Learning

This first section contains a tour through XMLUnit’s features, the next sections will cover them in more detail. Note
that it has a strong focus on using the XMLTestCase class which is one option to use XMLUnit, but not the only
one. XMLUnit’s features can be fully used without any dependency on JUnit at all. XMLUnit enables JUnit-style
assertions to be made about the content and structure of XML1. It is an open source project hosted at
http://xmlunit.sourceforge.net/ that grew out of a need to test a system that generated and received custom XML
messages. The problem that we faced was how to verify that the system generated the correct message from a
known set of inputs. Obviously we could use a DTD or a schema to validate the message output, but this approach
wouldn’t allow us to distinguish between valid XML with correct content and valid XML with incorrect content.
What we really wanted was an assertXMLEqual() method, so we could compare the message that we expected the
system to generate and the message that the system actually generated. And that was the beginning of XMLUnit.
XMLUnit provides a single JUnit extension class, XMLTestCase, and a set of supporting classes that allow asser-
tions to be made about: The differences between two pieces of XML (via Diff and DetailedDiff classes).The validity
of a piece of XML (via Validator class).The outcome of transforming a piece = ™ of XML using XSLT (via Transform
class).The evaluation of an XPath expression on a piece of XML (via classes implementing the XpathEngine
interface).Individual nodes in a piece of XML that are exposed by DOM Traversal (via NodeTest class)XMLUnit can
also treat HTML content, even badly-formed HTML, as valid XML to allow these assertions to be made about web
pages (via the HTMLDocumentBuilder class).

As with many projects some words in XMLUnit have particular meanings so here is a quick overview. A piece of
XML is a DOM Document, a String containing marked-up content, or a Source or Reader that allows access to
marked-up content within some resource. XMLUnit compares the expected control XML to some actual test XML.
The comparison can reveal that two pieces of XML are identical, similar or different. The unit of measurement used
by the comparison is a difference, and differences can be either recoverable or unrecoverable. Two pieces of XML
are identical if there are no differences between them, similar if there are only recoverable differences between
them, and different if there are any unrecoverable differences between them.

XMLUnit requires a JAXP compliant XML parser virtually everywhere. Several features of XMLUnit also require a
JAXP compliant XSLT transformer. If it is available, a JAXP compliant XPath engine will be used for XPath tests.
To build XMLUnit at least JAXP 1.2 is required, this is the version provided by the Java class library in JDK 1.4.
The JAXP 1.3 (i.e. Java5 and above) XPath engine can only be built when JAXP 1.3 is available. As long as you
don’t require support for XML Namespaces or XML Schema, any JAXP 1.1 compliant implementations should
work at runtime. For namespace and schema support you will need a parser that complies to JAXP 1.2 and supports
the required feature. The XML parser shipping with JDK 1.4 (a version of Apache Crimson) for example is compli-
ant to JAXP 1.2 but doesn’t support Schema validation. XMLUnit is supposed to build and run on any Java version
after 1.3 (at least no new hard JDK 1.4 dependencies have been added in XMLUnit 1.1), but it has only been tested
on JDK 1.4.2 and above. To build XMLUnit JUnit 3.x (only tested with JUnit 3.8.x) is required. It is not required at
runtime unless you intend to use the XMLTestCase or XMLAssert classes. XMLUnit consists of a few classes all
living in the org.custommonkey.xmlunit package. You can use these classes directly from your code, no matter
whether you are writing a unit test or want to use XMLUnit’s features for any other purpose. This section provides
a few hints of where to start if you want to use a certain feature of XMLUnit, more details can be found in the
more specific sections later in this document. Heart and soul of XMLUnit’s comparison engine is DifferenceEngine
but most of the time you will use it indirectly via the Diff class. You can influence the engine by providing (cus-
tom) implementations for various interfaces and by setting a couple of options on the XMLUnit class. More infor-
mation is available in Section 3. All validation happens in the Validator class. The default is to validate against a
DTD, but XML Schema validation can be enabled by an option (see Validator.useXMLSchema). Several options of
the XMLUnit class affect validation. More information is available in Section 4. The Transform class provides an
easy to use layer on top of JAXP’s transformations. An instance of this class is initialized with the source document
and a stylesheet and the result of the transformation can be retrieved as a String or DOM Document. The output of
Transform can be used as input to comparisons, validations, XPath tests and so on. There is no detailed sections on
transformations since they are really only a different way to create input for the rest of XMLUnit | ! machinery.
Examples can be found in Section 1.6. It is possible to provide a custom | | B! javax.xml.transform.URIResolver via
the XMLUnit.setURIResolver method. You can access the underlying XSLT transformer via XMLUnit.getTransformer-
Factory. The central piece of XMLUnit’s XPath support is the XpathEngine interface. Currently two implementations
of the interface exist, SimpleXpathEngine and org.custommonkey.xmlunit.jaxp13.Jaxpl3XpathEngine. SimpleXpa-
thEngine is a very basic implementation that uses your XSLT transformer under the covers. This also means it will
expose you to the bugs found in your transformer like the transformer claiming a stylesheet couldn’t be compiled for
very basic XPath expressions. This has been reported to be the case for JDK 1.5.
org.custommonkey.xmlunit.jaxp13.Jaxp13XpathEngine uses JAXP 1.3’s javax.xml.xpath package and seems to work
more reliable, stable and performant than SimpleXpathEngine. You use the XMLUnit.newXpathEngine method to
obtain an instance of the XpathEngine. As of XMLUnit 1.1 this will try to use JAXP 1.3 if it is available and fall back
to SimpleXpathEngine. Instances of XpathEngine can return the results of XPath queries either as DOM NodeList or

Page 2 of 3

plain Strings. More information is available in Section 5. To test pieces of XML by traversing the DOM tree you use
the NodeTester class. Each DOM Node will be passed to a NodeTester implementation you provide. The
AbstractNodeTester class is provided as a NullObject Pattern base class for implementations of your own. More
information is available in Section 6. Initially XMLUnit was tightly coupled to JUnit and the recommended approach
was to write unit tests by inheriting from the XMLTestCase class. XMLTestCase provides a pretty long list of assert...
methods that may simplify your interaction with XMLUnit’s internals in many common cases. The XMLAssert class
provides the same set of assert...s as static methods. Use XMLAssert instead of XMLTestCase for your unit tests if you
can’t or don’t want to inherit from XMLTestCase. All power of XMLUnit is available whether you use XMLTestCase
and/or XMLAssert or the underlying API directly. If you are using JUnit 3.x then using the specific classes may prove
to be more convenient.

If you are using a JDK 1.4 or later, your Java class library already contains the required XML parsers and XSLT
transformers. Still you may want to use a different parser/transformer than the one of your JDK - in particular since
the versions shipping with some JDKs are known to contain serious bugs. As described in Section 1.4 there are two
main approaches to choose the XML parser of XSLT transformer: System properties and setters in the XMLUnit
class. If you use system properties you have the advantage that your choice affects the whole JAXP system, whether
it is used inside of XMLUnit or not. If you are using JDK 1.4 or later you may also want to review the Endorsed
Standards Override Mechanism to use a different parser/transformer than the one shipping with your JDK. The sec-
ond option - using the XMLUnit class - allows you to use different parsers for control and test documents, it even
allows you to use different parsers for different test cases, if you really want to stretch it that far. It may also work
for JDK 1.4 and above, even if you don’t override the endorsed standards libraries. You can access the underlying
JAXP parser by XMLUnit.newControlParser, XMLUnit.newTestParser, XMLUnit. getControlDocumentBuilderFac-
tory, XMLUnit.getTestDocumentBuilderFactory and XMLUnit.getSAXParserFactory (used by Validator). Note that
all these methods return factories or parsers that are namespace aware. The various build... methods in XMLUnit
provide convenience layers for building DOM Documents using the configured parsers. You can also set the class
name for the XPathFactory to use when using JAXP 1.3 by passing the class name to XMLUnit- .setXPathFactory.

At the center of XMLUnit’s support for comparisons is the DifferenceEngine class. In practice you rarely deal with
it directly but rather use it via instances of Diff or DetailedDiff classes (see Section 3.5). The DifferenceEngine
walks two trees of DOM Nodes, the control and the test tree, and compares the nodes. Whenever it detects a differ-
ence, it sends a message to a configured DifferenceListener (see Section 3.3) and asks a Comparison- Controller
(see Section 3.2) whether the current comparison should be halted. In some cases the order of elements in two
pieces of XML may not be significant. If this is true, the DifferenceEngine needs help to determine which Elements
to compare. This is the job of an ElementQualifier (see Section 3.4). The types of differences DifferenceEngine can
detect are enumerated in the DifferenceConstants interface and represented by instances of the Difference class. A
Difference can be recoverable; recoverable Differences make the Diff class consider two pieces of XML similar
while non-recoverable Differences render the two pieces different. The types of Differences that are currently de-
tected are listed in Table 1 to Table 4 (the first two columns refer to the DifferenceConstants class). Note that some
of the differences listed may be ignored by the DifferenceEngine if certain configuration options have been speci-
fied. See Section 3.8 for details. DifferenceEngine passes differences found around as instances of the Difference
class. In addition to the type of of difference this class also holds information on the nodes that have been found to
be different. The nodes are described by NodeDetail instances that encapsulate the DOM Node instance as well as
the XPath expression that locates the Node inside the given piece of XML. NodeDetail also contains a "value” that
provides more information on the actual values that have been found to be different, the concrete interpretation de-
pends on the type of difference as can be seen in Table 5. As said in the first paragraph you won’t deal with Differ-
enceEngine directly in most cases. In cases where Diff or DetailedDiff don’t provide what you need you’d create an
instance of DifferenceEngine passing a ComparisonController in the constructor and invoke compare with your
DOM trees to compare as well as a DifferenceListener and ElementQualifier. The listener will be called on any dif-
ferences while the control method is executing.

IgnoreTextAndAttribute ValuesDifferenceListener doesn’t do anything in skippedComparison. It "downgrades” Dif-
ferences of type ATTR_VALUE, ATTR_VALUE_EXPLICITLY_SPECIFIED and TEXT_VALUE to recoverable
differences. This means if instances of IgnoreTextAndAttributeValuesDifferenceListener are used together with Diff
then two pieces of XML will be considered similar if they have the same basic structure. They are not considered
identical, though. Note that the list of ignored differences doesn’t cover all textual differences. You should configure
XMLUnit to ignore comments and whitespace and to consider CDATA sections and text nodes to be the same (see
Section 3.8) in order to cover COMMENT_- VALUE and CDATA_VALUE as well.

Only Elements with the same name - and Namespace URI if present - qualify. In Example 3.4 this means control
node 1 will be compared to test node 2. Then control node 2 will be compared to test node 3 because DifferenceEn-

Page 3 of 3

gine will start to search for the matching test Element at the second test node, the same sequence number the con-
trol node is at. Control node 3 is compared to test node 3 as well and control node 4 to test node 4.

MultiLevelElementNameAndTextQualifier has in a way been the predecessor of Section 3.4.4. It also matches ele-
ment names and those of nested child elements until it finds matches, but unlike RecursiveElementNameAndText-
Qualifier, you must tell MultiLevelElementNameAndTextQualifier at which nesting level it should expect the nested
text. MultiLevelElementNameAndTextQualifier’s constructor expects a single argument which is the nesting level of
the expected text. If you use an argument of 1, MultiLevelElementNameAndTextQualifier is identical to Element-
NameAndTextQualifier. In Example 3.5 a value of 2 would be needed. By default MultiLevelElementNameAndTex-
tQualifier will not ignore whitespace between the elements leading up to the nested text. If your piece of XML con-
tains this sort of whitespace (like Example 3.5 which contains a newline and several space characters between) you
can either instruct XMLUnit to ignore whitespace completely (see Section 3.8.1) or use the two-arg constructor of
MultiLevelElementNameAndTextQualifier introduced with XMLUnit 1.2 and set the ignoreEmptyTexts argument to
true. In general RecursiveElementNameAndTextQualifier requires less knowledge upfront and its whitespace-
handling is more intuitive.

Diff and DetailedDiff provide simplified access to DifferenceEngine by implementing the ComparisonController and
DifferenceListener interfaces themselves. They cover the two most common use cases for comparing two pieces of
XML: checking whether the pieces are different (this is what Diff does) and finding all differences between them
(this is what DetailedDiff does). DetailedDiff is a subclass of Diff and can only be constructed by creating a Diff
instance first. The major difference between them is their implementation of the ComparisonController interface:
DetailedDiff will never stop the comparison since it wants to collect all differences. Diff in turn will halt the com-
parison as soon as the first Difference is found that is not recoverable. In addition DetailedDiff collects all Differ-
ences in a list and provides access to it. By default Diff will consider two pieces of XML as identical if no differ-
ences have been found at all, similar if all differences that have been found have been recoverable (see Table 1 to
Table 4) and different as soon as any non-recoverable difference has been found. It is possible to specify a Differ-
enceListener to Diff using the overrideDifferenceListener method. In this case each Difference will be evaluated by
the passed in DifferenceListener. By returning RETURN_IGNORE- _DIFFERENCE_NODES_IDENTICAL the cus-
tom listener can make Diff ignore the difference completely. Likewise any Difference for which the custom listener
returns RETURN_IGNORE_DIFFERENCE_NODES_SIMILAR will be treated as if the Difference was recoverable.
There are several overloads of the Diff constructor that allow you to specify your piece of XML in many ways.
There are overloads that accept additional DifferenceEngine and ElementQualifier arguments. Passing in a Differen-
ceEngine of your own is the only way to use a ComparisonController other than Diff. Note that Diff and Detailed-
Diff use ElementNameQualifier as their default ElementQualifier. This is different from DifferenceEngine which
defaults to no ElementQualifier at all. To use a custom ElementQualifier you can also use the overrideEle-
mentQualifier method. Use this with an argument of null to unset the default ElementQualifier as well.

ANNOTATIONS
1. My first annotation
2. My second annotation

3. My third annotation

