause; the expression of such a clause shall be static. The default

external tag representation is implementation defined. See 13.13.2. The value of

External Tag is never inherited; the default value is always used unless a new value is
directly specified for a type.

Dynamic Semantics

If a user-specified external tag S'External Tag is the same as T'External Tag for some other tagged type
declared by a different declaration in the partition, Program_Error is raised by the elaboration of the
attribute_definition_clause.

Implementation Requirements

In an implementation, the default external tag for each specific tagged type declared in a partition shall be
distinct, so long as the type is declared outside an instance of a generic body. If the compilation unit in
which a given tagged type is declared, and all compilation units on which it semantically depends, are the
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same in two different partitions, then the external tag for the type shall be the same in the two partitions.
What it means for a compilation unit to be the same in two different partitions is implementation defined.
At a minimum, if the compilation unit is not recompiled between building the two different partitions that
include it, the compilation unit is considered the same in the two partitions.

Implementation Permissions

If a user-specified external tag S'External Tag is the same as T'External Tag for some other tagged type
declared by a different declaration in the partition, the partition may be rejected.

NOTES

10 The following language-defined attributes are specifiable, at least for some of the kinds of entities to which they apply:
Address, Alignment, Bit Order, Component_Size, External Tag, Input, Machine Radix, Output, Read, Size, Small,
Storage Pool, Storage Size, Stream_Size, and Write.

11 Tt follows from the general rules in 13.1 that if one writes “for X'Size use Y;” then the X'Size attribute_reference will
return Y (assuming the implementation allows the Size clause). The same is true for all of the specifiable attributes except
Storage_Size.

Examples

Examples of attribute definition clauses:

Byte : constant := 8;
Page : constant := 2**12;
type Medium is range 0 .. 65 _000;

for Medium'Size use 2*Byte;

for Medium'Alignment use 2;

Device Register : Medium;

for Device Register'Size use Medium'Size;

for Device Register'Address use
System.Storage Elements.To_ Address (16#FFFF_0020%#) ;

type Short is delta 0.01 range -100.0 .. 100.0;
for Short'Size use 15;
for Car Name'Storage Size use -- specify access type's storage pool size
2000* ( (Car'Size/System.Storage Unit) +1); -- approximately 2000 cars

function My Input (Stream : not null access
Ada.Streams.Root Stream Type'Class)

return T;
for T'Input use My Input; --seel3.13.2

NOTES
12 Notes on the examples: In the Size clause for Short, fifteen bits is the minimum necessary, since the type definition
requires Short'Small <= 2**(-7).

13.4 Enumeration Representation Clauses

An enumeration_representation_clause specifies the internal codes for enumeration literals.

Syntax

enumeration_representation_clause ::=
for first subtype local_name use enumeration_aggregate;

enumeration_aggregate ::= array_aggregate

Name Resolution Rules

The enumeration_aggregate shall be written as a one-dimensional array_aggregate, for which the index
subtype is the unconstrained subtype of the enumeration type, and each component expression is expected
to be of any integer type.
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Legality Rules

The first subtype local_name of an enumeration_representation_clause shall denote an enumeration
subtype.

Each component of the array_aggregate shall be given by an expression rather than a <>. The
expressions given in the array_aggregate shall be static, and shall specify distinct integer codes for each
value of the enumeration type; the associated integer codes shall satisfy the predefined ordering relation of
the type.

Static Semantics

An enumeration_representation_clause specifies the coding aspect of representation. The coding
consists of the internal code for each enumeration literal, that is, the integral value used internally to
represent each literal.

Implementation Requirements

For nonboolean enumeration types, if the coding is not specified for the type, then for each value of the
type, the internal code shall be equal to its position number.

Implementation Advice
The recommended level of support for enumeration_representation_clauses is:
e An implementation should support at least the internal codes in the range

System.Min_Int..System.Max_Int. An implementation need not support enumeration_-
representation_clauses for boolean types.

NOTES

13 Unchecked Conversion may be used to query the internal codes used for an enumeration type. The attributes of the
type, such as Succ, Pred, and Pos, are unaffected by the enumeration_representation_clause. For example, Pos always
returns the position number, not the internal integer code that might have been specified in an
enumeration_representation_clause.

Examples
Example of an enumeration representation clause:

type Mix Code is (ADD, SUB, MUL, LDA, STA, STZ);

for Mix Code use
(ADD => 1, SUB => 2, MUL => 3, LDA => 8, STA => 24, STZ =>33);

13.5 Record Layout

The (record) layout aspect of representation consists of the storage places for some or all components, that
is, storage place attributes of the components. The layout can be specified with a record_representation_-
clause.
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13.5.1 Record Representation Clauses

A record_representation_clause specifies the storage representation of records and record extensions,
that is, the order, position, and size of components (including discriminants, if any).

Syntax
record_representation_clause ::=
for first_subtype_local_name use
record [mod_clause]
{component_clause}
end record,

component_clause ::=
component_local_name at position range first_bit .. last_bit;

position ::= static_expression
first_bit ::= static_simple_expression
last_bit ::= static_simple_expression
Name Resolution Rules

Each position, first_bit, and last_bit is expected to be of any integer type.

Legality Rules

The first_subtype_local_name of a record_representation_clause shall denote a specific record or record
extension subtype.

If the component _local_name is a direct_name, the local_name shall denote a component of the type. For
a record extension, the component shall not be inherited, and shall not be a discriminant that corresponds
to a discriminant of the parent type. If the component local_name has an attribute_designator, the
direct_name of the local_name shall denote either the declaration of the type or a component of the type,
and the attribute_designator shall denote an implementation-defined implicit component of the type.

The position, first_bit, and last_bit shall be static expressions. The value of position and first_bit shall be
nonnegative. The value of last_bit shall be no less than first_bit — 1.
If the nondefault bit ordering applies to the type, then either:

e the value of last_bit shall be less than the size of the largest machine scalar; or

e the value of first_bit shall be zero and the value of last_bit + 1 shall be a multiple of
System.Storage Unit.

At most one component_clause is allowed for each component of the type, including for each
discriminant (component_clauses may be given for some, all, or none of the components). Storage places
within a component_list shall not overlap, unless they are for components in distinct variants of the same
variant_part.

A name that denotes a component of a type is not allowed within a record_representation_clause for the
type, except as the component _local_name of a component_clause.

Static Semantics

A record_representation_clause (without the mod_clause) specifies the layout.
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If the default bit ordering applies to the type, the position, first_bit, and last_bit of each
component_clause directly specify the position and size of the corresponding component.

If the nondefault bit ordering applies to the type, then the layout is determined as follows:

e the component_clauses for which the value of last_bit is greater than or equal to the size of the
largest machine scalar directly specify the position and size of the corresponding component;

o for other component_clauses, all of the components having the same value of position are
considered to be part of a single machine scalar, located at that position; this machine scalar has
a size which is the smallest machine scalar size larger than the largest last bit for all
component_clauses at that position; the first_bit and last_bit of each component_clause are
then interpreted as bit offsets in this machine scalar.

A record_representation_clause for a record extension does not override the layout of the parent part; if
the layout was specified for the parent type, it is inherited by the record extension.

Implementation Permissions

An implementation may generate implementation-defined components (for example, one containing the
offset of another component). An implementation may generate names that denote such implementation-
defined components; such names shall be implementation-defined attribute_references. An implemen-
tation may allow such implementation-defined names to be used in record_representation_clauses. An
implementation can restrict such component_clauses in any manner it sees fit.

If a record_representation_clause is given for an untagged derived type, the storage place attributes for
all of the components of the derived type may differ from those of the corresponding components of the
parent type, even for components whose storage place is not specified explicitly in the record_-
representation_clause.

Implementation Advice
The recommended level of support for record_representation_clauses is:

e An implementation should support machine scalars that correspond to all of the integer, floating
point, and address formats supported by the machine.

e An implementation should support storage places that can be extracted with a load, mask, shift
sequence of machine code, and set with a load, shift, mask, store sequence, given the available
machine instructions and run-time model.

e A storage place should be supported if its size is equal to the Size of the component subtype, and
it starts and ends on a boundary that obeys the Alignment of the component subtype.

e For a component with a subtype whose Size is less than the word size, any storage place that
does not cross an aligned word boundary should be supported.

e An implementation may reserve a storage place for the tag field of a tagged type, and disallow
other components from overlapping that place.

e An implementation need not support a component_clause for a component of an extension part
if the storage place is not after the storage places of all components of the parent type, whether
or not those storage places had been specified.

NOTES

14 If no component_clause is given for a component, then the choice of the storage place for the component is left to the
implementation. If component_clauses are given for all components, the record_representation_clause completely
specifies the representation of the type and will be obeyed exactly by the implementation.
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Examples

Example of specifying the layout of a record type:

Word
type
type
type
type
type

type
rec

constant := 4; -- storage element is byte, 4 bytes per word
State is (A,M,W,P);
Mode is (Fix, Dec, Exp, Signif);
Byte Mask is array (0..7) of Boolean;
State_Mask is array (State) of Boolean;
Mode_ Mask is array (Mode) of Boolean;
Program Status_Word is
ord

System Mask Byte Mask;
Protection_ Key Integer range 0 .. 3;
Machine_ State State_Mask;
Interrupt_ Cause Interruption Code;
Ilc Integer range 0 .. 3;
Cc Integer range 0 .. 3;
Program_Mask Mode_Mask;
Inst_Address Address;

end record;

for Program Status Word use

record
System Mask at 0*Word range 0 .. 7;
Protection Key at 0*Word range 10 11; -- bits 8,9 unused
Machine State at 0*Word range 12 15;
Interrupt_Cause at 0*Word range 16 31;
Ilc at 1*Word range O 1; -- second word
Cc at 1*Word range 2 .. 3;
Program Mask at 1*Word range 4 .. 7;
Inst_Address at 1*Word range 8 31;
end record;

for Program Status_Word'Size use
for Program Status Word'Alignment use 8;

NOTES

8*System.Storage Unit;

15 Note on the example: The record_representation_clause defines the record layout. The Size clause guarantees that (at
least) eight storage elements are used for objects of the type. The Alignment clause guarantees that aliased, imported, or
exported objects of the type will have addresses divisible by eight.

13.5.2 Storage Place Attributes

Static Semantics

For a component C of a composite, non-array object R, the storage place attributes are defined:

R.C'Position If the nondefault bit ordering applies to the composite type, and if a component_clause
specifies the placement of C, denotes the value given for the position of the
component_clause; otherwise, denotes the same value as R.C'Address — R'Address. The
value of this attribute is of the type universal_integer.

R.C'First_Bit

If the nondefault bit ordering applies to the composite type, and if a component_clause
specifies the placement of C, denotes the value given for the first_bit of the
component_clause; otherwise, denotes the offset, from the start of the first of the storage
elements occupied by C, of the first bit occupied by C. This offset is measured in bits. The
first bit of a storage element is numbered zero. The value of this attribute is of the type

universal_integer.
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R.C'Last Bit
If the nondefault bit ordering applies to the composite type, and if a component_clause
specifies the placement of C, denotes the value given for the last_bit of the
component_clause; otherwise, denotes the offset, from the start of the first of the storage
elements occupied by C, of the last bit occupied by C. This offset is measured in bits. The
value of this attribute is of the type universal_integer.

Implementation Advice

If a component is represented using some form of pointer (such as an offset) to the actual data of the
component, and this data is contiguous with the rest of the object, then the storage place attributes should
reflect the place of the actual data, not the pointer. If a component is allocated discontiguously from the
rest of the object, then a warning should be generated upon reference to one of its storage place attributes.

13.5.3 Bit Ordering

The Bit_Order attribute specifies the interpretation of the storage place attributes.

Static Semantics
A bit ordering is a method of interpreting the meaning of the storage place attributes. High Order First
(known in the vernacular as “big endian”) means that the first bit of a storage element (bit 0) is the most
significant bit (interpreting the sequence of bits that represent a component as an unsigned integer value).
Low_Order First (known in the vernacular as “little endian”’) means the opposite: the first bit is the least
significant.

For every specific record subtype S, the following attribute is defined:

S'Bit Order Denotes the bit ordering for the type of S. The value of this attribute is of type
System.Bit_Order. Bit Order may be specified for specific record types via an
attribute_definition_clause; the expression of such a clause shall be static.

If Word Size = Storage Unit, the default bit ordering is implementation defined. If Word Size >
Storage Unit, the default bit ordering is the same as the ordering of storage elements in a word, when
interpreted as an integer.

The storage place attributes of a component of a type are interpreted according to the bit ordering of the
type.

Implementation Advice
The recommended level of support for the nondefault bit ordering is:

e The implementation should support the nondefault bit ordering in addition to the default bit
ordering.

NOTES
16 Bit_Order clauses make it possible to write record_representation_clauses that can be ported between machines
having different bit ordering. They do not guarantee transparent exchange of data between such machines.
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13.6 Change of Representation

A type_conversion (see 4.6) can be used to convert between two different representations of the same
array or record. To convert an array from one representation to another, two array types need to be
declared with matching component subtypes, and convertible index types. If one type has Pack specified
and the other does not, then explicit conversion can be used to pack or unpack an array.

To convert a record from one representation to another, two record types with a common ancestor type
need to be declared, with no inherited subprograms. Distinct representations can then be specified for the
record types, and explicit conversion between the types can be used to effect a change in representation.

Examples
Example of change of representation:

- - Packed_Descriptor and Descriptor are two different types
- - with identical characteristics, apart from their
- - representation

type Descriptor is
record
- - components of a descriptor
end record;

type Packed Descriptor is new Descriptor;

for Packed Descriptor use
record
- - component clauses for some or for all components
end record;

-- Change of representation can now be accomplished by explicit type conversions:

D : Descriptor;

P Packed Descriptor;
P := Packed Descriptor(D); -- packD
D := Descriptor (P); - - unpack P
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For each implementation there is a library package called System which includes the definitions of certain

configuration-dependent characteristics.

Static Semantics

The following language-defined library package exists:

package System is
pragma Pure (System) ;

type Name is implementation-defined-enumeration-type ;
constant Name := implementation-defined ;

System_ Name

- - System-Dependent Named Numbers:

Min_Int
Max_Int

Max_Binary Modulus
Max_Nonbinary Modulus

Max_ Base Digits

Max Digits

Max Mantissa
Fine Delta

Tick

- - Storage-related Declarations:

type Address
Null Address

Storage_Unit
Word Size
Memory Size

is

constant :=
constant :=

constant :=
constant :=

constant :=
constant :=

constant :=
constant :=

constant :=

implementation-defined ;
constant Address;

constant
constant
constant

- - Address Comparison:
eft, Right : Address)
with Convention => Intrinsic;

function "<"

function "<=" (Left,

(L

Right : Address)

with Convention => Intrinsic;
eft, Right : Address)
with Convention => Intrinsic;

function ">"

function ">=" (Left,

(L

Right : Address)

with Convention => Intrinsic;
eft, Right : Address)
with Convention => Intrinsic;

function "="

-- function " /="

(L

(

Left, Right

- - "/="is implicitly defined

- - Other System-Dependent Declarations:

type Bit_Order is
Default Bit Order

- - Priority-related declarations (see D.1):
subtype Any Priority is Integer range implementation-defined;
subtype Priority is Any Priority range Any Priority'First
implementation-defined ;
subtype Interrupt Priority is Any Priority range Priority'Last+1l
Any Priority'Last;

Default Priority

constant Priority

Address)

root _integer' First;
root_integer'Last ;

implementation-defined ;
implementation-defined ;

root_real'Digits;
implementation-defined ;

implementation-defined ;
implementation-defined ;

implementation-defined ;

implementation-defined ;
implementation-defined * Storage Unit;
implementation-defined ;

return Boolean
return Boolean
return Boolean
return Boolean

return Boolean

(High_Order_ First, Low_Order First);
constant Bit Order := implementation-defined ;

(Priority'First + Priority'Last)/2;

private

- - not specified by the language

end System;
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Name is an enumeration subtype. Values of type Name are the names of alternative machine configura-
tions handled by the implementation. System Name represents the current machine configuration.

The named numbers Fine Delta and Tick are of the type universal real; the others are of the type
universal_integer.

The meanings of the named numbers are:

Min_Int The smallest (most negative) value allowed for the expressions of a signed_integer_type_-
definition.

Max_Int The largest (most positive) value allowed for the expressions of a signed_integer_type_-
definition.

Max_Binary Modulus
A power of two such that it, and all lesser positive powers of two, are allowed as the
modulus of a modular_type_definition.

Max_Nonbinary Modulus
A value such that it, and all lesser positive integers, are allowed as the modulus of a
modular_type_definition.

Max_Base Digits
The largest value allowed for the requested decimal precision in a floating_point_definition.

Max_Digits  The largest value allowed for the requested decimal precision in a floating_point_definition
that has no real _range_specification. Max_ Digits is less than or equal to
Max_Base Digits.

Max_Mantissa
The largest possible number of binary digits in the mantissa of machine numbers of a user-
defined ordinary fixed point type. (The mantissa is defined in Annex G.)

Fine Delta  The smallest delta allowed in an ordinary_fixed_point_definition that has the real_range_-
specification range —1.0 .. 1.0.

Tick A period in seconds approximating the real time interval during which the value of
Calendar.Clock remains constant.

Storage Unit
The number of bits per storage element.

Word_Size  The number of bits per word.

Memory_ Size An implementation-defined value that is intended to reflect the memory size of the
configuration in storage elements.

Address is a definite, nonlimited type with preelaborable initialization (see 10.2.1). Address represents
machine addresses capable of addressing individual storage elements. Null Address is an address that is
distinct from the address of any object or program unit.

Default Bit Order shall be a static constant. See 13.5.3 for an explanation of Bit Order and
Default Bit Order.

Implementation Permissions

An implementation may add additional implementation-defined declarations to package System and its
children. However, it is usually better for the implementation to provide additional functionality via
implementation-defined children of System.
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Implementation Advice

Address should be a private type. 37
NOTES
17 There are also some language-defined child packages of System defined elsewhere. 38

13.7.1 The Package System.Storage_Elements

Static Semantics

The following language-defined library package exists: 1

package System.Storage_ Elements is 2/2
pragma Pure (Storage Elements) ;

type Storage Offset is range implementation-defined ; 3

subtype Storage Count is Storage Offset range 0..Storage Offset'Last; 4

type Storage Element is mod implementation-defined; 5

for Storage Element'Size use Storage Unit;
type Storage Array is array

(Storage_Offset range <>) of aliased Storage Element;
for Storage Array'Component Size use Storage Unit;

- - Address Arithmetic: 6

function "+" (Left : Address; Right : Storage Offset) return Address 713
with Convention => Intrinsic;

function "+" (Left : Storage Offset; Right : Address) return Address
with Convention => Intrinsic;

function "-"(Left : Address; Right : Storage Offset) return Address
with Convention => Intrinsic;
function "-"(Left, Right : Address) return Storage Offset

with Convention => Intrinsic;

function "mod" (Left : Address; Right : Storage Offset) 8/3
return Storage Offset
with Convention => Intrinsic;

- - Conversion to/from integers: 9

type Integer Address is implementation-defined ; 10/3
function To_Address(Value : Integer Address) return Address

with Convention => Intrinsic;
function To Integer(Value : Address) return Integer Address

with Convention => Intrinsic;

end System.Storage Elements; 11/3

Storage Element represents a storage element. Storage Offset represents an offset in storage elements. 12
Storage Count represents a number of storage elements. Storage Array represents a contiguous sequence
of storage elements.

Integer Address is a (signed or modular) integer subtype. To Address and To_Integer convert back and 13
forth between this type and Address.

Implementation Requirements

Storage Offset'Last shall be greater than or equal to Integer'Last or the largest possible storage offset, 14
whichever is smaller. Storage Offset'First shall be <= (—Storage Offset'Last).

Paragraph 15 was deleted.
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Implementation Advice
Operations in System and its children should reflect the target environment semantics as closely as is

reasonable. For example, on most machines, it makes sense for address arithmetic to “wrap around.”
Operations that do not make sense should raise Program_Error.

13.7.2 The Package System.Address_To_Access_Conversions

Static Semantics
The following language-defined generic library package exists:

generic
type Object (<>) is limited private;
package System.Address To_ Access Conversions is
pragma Preelaborate (Address To Access_Conversions) ;

type Object Pointer is access all Object;

function To_Pointer (Value : Address) return Object_ Pointer
with Convention => Intrinsic;

function To Address(Value : Object Pointer) return Address
with Convention => Intrinsic;

end System.Address To Access Conversions;
The To Pointer and To_ Address subprograms convert back and forth between values of types
Object Pointer and Address. To_ Pointer(X'Address) is equal to X'Unchecked Access for any X that
allows Unchecked Access. To Pointer(Null Address) returns null. For other addresses, the behavior is

unspecified. To Address(null) returns Null Address. To Address(Y), where Y /= null, returns
Y.all'Address.

Implementation Permissions

An implementation may place restrictions on instantiations of Address_To_Access Conversions.

13.8 Machine Code Insertions

A machine code insertion can be achieved by a call to a subprogram whose sequence_of_statements
contains code_statements.

Syntax
code_statement ::= qualified_expression;
A code_statement is only allowed in the handled_sequence_of_statements of a subprogram_-
body. If a subprogram_body contains any code_statements, then within this subprogram_body the
only allowed form of statement is a code_statement (labeled or not), the only allowed declarative_-

items are use_clauses, and no exception_handler is allowed (comments and pragmas are allowed
as usual).

Name Resolution Rules
The qualified_expression is expected to be of any type.
Legality Rules
The qualified_expression shall be of a type declared in package System.Machine Code.

A code_statement shall appear only within the scope of a with_clause that mentions package
System.Machine Code.
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Static Semantics

The contents of the library package System.Machine Code (if provided) are implementation defined. The
meaning of code_statements is implementation defined. Typically, each qualified_expression represents
a machine instruction or assembly directive.

Implementation Permissions

An implementation may place restrictions on code_statements. An implementation is not required to
provide package System.Machine Code.

NOTES
18 An implementation may provide implementation-defined pragmas specifying register conventions and calling
conventions.

19 Machine code functions are exempt from the rule that a return statement is required. In fact, return statements are
forbidden, since only code_statements are allowed.

20 Intrinsic subprograms (see 6.3.1, “Conformance Rules”) can also be used to achieve machine code insertions. Interface
to assembly language can be achieved using the features in Annex B, “Interface to Other Languages”.

Examples
Example of a code statement:

M : Mask;
procedure Set_Mask
with Inline;

procedure Set Mask is

use System.Machine Code; -- assume “with System.Machine_Code;” appears somewhere above
begin

SI_Format' (Code => SSM, B => M'Base Reg, D => M'Disp);

-- Base_Reg and Disp are implementation-defined attributes
end Set Mask;

13.9 Unchecked Type Conversions

An unchecked type conversion can be achieved by a call to an instance of the generic function
Unchecked Conversion.

Static Semantics
The following language-defined generic library function exists:

generic
type Source(<>) is limited private;
type Target(<>) is limited private;

function Ada.Unchecked Conversion(S : Source) return Target
with Convention => Intrinsic;

pragma Pure (Ada.Unchecked Conversion) ;

Dynamic Semantics
The size of the formal parameter S in an instance of Unchecked Conversion is that of its subtype. This is
the actual subtype passed to Source, except when the actual is an unconstrained composite subtype, in
which case the subtype is constrained by the bounds or discriminants of the value of the actual expression
passed to S.

If all of the following are true, the effect of an unchecked conversion is to return the value of an object of
the target subtype whose representation is the same as that of the source object S:

e S'Size = Target'Size.
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e S'Alignment is a multiple of Target'Alignment or Target'Alignment is zero.
e The target subtype is not an unconstrained composite subtype.

e S and the target subtype both have a contiguous representation.

e The representation of S is a representation of an object of the target subtype.

Otherwise, if the result type is scalar, the result of the function is implementation defined, and can have an
invalid representation (see 13.9.1). If the result type is nonscalar, the effect is implementation defined; in
particular, the result can be abnormal (see 13.9.1).

Implementation Permissions
An implementation may return the result of an unchecked conversion by reference, if the Source type is
not a by-copy type. In this case, the result of the unchecked conversion represents simply a different (read-
only) view of the operand of the conversion.

An implementation may place restrictions on Unchecked Conversion.

Implementation Advice

Since the Size of an array object generally does not include its bounds, the bounds should not be part of
the converted data.

The implementation should not generate unnecessary run-time checks to ensure that the representation of
S is a representation of the target type. It should take advantage of the permission to return by reference
when possible. Restrictions on unchecked conversions should be avoided unless required by the target
environment.

The recommended level of support for unchecked conversions is:

e Unchecked conversions should be supported and should be reversible in the cases where this
subclause defines the result. To enable meaningful use of unchecked conversion, a contiguous
representation should be used for elementary subtypes, for statically constrained array subtypes
whose component subtype is one of the subtypes described in this paragraph, and for record
subtypes without discriminants whose component subtypes are described in this paragraph.

13.9.1 Data Validity

Certain actions that can potentially lead to erroneous execution are not directly erroneous, but instead can
cause objects to become abnormal. Subsequent uses of abnormal objects can be erroneous.

A scalar object can have an invalid representation, which means that the object's representation does not
represent any value of the object's subtype. The primary cause of invalid representations is uninitialized
variables.

Abnormal objects and invalid representations are explained in this subclause.

Dynamic Semantics

When an object is first created, and any explicit or default initializations have been performed, the object
and all of its parts are in the normal state. Subsequent operations generally leave them normal. However,
an object or part of an object can become abnormal in the following ways:

e An assignment to the object is disrupted due to an abort (see 9.8) or due to the failure of a
language-defined check (see 11.6).
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e The object is not scalar, and is passed to an in out or out parameter of an imported procedure,
the Read procedure of an instance of Sequential 10, Direct IO, or Storage IO, or the stream
attribute T'Read, if after return from the procedure the representation of the parameter does not
represent a value of the parameter's subtype.

e The object is the return object of a function call of a nonscalar type, and the function is an
imported function, an instance of Unchecked_Conversion, or the stream attribute T'Input, if after
return from the function the representation of the return object does not represent a value of the
function's subtype.

For an imported object, it is the programmer's responsibility to ensure that the object remains in a normal
state.

Whether or not an object actually becomes abnormal in these cases is not specified. An abnormal object
becomes normal again upon successful completion of an assignment to the object as a whole.

Erroneous Execution

It is erroneous to evaluate a primary that is a name denoting an abnormal object, or to evaluate a prefix
that denotes an abnormal object.

Bounded (Run-Time) Errors

If the representation of a scalar object does not represent a value of the object's subtype (perhaps because
the object was not initialized), the object is said to have an invalid representation. 1t is a bounded error to
evaluate the value of such an object. If the error is detected, either Constraint Error or Program_Error is
raised. Otherwise, execution continues using the invalid representation. The rules of the language outside
this subclause assume that all objects have valid representations. The semantics of operations on invalid
representations are as follows:

o [f the representation of the object represents a value of the object's type, the value of the type is
used.

e If the representation of the object does not represent a value of the object's type, the semantics of
operations on such representations is implementation-defined, but does not by itself lead to
erroneous or unpredictable execution, or to other objects becoming abnormal.

Erroneous Execution

A call to an imported function or an instance of Unchecked Conversion is erroneous if the result is scalar,
the result object has an invalid representation, and the result is used other than as the expression of an
assignment_statement or an object_declaration, as the object name of an
object_renaming_declaration, or as the prefix of a Valid attribute. If such a result object is used as the
source of an assignment, and the assigned value is an invalid representation for the target of the
assignment, then any use of the target object prior to a further assignment to the target object, other than as
the prefix of a Valid attribute reference, is erroneous.

The dereference of an access value is erroneous if it does not designate an object of an appropriate type or
a subprogram with an appropriate profile, if it designates a nonexistent object, or if it is an access-to-
variable value that designates a constant object and it did not originate from an attribute_reference applied
to an aliased variable view of a controlled or immutably limited object. An access value whose
dereference is erroneous can exist, for example, because of Unchecked Deallocation, Unchecked Access,
or Unchecked Conversion.

NOTES
21 Objects can become abnormal due to other kinds of actions that directly update the object's representation; such
actions are generally considered directly erroneous, however.
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13.9.2 The Valid Attribute

The Valid attribute can be used to check the validity of data produced by unchecked conversion, input,
interface to foreign languages, and the like.

Static Semantics

For a prefix X that denotes a scalar object (after any implicit dereference), the following attribute is
defined:

X'Valid Yields True if and only if the object denoted by X is normal, has a valid representation, and
the predicate of the nominal subtype of X evaluates to True. The value of this attribute is of
the predefined type Boolean.

NOTES
22 Invalid data can be created in the following cases (not counting erroneous or unpredictable execution):
e an uninitialized scalar object,
e the result of an unchecked conversion,
e input,
e interface to another language (including machine code),
e aborting an assignment,
e disrupting an assignment due to the failure of a language-defined check (see 11.6), and
e use of an object whose Address has been specified.
23 X'Valid is not considered to be a read of X; hence, it is not an error to check the validity of invalid data.
24 The Valid attribute may be used to check the result of calling an instance of Unchecked Conversion (or any other

operation that can return invalid values). However, an exception handler should also be provided because implementations
are permitted to raise Constraint_Error or Program_Error if they detect the use of an invalid representation (see 13.9.1).

13.10 Unchecked Access Value Creation

The attribute Unchecked_Access is used to create access values in an unsafe manner — the programmer is
responsible for preventing “dangling references.”

Static Semantics
The following attribute is defined for a prefix X that denotes an aliased view of an object:

X'Unchecked Access
All rules and semantics that apply to X'Access (see 3.10.2) apply also to
X'Unchecked Access, except that, for the purposes of accessibility rules and checks, it is as
if X were declared immediately within a library package.

NOTES

25 This attribute is provided to support the situation where a local object is to be inserted into a global linked data
structure, when the programmer knows that it will always be removed from the data structure prior to exiting the object's
scope. The Access attribute would be illegal in this case (see 3.10.2, “Operations of Access Types”).

26 There is no Unchecked_Access attribute for subprograms.
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13.11 Storage Management

Each access-to-object type has an associated storage pool. The storage allocated by an allocator comes
from the pool; instances of Unchecked Deallocation return storage to the pool. Several access types can
share the same pool.

A storage pool is a variable of a type in the class rooted at Root_Storage Pool, which is an abstract limited
controlled type. By default, the implementation chooses a standard storage pool for each access-to-object
type. The user may define new pool types, and may override the choice of pool for an access-to-object
type by specifying Storage Pool for the type.

Legality Rules
If Storage Pool is specified for a given access type, Storage Size shall not be specified for it.

Static Semantics
The following language-defined library package exists:

with Ada.Finalization;
with System.Storage Elements;
package System.Storage_ Pools is
pragma Preelaborate (System.Storage_ Pools) ;

type Root_ Storage Pool is
abstract new Ada.Finalization.Limited Controlled with private;
pragma Preelaborable Initialization(Root_ Storage Pool) ;

procedure Allocate (
Pool : in out Root_Storage_Pool;
Storage_Address : out Address;
Size In Storage Elements : in Storage Elements.Storage Count;
Alignment : in Storage Elements.Storage Count) is abstract;

procedure Deallocate (
Pool : in out Root_Storage_Pool;

Storage_Address : in Address;
Size In Storage Elements : in Storage Elements.Storage Count;
Alignment : in Storage Elements.Storage Count) is abstract;

function Storage Size(Pool : Root Storage Pool)
return Storage_Elements.Storage_Count is abstract;

private
... -- not specified by the language
end System.Storage Pools;
A storage pool type (or pool type) is a descendant of Root_Storage Pool. The elements of a storage pool
are the objects allocated in the pool by allocators.

For every access-to-object subtype S, the following representation attributes are defined:

S'Storage Pool
Denotes the storage pool of the type of S. The type of this attribute is Root Storage -
Pool'Class.

S'Storage Size
Yields the result of calling Storage Size(S'Storage Pool), which is intended to be a
measure of the number of storage elements reserved for the pool. The type of this attribute
is universal_integer-.

Storage Size or Storage Pool may be specified for a nonderived access-to-object type via an attribute_-
definition_clause; the name in a Storage Pool clause shall denote a variable.
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An allocator of a type T that does not support subpools allocates storage from T's storage pool. If the
storage pool is a user-defined object, then the storage is allocated by calling Allocate as described below.
Allocators for types that support subpools are described in 13.11.4.

If Storage Pool is not specified for a type defined by an access_to_object_definition, then the
implementation chooses a standard storage pool for it in an implementation-defined manner. In this case,
the exception Storage Error is raised by an allocator if there is not enough storage. It is implementation
defined whether or not the implementation provides user-accessible names for the standard pool type(s).

If Storage Size is specified for an access type, then the Storage Size of this pool is at least that requested,
and the storage for the pool is reclaimed when the master containing the declaration of the access type is
left. If the implementation cannot satisfy the request, Storage Error is raised at the point of the attribute_-
definition_clause. If neither Storage Pool nor Storage Size are specified, then the meaning of
Storage Size is implementation defined.

If Storage Pool is specified for an access type, then the specified pool is used.

The effect of calling Allocate and Deallocate for a standard storage pool directly (rather than implicitly via
an allocator or an instance of Unchecked Deallocation) is unspecified.

Erroneous Execution

If Storage Pool is specified for an access type, then if Allocate can satisfy the request, it should allocate a
contiguous block of memory, and return the address of the first storage element in Storage Address. The
block should contain Size In_Storage Elements storage elements, and should be aligned according to
Alignment. The allocated storage should not be used for any other purpose while the pool element remains
in existence. If the request cannot be satisfied, then Allocate should propagate an exception (such as
Storage Error). If Allocate behaves in any other manner, then the program execution is erroneous.

Implementation Requirements

The Allocate procedure of a user-defined storage pool object P may be called by the implementation only
to allocate storage for a type T whose pool is P, only at the following points:

e During the execution of an allocator of type 7;

e During the execution of a return statement for a function whose result is built-in-place in the
result of an allocator of type 7;

e During the execution of an assignment operation with a target of an allocated object of type T
with a part that has an unconstrained discriminated subtype with defaults.

For each of the calls of Allocate described above, P (equivalent to 7'Storage Pool) is passed as the Pool
parameter. The Size In Storage Elements parameter indicates the number of storage elements to be
allocated, and is no more than D'Max_Size In Storage Elements, where D is the designated subtype of 7.
The Alignment parameter is a nonzero integral multiple of D'Alignment if D is a specific type, and
otherwise is a nonzero integral multiple of the alignment of the specific type identified by the tag of the
object being created; it is unspecified if there is no such value. The Alignment parameter is no more than
D'Max_Alignment_For Allocation. The result returned in the Storage Address parameter is used as the
address of the allocated storage, which is a contiguous block of memory of Size In_Storage Elements
storage elements. Any exception propagated by Allocate is propagated by the construct that contained the
call.

The number of calls to Allocate needed to implement an allocator for any particular type is unspecified.
The number of calls to Deallocate needed to implement an instance of Unchecked Deallocation (see
13.11.2) for any particular object is the same as the number of Allocate calls for that object.
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The Deallocate procedure of a user-defined storage pool object P may be called by the implementation to
deallocate storage for a type 7" whose pool is P only at the places when an Allocate call is allowed for P,
during the execution of an instance of Unchecked Deallocation for 7, or as part of the finalization of the
collection of 7. For such a call of Deallocate, P (equivalent to 7'Storage Pool) is passed as the Pool
parameter. The value of the Storage Address parameter for a call to Deallocate is the value returned in the
Storage Address parameter of the corresponding successful call to Allocate. The values of the
Size In_Storage Elements and Alignment parameters are the same values passed to the corresponding
Allocate call. Any exception propagated by Deallocate is propagated by the construct that contained the
call.

Documentation Requirements

An implementation shall document the set of values that a user-defined Allocate procedure needs to accept
for the Alignment parameter. An implementation shall document how the standard storage pool is chosen,
and how storage is allocated by standard storage pools.

Implementation Advice

An implementation should document any cases in which it dynamically allocates heap storage for a
purpose other than the evaluation of an allocator.

A default (implementation-provided) storage pool for an access-to-constant type should not have overhead
to support deallocation of individual objects.

The storage pool used for an allocator of an anonymous access type should be determined as follows:

e If the allocator is defining a coextension (see 3.10.2) of an object being created by an outer
allocator, then the storage pool used for the outer allocator should also be used for the
coextension;

e For other access discriminants and access parameters, the storage pool should be created at the
point of the allocator, and be reclaimed when the allocated object becomes inaccessible;

e If the allocator defines the result of a function with an access result, the storage pool is
determined as though the allocator were in place of the call of the function. If the call is the
operand of a type conversion, the storage pool is that of the target access type of the conversion.
If the call is itself defining the result of a function with an access result, this rule is applied
recursively;

e Otherwise, a default storage pool should be created at the point where the anonymous access
type is elaborated; such a storage pool need not support deallocation of individual objects.
NOTES
27 A user-defined storage pool type can be obtained by extending the Root Storage Pool type, and overriding the
primitive subprograms Allocate, Deallocate, and Storage Size. A user-defined storage pool can then be obtained by
declaring an object of the type extension. The user can override Initialize and Finalize if there is any need for nontrivial
initialization and finalization for a user-defined pool type. For example, Finalize might reclaim blocks of storage that are
allocated separately from the pool object itself.

28 The writer of the user-defined allocation and deallocation procedures, and users of allocators for the associated access
type, are responsible for dealing with any interactions with tasking. In particular:

e Ifthe allocators are used in different tasks, they require mutual exclusion.

o Ifthey are used inside protected objects, they cannot block.

e If they are used by interrupt handlers (see C.3, “Interrupt Support”), the mutual exclusion mechanism has to
work properly in that context.

29 The primitives Allocate, Deallocate, and Storage_Size are declared as abstract (see 3.9.3), and therefore they have to
be overridden when a new (nonabstract) storage pool type is declared.
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Examples
To associate an access type with a storage pool object, the user first declares a pool object of some type
derived from Root_Storage Pool. Then, the user defines its Storage Pool attribute, as follows:
Pool_Object : Some_Storage Pool Type;

type T is access Designated;
for T'Storage Pool use Pool Object;

Another access type may be added to an existing storage pool, via:

for T2'Storage Pool use T'Storage Pool;

The semantics of this is implementation defined for a standard storage pool.

As usual, a derivative of Root Storage Pool may define additional operations. For example, consider the
Mark Release Pool Type defined in 13.11.6, that has two additional operations, Mark and Release, the
following is a possible use:

type Mark Release_Pool_ Type
(Pool_Size : Storage Elements.Storage Count)
is new Subpools.Root Storage Pool With Subpools with private;
- - As defined in package MR_Pool, see 13.11.6

Our_ Pool : Mark Release Pool Type (Pool_Size => 2000);
My Mark : MR_Pool.Subpool Handle; -- Seel3.11.6

type Acc is access ...;
for Acc'Storage Pool use Our_ Pool;

My Mark := Mark (Our_ Pool) ;
- - Allocate objects using “new (My Mark) Designated(...)".
Release (My Mark) ; -- Finalize objects and reclaim sto