| Safe Haskell | Safe-Inferred |
|---|---|
| Language | Haskell2010 |
Distribution.Compat.Prelude.Internal
Contents
- Prelude
- Common type-classes
- Some types
- Data.Either
- Data.Maybe
- Data.List
- Data.List.NonEmpty
- Data.Foldable
- Data.Traversable
- Data.Function
- Data.Ord
- Control.Arrow
- Control.Monad
- Control.Exception
- Control.DeepSeq
- Data.Char
- Data.Void
- Data.Word & Data.Int
- Text.PrettyPrint
- System.Exit
- Text.Read
- Debug.Trace (as deprecated functions)
Description
Warning: This modules' API is not stable. Use at your own risk, or better yet, use base-compat!
This module re-exports the non-exposed
Distribution.Compat.Prelude module for
reuse by cabal-install's
Distribution.Client.Compat.Prelude module.
It is highly discouraged to rely on this module
for Setup.hs scripts since its API is not
stable.
Synopsis
- (++) :: [a] -> [a] -> [a]
- seq :: forall {r :: RuntimeRep} a (b :: TYPE r). a -> b -> b
- filter :: (a -> Bool) -> [a] -> [a]
- zip :: [a] -> [b] -> [(a, b)]
- print :: Show a => a -> IO ()
- fst :: (a, b) -> a
- snd :: (a, b) -> b
- otherwise :: Bool
- map :: (a -> b) -> [a] -> [b]
- ($) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b
- fromIntegral :: (Integral a, Num b) => a -> b
- realToFrac :: (Real a, Fractional b) => a -> b
- class Bounded a where
- class Enum a where
- succ :: a -> a
- pred :: a -> a
- toEnum :: Int -> a
- fromEnum :: a -> Int
- enumFrom :: a -> [a]
- enumFromThen :: a -> a -> [a]
- enumFromTo :: a -> a -> [a]
- enumFromThenTo :: a -> a -> a -> [a]
- class Eq a where
- class Fractional a => Floating a where
- class Num a => Fractional a where
- (/) :: a -> a -> a
- recip :: a -> a
- fromRational :: Rational -> a
- class (Real a, Enum a) => Integral a where
- class Applicative m => Monad (m :: Type -> Type) where
- class Functor (f :: Type -> Type) where
- class Num a where
- class Eq a => Ord a where
- class Read a where
- class (Num a, Ord a) => Real a where
- toRational :: a -> Rational
- class (RealFrac a, Floating a) => RealFloat a where
- floatRadix :: a -> Integer
- floatDigits :: a -> Int
- floatRange :: a -> (Int, Int)
- decodeFloat :: a -> (Integer, Int)
- encodeFloat :: Integer -> Int -> a
- exponent :: a -> Int
- significand :: a -> a
- scaleFloat :: Int -> a -> a
- isNaN :: a -> Bool
- isInfinite :: a -> Bool
- isDenormalized :: a -> Bool
- isNegativeZero :: a -> Bool
- isIEEE :: a -> Bool
- atan2 :: a -> a -> a
- class (Real a, Fractional a) => RealFrac a where
- class Show a where
- class Monad m => MonadFail (m :: Type -> Type) where
- class Functor f => Applicative (f :: Type -> Type) where
- sum :: (Foldable t, Num a) => t a -> a
- product :: (Foldable t, Num a) => t a -> a
- minimum :: (Foldable t, Ord a) => t a -> a
- maximum :: (Foldable t, Ord a) => t a -> a
- foldl :: Foldable t => (b -> a -> b) -> b -> t a -> b
- elem :: (Foldable t, Eq a) => a -> t a -> Bool
- class Semigroup a => Monoid a where
- data Bool
- type String = [Char]
- data Char
- data Double
- data Float
- data Int
- data Integer
- data Maybe a
- data Ordering
- type Rational = Ratio Integer
- data IO a
- data Either a b
- writeFile :: FilePath -> String -> IO ()
- readLn :: Read a => IO a
- readIO :: Read a => String -> IO a
- readFile :: FilePath -> IO String
- putStrLn :: String -> IO ()
- putStr :: String -> IO ()
- putChar :: Char -> IO ()
- interact :: (String -> String) -> IO ()
- getLine :: IO String
- getContents :: IO String
- getChar :: IO Char
- appendFile :: FilePath -> String -> IO ()
- ioError :: IOError -> IO a
- type FilePath = String
- type IOError = IOException
- userError :: String -> IOError
- sequence_ :: (Foldable t, Monad m) => t (m a) -> m ()
- or :: Foldable t => t Bool -> Bool
- notElem :: (Foldable t, Eq a) => a -> t a -> Bool
- concatMap :: Foldable t => (a -> [b]) -> t a -> [b]
- concat :: Foldable t => t [a] -> [a]
- and :: Foldable t => t Bool -> Bool
- words :: String -> [String]
- unwords :: [String] -> String
- unlines :: [String] -> String
- lines :: String -> [String]
- reads :: Read a => ReadS a
- either :: (a -> c) -> (b -> c) -> Either a b -> c
- readParen :: Bool -> ReadS a -> ReadS a
- lex :: ReadS String
- type ReadS a = String -> [(a, String)]
- odd :: Integral a => a -> Bool
- lcm :: Integral a => a -> a -> a
- gcd :: Integral a => a -> a -> a
- even :: Integral a => a -> Bool
- (^^) :: (Fractional a, Integral b) => a -> b -> a
- (^) :: (Num a, Integral b) => a -> b -> a
- type ShowS = String -> String
- shows :: Show a => a -> ShowS
- showString :: String -> ShowS
- showParen :: Bool -> ShowS -> ShowS
- showChar :: Char -> ShowS
- zipWith3 :: (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d]
- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
- zip3 :: [a] -> [b] -> [c] -> [(a, b, c)]
- unzip3 :: [(a, b, c)] -> ([a], [b], [c])
- unzip :: [(a, b)] -> ([a], [b])
- takeWhile :: (a -> Bool) -> [a] -> [a]
- take :: Int -> [a] -> [a]
- splitAt :: Int -> [a] -> ([a], [a])
- span :: (a -> Bool) -> [a] -> ([a], [a])
- scanr1 :: (a -> a -> a) -> [a] -> [a]
- scanr :: (a -> b -> b) -> b -> [a] -> [b]
- scanl1 :: (a -> a -> a) -> [a] -> [a]
- scanl :: (b -> a -> b) -> b -> [a] -> [b]
- reverse :: [a] -> [a]
- replicate :: Int -> a -> [a]
- repeat :: a -> [a]
- lookup :: Eq a => a -> [(a, b)] -> Maybe b
- iterate :: (a -> a) -> a -> [a]
- dropWhile :: (a -> Bool) -> [a] -> [a]
- drop :: Int -> [a] -> [a]
- cycle :: [a] -> [a]
- break :: (a -> Bool) -> [a] -> ([a], [a])
- (!!) :: [a] -> Int -> a
- maybe :: b -> (a -> b) -> Maybe a -> b
- (<$>) :: Functor f => (a -> b) -> f a -> f b
- uncurry :: (a -> b -> c) -> (a, b) -> c
- curry :: ((a, b) -> c) -> a -> b -> c
- subtract :: Num a => a -> a -> a
- until :: (a -> Bool) -> (a -> a) -> a -> a
- id :: a -> a
- flip :: (a -> b -> c) -> b -> a -> c
- const :: a -> b -> a
- asTypeOf :: a -> a -> a
- (=<<) :: Monad m => (a -> m b) -> m a -> m b
- (.) :: (b -> c) -> (a -> b) -> a -> c
- ($!) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b
- undefined :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => a
- errorWithoutStackTrace :: forall (r :: RuntimeRep) (a :: TYPE r). [Char] -> a
- error :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => [Char] -> a
- (&&) :: Bool -> Bool -> Bool
- not :: Bool -> Bool
- (||) :: Bool -> Bool -> Bool
- class Semigroup a where
- (<>) :: a -> a -> a
- gmappend :: (Generic a, GSemigroup (Rep a)) => a -> a -> a
- gmempty :: (Generic a, GMonoid (Rep a)) => a
- class Typeable (a :: k)
- type TypeRep = SomeTypeRep
- typeRep :: forall {k} proxy (a :: k). Typeable a => proxy a -> TypeRep
- class Typeable a => Data a
- class Generic a
- class NFData a where
- rnf :: a -> ()
- genericRnf :: (Generic a, GNFData (Rep a)) => a -> ()
- class Binary t where
- class Typeable a => Structured a
- class Applicative f => Alternative (f :: Type -> Type) where
- class (Alternative m, Monad m) => MonadPlus (m :: Type -> Type) where
- class IsString a where
- fromString :: String -> a
- data Map k a
- data Set a
- data NonEmptySet a
- newtype Identity a = Identity {
- runIdentity :: a
- data Proxy (t :: k) = Proxy
- newtype Const a (b :: k) = Const {
- getConst :: a
- data Void
- partitionEithers :: [Either a b] -> ([a], [b])
- catMaybes :: [Maybe a] -> [a]
- mapMaybe :: (a -> Maybe b) -> [a] -> [b]
- fromMaybe :: a -> Maybe a -> a
- maybeToList :: Maybe a -> [a]
- listToMaybe :: [a] -> Maybe a
- isNothing :: Maybe a -> Bool
- isJust :: Maybe a -> Bool
- unfoldr :: (b -> Maybe (a, b)) -> b -> [a]
- isPrefixOf :: Eq a => [a] -> [a] -> Bool
- isSuffixOf :: Eq a => [a] -> [a] -> Bool
- intercalate :: [a] -> [[a]] -> [a]
- intersperse :: a -> [a] -> [a]
- sort :: Ord a => [a] -> [a]
- sortBy :: (a -> a -> Ordering) -> [a] -> [a]
- nub :: Eq a => [a] -> [a]
- nubBy :: (a -> a -> Bool) -> [a] -> [a]
- partition :: (a -> Bool) -> [a] -> ([a], [a])
- data NonEmpty a = a :| [a]
- foldl1 :: (a -> a -> a) -> NonEmpty a -> a
- foldr1 :: (a -> a -> a) -> NonEmpty a -> a
- head :: NonEmpty a -> a
- tail :: NonEmpty a -> [a]
- last :: NonEmpty a -> a
- init :: NonEmpty a -> [a]
- class Foldable (t :: Type -> Type)
- foldMap :: (Foldable t, Monoid m) => (a -> m) -> t a -> m
- foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b
- null :: Foldable t => t a -> Bool
- length :: Foldable t => t a -> Int
- find :: Foldable t => (a -> Bool) -> t a -> Maybe a
- foldl' :: Foldable t => (b -> a -> b) -> b -> t a -> b
- traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f ()
- for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f ()
- any :: Foldable t => (a -> Bool) -> t a -> Bool
- all :: Foldable t => (a -> Bool) -> t a -> Bool
- toList :: Foldable t => t a -> [a]
- class (Functor t, Foldable t) => Traversable (t :: Type -> Type)
- traverse :: (Traversable t, Applicative f) => (a -> f b) -> t a -> f (t b)
- sequenceA :: (Traversable t, Applicative f) => t (f a) -> f (t a)
- for :: (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b)
- on :: (b -> b -> c) -> (a -> b) -> a -> a -> c
- comparing :: Ord a => (b -> a) -> b -> b -> Ordering
- first :: Arrow a => a b c -> a (b, d) (c, d)
- liftM :: Monad m => (a1 -> r) -> m a1 -> m r
- liftM2 :: Monad m => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r
- unless :: Applicative f => Bool -> f () -> f ()
- when :: Applicative f => Bool -> f () -> f ()
- ap :: Monad m => m (a -> b) -> m a -> m b
- void :: Functor f => f a -> f ()
- foldM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b
- filterM :: Applicative m => (a -> m Bool) -> [a] -> m [a]
- join :: Monad m => m (m a) -> m a
- guard :: Alternative f => Bool -> f ()
- catch :: Exception e => IO a -> (e -> IO a) -> IO a
- throwIO :: Exception e => e -> IO a
- evaluate :: a -> IO a
- class (Typeable e, Show e) => Exception e where
- toException :: e -> SomeException
- fromException :: SomeException -> Maybe e
- displayException :: e -> String
- data IOException
- data SomeException = Exception e => SomeException e
- tryIO :: IO a -> IO (Either IOException a)
- catchIO :: IO a -> (IOException -> IO a) -> IO a
- catchExit :: IO a -> (ExitCode -> IO a) -> IO a
- deepseq :: NFData a => a -> b -> b
- force :: NFData a => a -> a
- isSpace :: Char -> Bool
- isDigit :: Char -> Bool
- isUpper :: Char -> Bool
- isAlpha :: Char -> Bool
- isAlphaNum :: Char -> Bool
- chr :: Int -> Char
- ord :: Char -> Int
- toLower :: Char -> Char
- toUpper :: Char -> Char
- absurd :: Void -> a
- vacuous :: Functor f => f Void -> f a
- data Word
- data Word8
- data Word16
- data Word32
- data Word64
- data Int8
- data Int16
- data Int32
- data Int64
- (<<>>) :: Doc -> Doc -> Doc
- (<+>) :: Doc -> Doc -> Doc
- data ExitCode
- exitWith :: ExitCode -> IO a
- exitSuccess :: IO a
- exitFailure :: IO a
- readMaybe :: Read a => String -> Maybe a
- trace :: String -> a -> a
- traceShow :: Show a => a -> b -> b
- traceShowId :: Show a => a -> a
Prelude
(++) :: [a] -> [a] -> [a] infixr 5 Source #
Append two lists, i.e.,
[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn] [x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]
If the first list is not finite, the result is the first list.
seq :: forall {r :: RuntimeRep} a (b :: TYPE r). a -> b -> b #
filter :: (a -> Bool) -> [a] -> [a] Source #
\(\mathcal{O}(n)\). filter, applied to a predicate and a list, returns
the list of those elements that satisfy the predicate; i.e.,
filter p xs = [ x | x <- xs, p x]
>>>filter odd [1, 2, 3][1,3]
zip :: [a] -> [b] -> [(a, b)] Source #
\(\mathcal{O}(\min(m,n))\). zip takes two lists and returns a list of
corresponding pairs.
>>>zip [1, 2] ['a', 'b'][(1, 'a'), (2, 'b')]
If one input list is shorter than the other, excess elements of the longer list are discarded, even if one of the lists is infinite:
>>>zip [1] ['a', 'b'][(1, 'a')]>>>zip [1, 2] ['a'][(1, 'a')]>>>zip [] [1..][]>>>zip [1..] [][]
zip is right-lazy:
>>>zip [] _|_[]>>>zip _|_ []_|_
zip is capable of list fusion, but it is restricted to its
first list argument and its resulting list.
print :: Show a => a -> IO () Source #
The print function outputs a value of any printable type to the
standard output device.
Printable types are those that are instances of class Show; print
converts values to strings for output using the show operation and
adds a newline.
For example, a program to print the first 20 integers and their powers of 2 could be written as:
main = print ([(n, 2^n) | n <- [0..19]])
map :: (a -> b) -> [a] -> [b] Source #
\(\mathcal{O}(n)\). map f xs is the list obtained by applying f to
each element of xs, i.e.,
map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn] map f [x1, x2, ...] == [f x1, f x2, ...]
>>>map (+1) [1, 2, 3][2,3,4]
($) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b infixr 0 Source #
Application operator. This operator is redundant, since ordinary
application (f x) means the same as (f . However, $ x)$ has
low, right-associative binding precedence, so it sometimes allows
parentheses to be omitted; for example:
f $ g $ h x = f (g (h x))
It is also useful in higher-order situations, such as ,
or map ($ 0) xs.zipWith ($) fs xs
Note that ( is levity-polymorphic in its result type, so that
$)foo where $ Truefoo :: Bool -> Int# is well-typed.
fromIntegral :: (Integral a, Num b) => a -> b Source #
general coercion from integral types
realToFrac :: (Real a, Fractional b) => a -> b Source #
general coercion to fractional types
class Bounded a where Source #
The Bounded class is used to name the upper and lower limits of a
type. Ord is not a superclass of Bounded since types that are not
totally ordered may also have upper and lower bounds.
The Bounded class may be derived for any enumeration type;
minBound is the first constructor listed in the data declaration
and maxBound is the last.
Bounded may also be derived for single-constructor datatypes whose
constituent types are in Bounded.
Instances
Class Enum defines operations on sequentially ordered types.
The enumFrom... methods are used in Haskell's translation of
arithmetic sequences.
Instances of Enum may be derived for any enumeration type (types
whose constructors have no fields). The nullary constructors are
assumed to be numbered left-to-right by fromEnum from 0 through n-1.
See Chapter 10 of the Haskell Report for more details.
For any type that is an instance of class Bounded as well as Enum,
the following should hold:
- The calls
andsuccmaxBoundshould result in a runtime error.predminBound fromEnumandtoEnumshould give a runtime error if the result value is not representable in the result type. For example,is an error.toEnum7 ::BoolenumFromandenumFromThenshould be defined with an implicit bound, thus:
enumFrom x = enumFromTo x maxBound
enumFromThen x y = enumFromThenTo x y bound
where
bound | fromEnum y >= fromEnum x = maxBound
| otherwise = minBoundMethods
the successor of a value. For numeric types, succ adds 1.
the predecessor of a value. For numeric types, pred subtracts 1.
Convert from an Int.
Convert to an Int.
It is implementation-dependent what fromEnum returns when
applied to a value that is too large to fit in an Int.
Used in Haskell's translation of [n..] with [n..] = enumFrom n,
a possible implementation being enumFrom n = n : enumFrom (succ n).
For example:
enumFrom 4 :: [Integer] = [4,5,6,7,...]
enumFrom 6 :: [Int] = [6,7,8,9,...,maxBound :: Int]
enumFromThen :: a -> a -> [a] Source #
Used in Haskell's translation of [n,n'..]
with [n,n'..] = enumFromThen n n', a possible implementation being
enumFromThen n n' = n : n' : worker (f x) (f x n'),
worker s v = v : worker s (s v), x = fromEnum n' - fromEnum n and
f n y
| n > 0 = f (n - 1) (succ y)
| n < 0 = f (n + 1) (pred y)
| otherwise = y
For example:
enumFromThen 4 6 :: [Integer] = [4,6,8,10...]
enumFromThen 6 2 :: [Int] = [6,2,-2,-6,...,minBound :: Int]
enumFromTo :: a -> a -> [a] Source #
Used in Haskell's translation of [n..m] with
[n..m] = enumFromTo n m, a possible implementation being
enumFromTo n m
| n <= m = n : enumFromTo (succ n) m
| otherwise = [].
For example:
enumFromTo 6 10 :: [Int] = [6,7,8,9,10]
enumFromTo 42 1 :: [Integer] = []
enumFromThenTo :: a -> a -> a -> [a] Source #
Used in Haskell's translation of [n,n'..m] with
[n,n'..m] = enumFromThenTo n n' m, a possible implementation
being enumFromThenTo n n' m = worker (f x) (c x) n m,
x = fromEnum n' - fromEnum n, c x = bool (>=) ((x 0)
f n y
| n > 0 = f (n - 1) (succ y)
| n < 0 = f (n + 1) (pred y)
| otherwise = y and
worker s c v m
| c v m = v : worker s c (s v) m
| otherwise = []
For example:
enumFromThenTo 4 2 -6 :: [Integer] = [4,2,0,-2,-4,-6]
enumFromThenTo 6 8 2 :: [Int] = []
Instances
Instances
class Fractional a => Floating a where Source #
Trigonometric and hyperbolic functions and related functions.
The Haskell Report defines no laws for Floating. However, (, +)(
and *)exp are customarily expected to define an exponential field and have
the following properties:
exp (a + b)=exp a * exp bexp (fromInteger 0)=fromInteger 1
Minimal complete definition
pi, exp, log, sin, cos, asin, acos, atan, sinh, cosh, asinh, acosh, atanh
Instances
class Num a => Fractional a where Source #
Fractional numbers, supporting real division.
The Haskell Report defines no laws for Fractional. However, ( and
+)( are customarily expected to define a division ring and have the
following properties:*)
recipgives the multiplicative inversex * recip x=recip x * x=fromInteger 1
Note that it isn't customarily expected that a type instance of
Fractional implement a field. However, all instances in base do.
Minimal complete definition
fromRational, (recip | (/))
Methods
(/) :: a -> a -> a infixl 7 Source #
Fractional division.
Reciprocal fraction.
fromRational :: Rational -> a Source #
Conversion from a Rational (that is ).
A floating literal stands for an application of Ratio IntegerfromRational
to a value of type Rational, so such literals have type
(.Fractional a) => a
Instances
| Fractional CDouble | |
| Fractional CFloat | |
| Fractional DiffTime | |
| Fractional NominalDiffTime | |
Defined in Data.Time.Clock.Internal.NominalDiffTime Methods (/) :: NominalDiffTime -> NominalDiffTime -> NominalDiffTime Source # | |
| RealFloat a => Fractional (Complex a) | Since: base-2.1 |
| Fractional a => Fractional (Identity a) | Since: base-4.9.0.0 |
| Fractional a => Fractional (Down a) | Since: base-4.14.0.0 |
| Integral a => Fractional (Ratio a) | Since: base-2.0.1 |
| HasResolution a => Fractional (Fixed a) | Since: base-2.1 |
| Fractional a => Fractional (Const a b) | Since: base-4.9.0.0 |
class (Real a, Enum a) => Integral a where Source #
Integral numbers, supporting integer division.
The Haskell Report defines no laws for Integral. However, Integral
instances are customarily expected to define a Euclidean domain and have the
following properties for the div/mod and quot/rem pairs, given
suitable Euclidean functions f and g:
x=y * quot x y + rem x ywithrem x y=fromInteger 0org (rem x y)<g yx=y * div x y + mod x ywithmod x y=fromInteger 0orf (mod x y)<f y
An example of a suitable Euclidean function, for Integer's instance, is
abs.
Methods
quot :: a -> a -> a infixl 7 Source #
integer division truncated toward zero
rem :: a -> a -> a infixl 7 Source #
integer remainder, satisfying
(x `quot` y)*y + (x `rem` y) == x
div :: a -> a -> a infixl 7 Source #
integer division truncated toward negative infinity
mod :: a -> a -> a infixl 7 Source #
integer modulus, satisfying
(x `div` y)*y + (x `mod` y) == x
quotRem :: a -> a -> (a, a) Source #
divMod :: a -> a -> (a, a) Source #
toInteger :: a -> Integer Source #
conversion to Integer
Instances
class Applicative m => Monad (m :: Type -> Type) where Source #
The Monad class defines the basic operations over a monad,
a concept from a branch of mathematics known as category theory.
From the perspective of a Haskell programmer, however, it is best to
think of a monad as an abstract datatype of actions.
Haskell's do expressions provide a convenient syntax for writing
monadic expressions.
Instances of Monad should satisfy the following:
- Left identity
returna>>=k = k a- Right identity
m>>=return= m- Associativity
m>>=(\x -> k x>>=h) = (m>>=k)>>=h
Furthermore, the Monad and Applicative operations should relate as follows:
The above laws imply:
and that pure and (<*>) satisfy the applicative functor laws.
The instances of Monad for lists, Maybe and IO
defined in the Prelude satisfy these laws.
Minimal complete definition
Methods
(>>=) :: m a -> (a -> m b) -> m b infixl 1 Source #
Sequentially compose two actions, passing any value produced by the first as an argument to the second.
'as ' can be understood as the >>= bsdo expression
do a <- as bs a
(>>) :: m a -> m b -> m b infixl 1 Source #
Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.
'as ' can be understood as the >> bsdo expression
do as bs
Inject a value into the monadic type.
Instances
| Monad Lex # | |
| Monad ParseResult # | |
Defined in Distribution.Fields.ParseResult Methods (>>=) :: ParseResult a -> (a -> ParseResult b) -> ParseResult b Source # (>>) :: ParseResult a -> ParseResult b -> ParseResult b Source # return :: a -> ParseResult a Source # | |
| Monad ParsecParser # | |
Defined in Distribution.Parsec Methods (>>=) :: ParsecParser a -> (a -> ParsecParser b) -> ParsecParser b Source # (>>) :: ParsecParser a -> ParsecParser b -> ParsecParser b Source # return :: a -> ParsecParser a Source # | |
| Monad Condition # | |
| Monad LogProgress # | |
Defined in Distribution.Utils.LogProgress Methods (>>=) :: LogProgress a -> (a -> LogProgress b) -> LogProgress b Source # (>>) :: LogProgress a -> LogProgress b -> LogProgress b Source # return :: a -> LogProgress a Source # | |
| Monad Complex | Since: base-4.9.0.0 |
| Monad Identity | Since: base-4.8.0.0 |
| Monad First | Since: base-4.8.0.0 |
| Monad Last | Since: base-4.8.0.0 |
| Monad Down | Since: base-4.11.0.0 |
| Monad First | Since: base-4.9.0.0 |
| Monad Last | Since: base-4.9.0.0 |
| Monad Max | Since: base-4.9.0.0 |
| Monad Min | Since: base-4.9.0.0 |
| Monad Option | Since: base-4.9.0.0 |
| Monad Dual | Since: base-4.8.0.0 |
| Monad Product | Since: base-4.8.0.0 |
| Monad Sum | Since: base-4.8.0.0 |
| Monad NonEmpty | Since: base-4.9.0.0 |
| Monad STM | Since: base-4.3.0.0 |
| Monad Par1 | Since: base-4.9.0.0 |
| Monad P | Since: base-2.1 |
| Monad ReadP | Since: base-2.1 |
| Monad ReadPrec | Since: base-2.1 |
| Monad Get | |
| Monad PutM | |
| Monad Put | |
| Monad Seq | |
| Monad Tree | |
| Monad IO | Since: base-2.1 |
| Monad Q | |
| Monad Maybe | Since: base-2.1 |
| Monad Solo | Since: base-4.15 |
| Monad [] | Since: base-2.1 |
| Monad m => Monad (WrappedMonad m) | Since: base-4.7.0.0 |
Defined in Control.Applicative Methods (>>=) :: WrappedMonad m a -> (a -> WrappedMonad m b) -> WrappedMonad m b Source # (>>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b Source # return :: a -> WrappedMonad m a Source # | |
| ArrowApply a => Monad (ArrowMonad a) | Since: base-2.1 |
Defined in Control.Arrow Methods (>>=) :: ArrowMonad a a0 -> (a0 -> ArrowMonad a b) -> ArrowMonad a b Source # (>>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b Source # return :: a0 -> ArrowMonad a a0 Source # | |
| Monad (Either e) | Since: base-4.4.0.0 |
| Monad (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
| Monad (U1 :: Type -> Type) | Since: base-4.9.0.0 |
| Monad (ST s) | Since: base-2.1 |
| Monad (SetM s) | |
| Monad m => Monad (ListT m) | |
| Monad m => Monad (MaybeT m) | |
| Monoid a => Monad ((,) a) | Since: base-4.9.0.0 |
| Monad (Progress step fail) # | |
| Monad m => Monad (Kleisli m a) | Since: base-4.14.0.0 |
| Monad f => Monad (Ap f) | Since: base-4.12.0.0 |
| Monad f => Monad (Alt f) | Since: base-4.8.0.0 |
| Monad f => Monad (Rec1 f) | Since: base-4.9.0.0 |
| (Applicative f, Monad f) => Monad (WhenMissing f x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods (>>=) :: WhenMissing f x a -> (a -> WhenMissing f x b) -> WhenMissing f x b Source # (>>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b Source # return :: a -> WhenMissing f x a Source # | |
| (Monad m, Error e) => Monad (ErrorT e m) | |
| Monad m => Monad (ExceptT e m) | |
| Monad m => Monad (IdentityT m) | |
| Monad m => Monad (ReaderT r m) | |
| Monad m => Monad (StateT s m) | |
| Monad m => Monad (StateT s m) | |
| (Monoid w, Monad m) => Monad (WriterT w m) | |
| (Monoid w, Monad m) => Monad (WriterT w m) | |
| (Monoid a, Monoid b) => Monad ((,,) a b) | Since: base-4.14.0.0 |
| (Monad f, Monad g) => Monad (Product f g) | Since: base-4.9.0.0 |
| (Monad f, Monad g) => Monad (f :*: g) | Since: base-4.9.0.0 |
| (Monad f, Applicative f) => Monad (WhenMatched f x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods (>>=) :: WhenMatched f x y a -> (a -> WhenMatched f x y b) -> WhenMatched f x y b Source # (>>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b Source # return :: a -> WhenMatched f x y a Source # | |
| (Applicative f, Monad f) => Monad (WhenMissing f k x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods (>>=) :: WhenMissing f k x a -> (a -> WhenMissing f k x b) -> WhenMissing f k x b Source # (>>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b Source # return :: a -> WhenMissing f k x a Source # | |
| Monad (ParsecT s u m) | |
| Monad (ContT r m) | |
| (Monoid a, Monoid b, Monoid c) => Monad ((,,,) a b c) | Since: base-4.14.0.0 |
| Monad ((->) r) | Since: base-2.1 |
| Monad f => Monad (M1 i c f) | Since: base-4.9.0.0 |
| (Monad f, Applicative f) => Monad (WhenMatched f k x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods (>>=) :: WhenMatched f k x y a -> (a -> WhenMatched f k x y b) -> WhenMatched f k x y b Source # (>>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b Source # return :: a -> WhenMatched f k x y a Source # | |
| (Monoid w, Monad m) => Monad (RWST r w s m) | |
| (Monoid w, Monad m) => Monad (RWST r w s m) | |
class Functor (f :: Type -> Type) where Source #
A type f is a Functor if it provides a function fmap which, given any types a and b
lets you apply any function from (a -> b) to turn an f a into an f b, preserving the
structure of f. Furthermore f needs to adhere to the following:
Note, that the second law follows from the free theorem of the type fmap and
the first law, so you need only check that the former condition holds.
Minimal complete definition
Methods
fmap :: (a -> b) -> f a -> f b Source #
fmap is used to apply a function of type (a -> b) to a value of type f a,
where f is a functor, to produce a value of type f b.
Note that for any type constructor with more than one parameter (e.g., Either),
only the last type parameter can be modified with fmap (e.g., b in `Either a b`).
Some type constructors with two parameters or more have a instance that allows
both the last and the penultimate parameters to be mapped over.
==== ExamplesBifunctor
Convert from a to a Maybe IntMaybe String
using show:
>>>fmap show NothingNothing>>>fmap show (Just 3)Just "3"
Convert from an to an
Either Int IntEither Int String using show:
>>>fmap show (Left 17)Left 17>>>fmap show (Right 17)Right "17"
Double each element of a list:
>>>fmap (*2) [1,2,3][2,4,6]
Apply even to the second element of a pair:
>>>fmap even (2,2)(2,True)
It may seem surprising that the function is only applied to the last element of the tuple
compared to the list example above which applies it to every element in the list.
To understand, remember that tuples are type constructors with multiple type parameters:
a tuple of 3 elements `(a,b,c)` can also be written `(,,) a b c` and its Functor instance
is defined for `Functor ((,,) a b)` (i.e., only the third parameter is free to be mapped over
with fmap).
It explains why fmap can be used with tuples containing values of different types as in the
following example:
>>>fmap even ("hello", 1.0, 4)("hello",1.0,True)
Instances
Basic numeric class.
The Haskell Report defines no laws for Num. However, ( and +)( are
customarily expected to define a ring and have the following properties:*)
- Associativity of
(+) (x + y) + z=x + (y + z)- Commutativity of
(+) x + y=y + xis the additive identityfromInteger0x + fromInteger 0=xnegategives the additive inversex + negate x=fromInteger 0- Associativity of
(*) (x * y) * z=x * (y * z)is the multiplicative identityfromInteger1x * fromInteger 1=xandfromInteger 1 * x=x- Distributivity of
(with respect to*)(+) a * (b + c)=(a * b) + (a * c)and(b + c) * a=(b * a) + (c * a)
Note that it isn't customarily expected that a type instance of both Num
and Ord implement an ordered ring. Indeed, in base only Integer and
Rational do.
Methods
(+) :: a -> a -> a infixl 6 Source #
(-) :: a -> a -> a infixl 6 Source #
(*) :: a -> a -> a infixl 7 Source #
Unary negation.
Absolute value.
Sign of a number.
The functions abs and signum should satisfy the law:
abs x * signum x == x
For real numbers, the signum is either -1 (negative), 0 (zero)
or 1 (positive).
fromInteger :: Integer -> a Source #
Conversion from an Integer.
An integer literal represents the application of the function
fromInteger to the appropriate value of type Integer,
so such literals have type (.Num a) => a
Instances
Instances
Parsing of Strings, producing values.
Derived instances of Read make the following assumptions, which
derived instances of Show obey:
- If the constructor is defined to be an infix operator, then the
derived
Readinstance will parse only infix applications of the constructor (not the prefix form). - Associativity is not used to reduce the occurrence of parentheses, although precedence may be.
- If the constructor is defined using record syntax, the derived
Readwill parse only the record-syntax form, and furthermore, the fields must be given in the same order as the original declaration. - The derived
Readinstance allows arbitrary Haskell whitespace between tokens of the input string. Extra parentheses are also allowed.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Read in Haskell 2010 is equivalent to
instance (Read a) => Read (Tree a) where
readsPrec d r = readParen (d > app_prec)
(\r -> [(Leaf m,t) |
("Leaf",s) <- lex r,
(m,t) <- readsPrec (app_prec+1) s]) r
++ readParen (d > up_prec)
(\r -> [(u:^:v,w) |
(u,s) <- readsPrec (up_prec+1) r,
(":^:",t) <- lex s,
(v,w) <- readsPrec (up_prec+1) t]) r
where app_prec = 10
up_prec = 5Note that right-associativity of :^: is unused.
The derived instance in GHC is equivalent to
instance (Read a) => Read (Tree a) where
readPrec = parens $ (prec app_prec $ do
Ident "Leaf" <- lexP
m <- step readPrec
return (Leaf m))
+++ (prec up_prec $ do
u <- step readPrec
Symbol ":^:" <- lexP
v <- step readPrec
return (u :^: v))
where app_prec = 10
up_prec = 5
readListPrec = readListPrecDefaultWhy do both readsPrec and readPrec exist, and why does GHC opt to
implement readPrec in derived Read instances instead of readsPrec?
The reason is that readsPrec is based on the ReadS type, and although
ReadS is mentioned in the Haskell 2010 Report, it is not a very efficient
parser data structure.
readPrec, on the other hand, is based on a much more efficient ReadPrec
datatype (a.k.a "new-style parsers"), but its definition relies on the use
of the RankNTypes language extension. Therefore, readPrec (and its
cousin, readListPrec) are marked as GHC-only. Nevertheless, it is
recommended to use readPrec instead of readsPrec whenever possible
for the efficiency improvements it brings.
As mentioned above, derived Read instances in GHC will implement
readPrec instead of readsPrec. The default implementations of
readsPrec (and its cousin, readList) will simply use readPrec under
the hood. If you are writing a Read instance by hand, it is recommended
to write it like so:
instanceReadT wherereadPrec= ...readListPrec=readListPrecDefault
Methods
Arguments
| :: Int | the operator precedence of the enclosing
context (a number from |
| -> ReadS a |
attempts to parse a value from the front of the string, returning a list of (parsed value, remaining string) pairs. If there is no successful parse, the returned list is empty.
Derived instances of Read and Show satisfy the following:
That is, readsPrec parses the string produced by
showsPrec, and delivers the value that
showsPrec started with.
Instances
class (Num a, Ord a) => Real a where Source #
Methods
toRational :: a -> Rational Source #
the rational equivalent of its real argument with full precision
Instances
class (RealFrac a, Floating a) => RealFloat a where Source #
Efficient, machine-independent access to the components of a floating-point number.
Minimal complete definition
floatRadix, floatDigits, floatRange, decodeFloat, encodeFloat, isNaN, isInfinite, isDenormalized, isNegativeZero, isIEEE
Methods
floatRadix :: a -> Integer Source #
a constant function, returning the radix of the representation
(often 2)
floatDigits :: a -> Int Source #
a constant function, returning the number of digits of
floatRadix in the significand
floatRange :: a -> (Int, Int) Source #
a constant function, returning the lowest and highest values the exponent may assume
decodeFloat :: a -> (Integer, Int) Source #
The function decodeFloat applied to a real floating-point
number returns the significand expressed as an Integer and an
appropriately scaled exponent (an Int). If
yields decodeFloat x(m,n), then x is equal in value to m*b^^n, where b
is the floating-point radix, and furthermore, either m and n
are both zero or else b^(d-1) <= , where abs m < b^dd is
the value of .
In particular, floatDigits x. If the type
contains a negative zero, also decodeFloat 0 = (0,0).
The result of decodeFloat (-0.0) = (0,0) is unspecified if either of
decodeFloat x or isNaN x is isInfinite xTrue.
encodeFloat :: Integer -> Int -> a Source #
encodeFloat performs the inverse of decodeFloat in the
sense that for finite x with the exception of -0.0,
.
uncurry encodeFloat (decodeFloat x) = x is one of the two closest representable
floating-point numbers to encodeFloat m nm*b^^n (or ±Infinity if overflow
occurs); usually the closer, but if m contains too many bits,
the result may be rounded in the wrong direction.
exponent corresponds to the second component of decodeFloat.
and for finite nonzero exponent 0 = 0x,
.
If exponent x = snd (decodeFloat x) + floatDigits xx is a finite floating-point number, it is equal in value to
, where significand x * b ^^ exponent xb is the
floating-point radix.
The behaviour is unspecified on infinite or NaN values.
significand :: a -> a Source #
The first component of decodeFloat, scaled to lie in the open
interval (-1,1), either 0.0 or of absolute value >= 1/b,
where b is the floating-point radix.
The behaviour is unspecified on infinite or NaN values.
scaleFloat :: Int -> a -> a Source #
multiplies a floating-point number by an integer power of the radix
True if the argument is an IEEE "not-a-number" (NaN) value
isInfinite :: a -> Bool Source #
True if the argument is an IEEE infinity or negative infinity
isDenormalized :: a -> Bool Source #
True if the argument is too small to be represented in
normalized format
isNegativeZero :: a -> Bool Source #
True if the argument is an IEEE negative zero
True if the argument is an IEEE floating point number
a version of arctangent taking two real floating-point arguments.
For real floating x and y, computes the angle
(from the positive x-axis) of the vector from the origin to the
point atan2 y x(x,y). returns a value in the range [atan2 y x-pi,
pi]. It follows the Common Lisp semantics for the origin when
signed zeroes are supported. , with atan2 y 1y in a type
that is RealFloat, should return the same value as .
A default definition of atan yatan2 is provided, but implementors
can provide a more accurate implementation.
Instances
class (Real a, Fractional a) => RealFrac a where Source #
Extracting components of fractions.
Minimal complete definition
Methods
properFraction :: Integral b => a -> (b, a) Source #
The function properFraction takes a real fractional number x
and returns a pair (n,f) such that x = n+f, and:
nis an integral number with the same sign asx; andfis a fraction with the same type and sign asx, and with absolute value less than1.
The default definitions of the ceiling, floor, truncate
and round functions are in terms of properFraction.
truncate :: Integral b => a -> b Source #
returns the integer nearest truncate xx between zero and x
round :: Integral b => a -> b Source #
returns the nearest integer to round xx;
the even integer if x is equidistant between two integers
ceiling :: Integral b => a -> b Source #
returns the least integer not less than ceiling xx
floor :: Integral b => a -> b Source #
returns the greatest integer not greater than floor xx
Instances
| RealFrac CDouble | |
| RealFrac CFloat | |
| RealFrac DiffTime | |
Defined in Data.Time.Clock.Internal.DiffTime | |
| RealFrac NominalDiffTime | |
Defined in Data.Time.Clock.Internal.NominalDiffTime Methods properFraction :: Integral b => NominalDiffTime -> (b, NominalDiffTime) Source # truncate :: Integral b => NominalDiffTime -> b Source # round :: Integral b => NominalDiffTime -> b Source # ceiling :: Integral b => NominalDiffTime -> b Source # floor :: Integral b => NominalDiffTime -> b Source # | |
| RealFrac a => RealFrac (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity | |
| RealFrac a => RealFrac (Down a) | Since: base-4.14.0.0 |
| Integral a => RealFrac (Ratio a) | Since: base-2.0.1 |
| HasResolution a => RealFrac (Fixed a) | Since: base-2.1 |
| RealFrac a => RealFrac (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
Conversion of values to readable Strings.
Derived instances of Show have the following properties, which
are compatible with derived instances of Read:
- The result of
showis a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used. - If the constructor is defined to be an infix operator, then
showsPrecwill produce infix applications of the constructor. - the representation will be enclosed in parentheses if the
precedence of the top-level constructor in
xis less thand(associativity is ignored). Thus, ifdis0then the result is never surrounded in parentheses; ifdis11it is always surrounded in parentheses, unless it is an atomic expression. - If the constructor is defined using record syntax, then
showwill produce the record-syntax form, with the fields given in the same order as the original declaration.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Show is equivalent to
instance (Show a) => Show (Tree a) where
showsPrec d (Leaf m) = showParen (d > app_prec) $
showString "Leaf " . showsPrec (app_prec+1) m
where app_prec = 10
showsPrec d (u :^: v) = showParen (d > up_prec) $
showsPrec (up_prec+1) u .
showString " :^: " .
showsPrec (up_prec+1) v
where up_prec = 5Note that right-associativity of :^: is ignored. For example,
produces the stringshow(Leaf 1 :^: Leaf 2 :^: Leaf 3)"Leaf 1 :^: (Leaf 2 :^: Leaf 3)".
Methods
Arguments
| :: Int | the operator precedence of the enclosing
context (a number from |
| -> a | the value to be converted to a |
| -> ShowS |
Convert a value to a readable String.
showsPrec should satisfy the law
showsPrec d x r ++ s == showsPrec d x (r ++ s)
Derived instances of Read and Show satisfy the following:
That is, readsPrec parses the string produced by
showsPrec, and delivers the value that showsPrec started with.
Instances
class Monad m => MonadFail (m :: Type -> Type) where Source #
When a value is bound in do-notation, the pattern on the left
hand side of <- might not match. In this case, this class
provides a function to recover.
A Monad without a MonadFail instance may only be used in conjunction
with pattern that always match, such as newtypes, tuples, data types with
only a single data constructor, and irrefutable patterns (~pat).
Instances of MonadFail should satisfy the following law: fail s should
be a left zero for >>=,
fail s >>= f = fail s
If your Monad is also MonadPlus, a popular definition is
fail _ = mzero
Since: base-4.9.0.0
Instances
class Functor f => Applicative (f :: Type -> Type) where Source #
A functor with application, providing operations to
A minimal complete definition must include implementations of pure
and of either <*> or liftA2. If it defines both, then they must behave
the same as their default definitions:
(<*>) =liftA2id
liftA2f x y = f<$>x<*>y
Further, any definition must satisfy the following:
- Identity
pureid<*>v = v- Composition
pure(.)<*>u<*>v<*>w = u<*>(v<*>w)- Homomorphism
puref<*>purex =pure(f x)- Interchange
u
<*>purey =pure($y)<*>u
The other methods have the following default definitions, which may be overridden with equivalent specialized implementations:
As a consequence of these laws, the Functor instance for f will satisfy
It may be useful to note that supposing
forall x y. p (q x y) = f x . g y
it follows from the above that
liftA2p (liftA2q u v) =liftA2f u .liftA2g v
If f is also a Monad, it should satisfy
(which implies that pure and <*> satisfy the applicative functor laws).
Methods
Lift a value.
(<*>) :: f (a -> b) -> f a -> f b infixl 4 Source #
Sequential application.
A few functors support an implementation of <*> that is more
efficient than the default one.
Example
Used in combination with (, <$>)( can be used to build a record.<*>)
>>>data MyState = MyState {arg1 :: Foo, arg2 :: Bar, arg3 :: Baz}
>>>produceFoo :: Applicative f => f Foo
>>>produceBar :: Applicative f => f Bar>>>produceBaz :: Applicative f => f Baz
>>>mkState :: Applicative f => f MyState>>>mkState = MyState <$> produceFoo <*> produceBar <*> produceBaz
(*>) :: f a -> f b -> f b infixl 4 Source #
Sequence actions, discarding the value of the first argument.
Examples
If used in conjunction with the Applicative instance for Maybe,
you can chain Maybe computations, with a possible "early return"
in case of Nothing.
>>>Just 2 *> Just 3Just 3
>>>Nothing *> Just 3Nothing
Of course a more interesting use case would be to have effectful computations instead of just returning pure values.
>>>import Data.Char>>>import Text.ParserCombinators.ReadP>>>let p = string "my name is " *> munch1 isAlpha <* eof>>>readP_to_S p "my name is Simon"[("Simon","")]
(<*) :: f a -> f b -> f a infixl 4 Source #
Sequence actions, discarding the value of the second argument.
Instances
| Applicative Lex # | |
| Applicative ParseResult # | |
Defined in Distribution.Fields.ParseResult Methods pure :: a -> ParseResult a Source # (<*>) :: ParseResult (a -> b) -> ParseResult a -> ParseResult b Source # liftA2 :: (a -> b -> c) -> ParseResult a -> ParseResult b -> ParseResult c Source # (*>) :: ParseResult a -> ParseResult b -> ParseResult b Source # (<*) :: ParseResult a -> ParseResult b -> ParseResult a Source # | |
| Applicative ParsecParser # | |
Defined in Distribution.Parsec Methods pure :: a -> ParsecParser a Source # (<*>) :: ParsecParser (a -> b) -> ParsecParser a -> ParsecParser b Source # liftA2 :: (a -> b -> c) -> ParsecParser a -> ParsecParser b -> ParsecParser c Source # (*>) :: ParsecParser a -> ParsecParser b -> ParsecParser b Source # (<*) :: ParsecParser a -> ParsecParser b -> ParsecParser a Source # | |
| Applicative Flag # | |
| Applicative Condition # | |
Defined in Distribution.Types.Condition | |
| Applicative LogProgress # | |
Defined in Distribution.Utils.LogProgress Methods pure :: a -> LogProgress a Source # (<*>) :: LogProgress (a -> b) -> LogProgress a -> LogProgress b Source # liftA2 :: (a -> b -> c) -> LogProgress a -> LogProgress b -> LogProgress c Source # (*>) :: LogProgress a -> LogProgress b -> LogProgress b Source # (<*) :: LogProgress a -> LogProgress b -> LogProgress a Source # | |
| Applicative ZipList | f <$> ZipList xs1 <*> ... <*> ZipList xsN
= ZipList (zipWithN f xs1 ... xsN)where (\a b c -> stimes c [a, b]) <$> ZipList "abcd" <*> ZipList "567" <*> ZipList [1..]
= ZipList (zipWith3 (\a b c -> stimes c [a, b]) "abcd" "567" [1..])
= ZipList {getZipList = ["a5","b6b6","c7c7c7"]}Since: base-2.1 |
Defined in Control.Applicative | |
| Applicative Complex | Since: base-4.9.0.0 |
| Applicative Identity | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity | |
| Applicative First | Since: base-4.8.0.0 |
| Applicative Last | Since: base-4.8.0.0 |
| Applicative Down | Since: base-4.11.0.0 |
| Applicative First | Since: base-4.9.0.0 |
| Applicative Last | Since: base-4.9.0.0 |
| Applicative Max | Since: base-4.9.0.0 |
| Applicative Min | Since: base-4.9.0.0 |
| Applicative Option | Since: base-4.9.0.0 |
| Applicative Dual | Since: base-4.8.0.0 |
| Applicative Product | Since: base-4.8.0.0 |
Defined in Data.Semigroup.Internal | |
| Applicative Sum | Since: base-4.8.0.0 |
| Applicative NonEmpty | Since: base-4.9.0.0 |
Defined in GHC.Base | |
| Applicative STM | Since: base-4.8.0.0 |
| Applicative Par1 | Since: base-4.9.0.0 |
| Applicative P | Since: base-4.5.0.0 |
| Applicative ReadP | Since: base-4.6.0.0 |
| Applicative ReadPrec | Since: base-4.6.0.0 |
Defined in Text.ParserCombinators.ReadPrec | |
| Applicative Get | |
| Applicative PutM | |
| Applicative Put | |
| Applicative Seq | Since: containers-0.5.4 |
| Applicative Tree | |
| Applicative IO | Since: base-2.1 |
| Applicative Q | |
| Applicative Maybe | Since: base-2.1 |
| Applicative Solo | Since: base-4.15 |
| Applicative [] | Since: base-2.1 |
| Applicative (FieldDescrs s) # | |
Defined in Distribution.FieldGrammar.FieldDescrs Methods pure :: a -> FieldDescrs s a Source # (<*>) :: FieldDescrs s (a -> b) -> FieldDescrs s a -> FieldDescrs s b Source # liftA2 :: (a -> b -> c) -> FieldDescrs s a -> FieldDescrs s b -> FieldDescrs s c Source # (*>) :: FieldDescrs s a -> FieldDescrs s b -> FieldDescrs s b Source # (<*) :: FieldDescrs s a -> FieldDescrs s b -> FieldDescrs s a Source # | |
| Applicative (ParsecFieldGrammar s) # | |
Defined in Distribution.FieldGrammar.Parsec Methods pure :: a -> ParsecFieldGrammar s a Source # (<*>) :: ParsecFieldGrammar s (a -> b) -> ParsecFieldGrammar s a -> ParsecFieldGrammar s b Source # liftA2 :: (a -> b -> c) -> ParsecFieldGrammar s a -> ParsecFieldGrammar s b -> ParsecFieldGrammar s c Source # (*>) :: ParsecFieldGrammar s a -> ParsecFieldGrammar s b -> ParsecFieldGrammar s b Source # (<*) :: ParsecFieldGrammar s a -> ParsecFieldGrammar s b -> ParsecFieldGrammar s a Source # | |
| Applicative (PrettyFieldGrammar s) # | |
Defined in Distribution.FieldGrammar.Pretty Methods pure :: a -> PrettyFieldGrammar s a Source # (<*>) :: PrettyFieldGrammar s (a -> b) -> PrettyFieldGrammar s a -> PrettyFieldGrammar s b Source # liftA2 :: (a -> b -> c) -> PrettyFieldGrammar s a -> PrettyFieldGrammar s b -> PrettyFieldGrammar s c Source # (*>) :: PrettyFieldGrammar s a -> PrettyFieldGrammar s b -> PrettyFieldGrammar s b Source # (<*) :: PrettyFieldGrammar s a -> PrettyFieldGrammar s b -> PrettyFieldGrammar s a Source # | |
| Monad m => Applicative (WrappedMonad m) | Since: base-2.1 |
Defined in Control.Applicative Methods pure :: a -> WrappedMonad m a Source # (<*>) :: WrappedMonad m (a -> b) -> WrappedMonad m a -> WrappedMonad m b Source # liftA2 :: (a -> b -> c) -> WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m c Source # (*>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b Source # (<*) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m a Source # | |
| Arrow a => Applicative (ArrowMonad a) | Since: base-4.6.0.0 |
Defined in Control.Arrow Methods pure :: a0 -> ArrowMonad a a0 Source # (<*>) :: ArrowMonad a (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b Source # liftA2 :: (a0 -> b -> c) -> ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a c Source # (*>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b Source # (<*) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a a0 Source # | |
| Applicative (Either e) | Since: base-3.0 |
Defined in Data.Either | |
| Applicative (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
| Applicative (U1 :: Type -> Type) | Since: base-4.9.0.0 |
| Applicative (ST s) | Since: base-4.4.0.0 |
| Applicative (SetM s) | |
| Applicative m => Applicative (ListT m) | |
Defined in Control.Monad.Trans.List | |
| (Functor m, Monad m) => Applicative (MaybeT m) | |
Defined in Control.Monad.Trans.Maybe | |
| Monoid a => Applicative ((,) a) | For tuples, the ("hello ", (+15)) <*> ("world!", 2002)
("hello world!",2017)Since: base-2.1 |
| Applicative (Progress step fail) # | |
Defined in Distribution.Utils.Progress Methods pure :: a -> Progress step fail a Source # (<*>) :: Progress step fail (a -> b) -> Progress step fail a -> Progress step fail b Source # liftA2 :: (a -> b -> c) -> Progress step fail a -> Progress step fail b -> Progress step fail c Source # (*>) :: Progress step fail a -> Progress step fail b -> Progress step fail b Source # (<*) :: Progress step fail a -> Progress step fail b -> Progress step fail a Source # | |
| Arrow a => Applicative (WrappedArrow a b) | Since: base-2.1 |
Defined in Control.Applicative Methods pure :: a0 -> WrappedArrow a b a0 Source # (<*>) :: WrappedArrow a b (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 Source # liftA2 :: (a0 -> b0 -> c) -> WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b c Source # (*>) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b b0 Source # (<*) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 Source # | |
| Applicative m => Applicative (Kleisli m a) | Since: base-4.14.0.0 |
Defined in Control.Arrow Methods pure :: a0 -> Kleisli m a a0 Source # (<*>) :: Kleisli m a (a0 -> b) -> Kleisli m a a0 -> Kleisli m a b Source # liftA2 :: (a0 -> b -> c) -> Kleisli m a a0 -> Kleisli m a b -> Kleisli m a c Source # (*>) :: Kleisli m a a0 -> Kleisli m a b -> Kleisli m a b Source # (<*) :: Kleisli m a a0 -> Kleisli m a b -> Kleisli m a a0 Source # | |
| Monoid m => Applicative (Const m :: Type -> Type) | Since: base-2.0.1 |
Defined in Data.Functor.Const | |
| Applicative f => Applicative (Ap f) | Since: base-4.12.0.0 |
| Applicative f => Applicative (Alt f) | Since: base-4.8.0.0 |
| Applicative f => Applicative (Rec1 f) | Since: base-4.9.0.0 |
| (Applicative f, Monad f) => Applicative (WhenMissing f x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods pure :: a -> WhenMissing f x a Source # (<*>) :: WhenMissing f x (a -> b) -> WhenMissing f x a -> WhenMissing f x b Source # liftA2 :: (a -> b -> c) -> WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x c Source # (*>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b Source # (<*) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x a Source # | |
| (Functor m, Monad m) => Applicative (ErrorT e m) | |
Defined in Control.Monad.Trans.Error Methods pure :: a -> ErrorT e m a Source # (<*>) :: ErrorT e m (a -> b) -> ErrorT e m a -> ErrorT e m b Source # liftA2 :: (a -> b -> c) -> ErrorT e m a -> ErrorT e m b -> ErrorT e m c Source # (*>) :: ErrorT e m a -> ErrorT e m b -> ErrorT e m b Source # (<*) :: ErrorT e m a -> ErrorT e m b -> ErrorT e m a Source # | |
| (Functor m, Monad m) => Applicative (ExceptT e m) | |
Defined in Control.Monad.Trans.Except Methods pure :: a -> ExceptT e m a Source # (<*>) :: ExceptT e m (a -> b) -> ExceptT e m a -> ExceptT e m b Source # liftA2 :: (a -> b -> c) -> ExceptT e m a -> ExceptT e m b -> ExceptT e m c Source # (*>) :: ExceptT e m a -> ExceptT e m b -> ExceptT e m b Source # (<*) :: ExceptT e m a -> ExceptT e m b -> ExceptT e m a Source # | |
| Applicative m => Applicative (IdentityT m) | |
Defined in Control.Monad.Trans.Identity Methods pure :: a -> IdentityT m a Source # (<*>) :: IdentityT m (a -> b) -> IdentityT m a -> IdentityT m b Source # liftA2 :: (a -> b -> c) -> IdentityT m a -> IdentityT m b -> IdentityT m c Source # (*>) :: IdentityT m a -> IdentityT m b -> IdentityT m b Source # (<*) :: IdentityT m a -> IdentityT m b -> IdentityT m a Source # | |
| Applicative m => Applicative (ReaderT r m) | |
Defined in Control.Monad.Trans.Reader Methods pure :: a -> ReaderT r m a Source # (<*>) :: ReaderT r m (a -> b) -> ReaderT r m a -> ReaderT r m b Source # liftA2 :: (a -> b -> c) -> ReaderT r m a -> ReaderT r m b -> ReaderT r m c Source # (*>) :: ReaderT r m a -> ReaderT r m b -> ReaderT r m b Source # (<*) :: ReaderT r m a -> ReaderT r m b -> ReaderT r m a Source # | |
| (Functor m, Monad m) => Applicative (StateT s m) | |
Defined in Control.Monad.Trans.State.Lazy Methods pure :: a -> StateT s m a Source # (<*>) :: StateT s m (a -> b) -> StateT s m a -> StateT s m b Source # liftA2 :: (a -> b -> c) -> StateT s m a -> StateT s m b -> StateT s m c Source # (*>) :: StateT s m a -> StateT s m b -> StateT s m b Source # (<*) :: StateT s m a -> StateT s m b -> StateT s m a Source # | |
| (Functor m, Monad m) => Applicative (StateT s m) | |
Defined in Control.Monad.Trans.State.Strict Methods pure :: a -> StateT s m a Source # (<*>) :: StateT s m (a -> b) -> StateT s m a -> StateT s m b Source # liftA2 :: (a -> b -> c) -> StateT s m a -> StateT s m b -> StateT s m c Source # (*>) :: StateT s m a -> StateT s m b -> StateT s m b Source # (<*) :: StateT s m a -> StateT s m b -> StateT s m a Source # | |
| (Monoid w, Applicative m) => Applicative (WriterT w m) | |
Defined in Control.Monad.Trans.Writer.Lazy Methods pure :: a -> WriterT w m a Source # (<*>) :: WriterT w m (a -> b) -> WriterT w m a -> WriterT w m b Source # liftA2 :: (a -> b -> c) -> WriterT w m a -> WriterT w m b -> WriterT w m c Source # (*>) :: WriterT w m a -> WriterT w m b -> WriterT w m b Source # (<*) :: WriterT w m a -> WriterT w m b -> WriterT w m a Source # | |
| (Monoid w, Applicative m) => Applicative (WriterT w m) | |
Defined in Control.Monad.Trans.Writer.Strict Methods pure :: a -> WriterT w m a Source # (<*>) :: WriterT w m (a -> b) -> WriterT w m a -> WriterT w m b Source # liftA2 :: (a -> b -> c) -> WriterT w m a -> WriterT w m b -> WriterT w m c Source # (*>) :: WriterT w m a -> WriterT w m b -> WriterT w m b Source # (<*) :: WriterT w m a -> WriterT w m b -> WriterT w m a Source # | |
| (Monoid a, Monoid b) => Applicative ((,,) a b) | Since: base-4.14.0.0 |
Defined in GHC.Base | |
| (Applicative f, Applicative g) => Applicative (Product f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product Methods pure :: a -> Product f g a Source # (<*>) :: Product f g (a -> b) -> Product f g a -> Product f g b Source # liftA2 :: (a -> b -> c) -> Product f g a -> Product f g b -> Product f g c Source # (*>) :: Product f g a -> Product f g b -> Product f g b Source # (<*) :: Product f g a -> Product f g b -> Product f g a Source # | |
| (Applicative f, Applicative g) => Applicative (f :*: g) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Monoid c => Applicative (K1 i c :: Type -> Type) | Since: base-4.12.0.0 |
| (Monad f, Applicative f) => Applicative (WhenMatched f x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods pure :: a -> WhenMatched f x y a Source # (<*>) :: WhenMatched f x y (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b Source # liftA2 :: (a -> b -> c) -> WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y c Source # (*>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b Source # (<*) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y a Source # | |
| (Applicative f, Monad f) => Applicative (WhenMissing f k x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods pure :: a -> WhenMissing f k x a Source # (<*>) :: WhenMissing f k x (a -> b) -> WhenMissing f k x a -> WhenMissing f k x b Source # liftA2 :: (a -> b -> c) -> WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x c Source # (*>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b Source # (<*) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x a Source # | |
| Applicative (ParsecT s u m) | |
Defined in Text.Parsec.Prim Methods pure :: a -> ParsecT s u m a Source # (<*>) :: ParsecT s u m (a -> b) -> ParsecT s u m a -> ParsecT s u m b Source # liftA2 :: (a -> b -> c) -> ParsecT s u m a -> ParsecT s u m b -> ParsecT s u m c Source # (*>) :: ParsecT s u m a -> ParsecT s u m b -> ParsecT s u m b Source # (<*) :: ParsecT s u m a -> ParsecT s u m b -> ParsecT s u m a Source # | |
| Applicative (ContT r m) | |
Defined in Control.Monad.Trans.Cont | |
| (Monoid a, Monoid b, Monoid c) => Applicative ((,,,) a b c) | Since: base-4.14.0.0 |
Defined in GHC.Base Methods pure :: a0 -> (a, b, c, a0) Source # (<*>) :: (a, b, c, a0 -> b0) -> (a, b, c, a0) -> (a, b, c, b0) Source # liftA2 :: (a0 -> b0 -> c0) -> (a, b, c, a0) -> (a, b, c, b0) -> (a, b, c, c0) Source # (*>) :: (a, b, c, a0) -> (a, b, c, b0) -> (a, b, c, b0) Source # (<*) :: (a, b, c, a0) -> (a, b, c, b0) -> (a, b, c, a0) Source # | |
| Applicative ((->) r) | Since: base-2.1 |
| (Applicative f, Applicative g) => Applicative (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose Methods pure :: a -> Compose f g a Source # (<*>) :: Compose f g (a -> b) -> Compose f g a -> Compose f g b Source # liftA2 :: (a -> b -> c) -> Compose f g a -> Compose f g b -> Compose f g c Source # (*>) :: Compose f g a -> Compose f g b -> Compose f g b Source # (<*) :: Compose f g a -> Compose f g b -> Compose f g a Source # | |
| (Applicative f, Applicative g) => Applicative (f :.: g) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Applicative f => Applicative (M1 i c f) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| (Monad f, Applicative f) => Applicative (WhenMatched f k x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods pure :: a -> WhenMatched f k x y a Source # (<*>) :: WhenMatched f k x y (a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b Source # liftA2 :: (a -> b -> c) -> WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y c Source # (*>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b Source # (<*) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y a Source # | |
| (Monoid w, Functor m, Monad m) => Applicative (RWST r w s m) | |
Defined in Control.Monad.Trans.RWS.Lazy Methods pure :: a -> RWST r w s m a Source # (<*>) :: RWST r w s m (a -> b) -> RWST r w s m a -> RWST r w s m b Source # liftA2 :: (a -> b -> c) -> RWST r w s m a -> RWST r w s m b -> RWST r w s m c Source # (*>) :: RWST r w s m a -> RWST r w s m b -> RWST r w s m b Source # (<*) :: RWST r w s m a -> RWST r w s m b -> RWST r w s m a Source # | |
| (Monoid w, Functor m, Monad m) => Applicative (RWST r w s m) | |
Defined in Control.Monad.Trans.RWS.Strict Methods pure :: a -> RWST r w s m a Source # (<*>) :: RWST r w s m (a -> b) -> RWST r w s m a -> RWST r w s m b Source # liftA2 :: (a -> b -> c) -> RWST r w s m a -> RWST r w s m b -> RWST r w s m c Source # (*>) :: RWST r w s m a -> RWST r w s m b -> RWST r w s m b Source # (<*) :: RWST r w s m a -> RWST r w s m b -> RWST r w s m a Source # | |
sum :: (Foldable t, Num a) => t a -> a Source #
The sum function computes the sum of the numbers of a structure.
Examples
Basic usage:
>>>sum []0
>>>sum [42]42
>>>sum [1..10]55
>>>sum [4.1, 2.0, 1.7]7.8
>>>sum [1..]* Hangs forever *
Since: base-4.8.0.0
product :: (Foldable t, Num a) => t a -> a Source #
The product function computes the product of the numbers of a
structure.
Examples
Basic usage:
>>>product []1
>>>product [42]42
>>>product [1..10]3628800
>>>product [4.1, 2.0, 1.7]13.939999999999998
>>>product [1..]* Hangs forever *
Since: base-4.8.0.0
minimum :: (Foldable t, Ord a) => t a -> a Source #
The least element of a non-empty structure.
This function is non-total and will raise a runtime exception if the structure happens to be empty. A structure that supports random access and maintains its elements in order should provide a specialised implementation to return the minimum in faster than linear time.
Examples
Basic usage:
>>>minimum [1..10]1
>>>minimum []*** Exception: Prelude.minimum: empty list
>>>minimum Nothing*** Exception: minimum: empty structure
Since: base-4.8.0.0
maximum :: (Foldable t, Ord a) => t a -> a Source #
The largest element of a non-empty structure.
This function is non-total and will raise a runtime exception if the structure happens to be empty. A structure that supports random access and maintains its elements in order should provide a specialised implementation to return the maximum in faster than linear time.
Examples
Basic usage:
>>>maximum [1..10]10
>>>maximum []*** Exception: Prelude.maximum: empty list
>>>maximum Nothing*** Exception: maximum: empty structure
Since: base-4.8.0.0
foldl :: Foldable t => (b -> a -> b) -> b -> t a -> b Source #
Left-associative fold of a structure, lazy in the accumulator. This is rarely what you want, but can work well for structures with efficient right-to-left sequencing and an operator that is lazy in its left argument.
In the case of lists, foldl, when applied to a binary operator, a
starting value (typically the left-identity of the operator), and a
list, reduces the list using the binary operator, from left to right:
foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn
Note that to produce the outermost application of the operator the
entire input list must be traversed. Like all left-associative folds,
foldl will diverge if given an infinite list.
If you want an efficient strict left-fold, you probably want to use
foldl' instead of foldl. The reason for this is that the latter
does not force the inner results (e.g. z `f` x1 in the above
example) before applying them to the operator (e.g. to (`f` x2)).
This results in a thunk chain \(\mathcal{O}(n)\) elements long, which
then must be evaluated from the outside-in.
For a general Foldable structure this should be semantically identical
to:
foldl f z =foldlf z .toList
Examples
The first example is a strict fold, which in practice is best performed
with foldl'.
>>>foldl (+) 42 [1,2,3,4]52
Though the result below is lazy, the input is reversed before prepending it to the initial accumulator, so corecursion begins only after traversing the entire input string.
>>>foldl (\acc c -> c : acc) "abcd" "efgh""hgfeabcd"
A left fold of a structure that is infinite on the right cannot terminate, even when for any finite input the fold just returns the initial accumulator:
>>>foldl (\a _ -> a) 0 $ repeat 1* Hangs forever *
elem :: (Foldable t, Eq a) => a -> t a -> Bool infix 4 Source #
Does the element occur in the structure?
Note: elem is often used in infix form.
Examples
Basic usage:
>>>3 `elem` []False
>>>3 `elem` [1,2]False
>>>3 `elem` [1,2,3,4,5]True
For infinite structures, the default implementation of elem
terminates if the sought-after value exists at a finite distance
from the left side of the structure:
>>>3 `elem` [1..]True
>>>3 `elem` ([4..] ++ [3])* Hangs forever *
Since: base-4.8.0.0
class Semigroup a => Monoid a where Source #
The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following:
- Right identity
x<>mempty= x- Left identity
mempty<>x = x- Associativity
x(<>(y<>z) = (x<>y)<>zSemigrouplaw)- Concatenation
mconcat=foldr(<>)mempty
The method names refer to the monoid of lists under concatenation, but there are many other instances.
Some types can be viewed as a monoid in more than one way,
e.g. both addition and multiplication on numbers.
In such cases we often define newtypes and make those instances
of Monoid, e.g. Sum and Product.
NOTE: Semigroup is a superclass of Monoid since base-4.11.0.0.
Minimal complete definition
Methods
Identity of mappend
>>>"Hello world" <> mempty"Hello world"
mappend :: a -> a -> a Source #
An associative operation
NOTE: This method is redundant and has the default
implementation since base-4.11.0.0.
Should it be implemented manually, since mappend = (<>)mappend is a synonym for
(<>), it is expected that the two functions are defined the same
way. In a future GHC release mappend will be removed from Monoid.
Fold a list using the monoid.
For most types, the default definition for mconcat will be
used, but the function is included in the class definition so
that an optimized version can be provided for specific types.
>>>mconcat ["Hello", " ", "Haskell", "!"]"Hello Haskell!"
Instances
Instances
| Parsec Bool # | |
Defined in Distribution.Parsec Methods parsec :: CabalParsing m => m Bool # | |
| Pretty Bool # | |
Defined in Distribution.Pretty | |
| BooleanFlag Bool # | |
Defined in Distribution.Simple.Flag | |
| Structured Bool # | |
Defined in Distribution.Utils.Structured | |
| Bits Bool | Interpret Since: base-4.7.0.0 |
Defined in Data.Bits Methods (.&.) :: Bool -> Bool -> Bool Source # (.|.) :: Bool -> Bool -> Bool Source # xor :: Bool -> Bool -> Bool Source # complement :: Bool -> Bool Source # shift :: Bool -> Int -> Bool Source # rotate :: Bool -> Int -> Bool Source # setBit :: Bool -> Int -> Bool Source # clearBit :: Bool -> Int -> Bool Source # complementBit :: Bool -> Int -> Bool Source # testBit :: Bool -> Int -> Bool Source # bitSizeMaybe :: Bool -> Maybe Int Source # bitSize :: Bool -> Int Source # isSigned :: Bool -> Bool Source # shiftL :: Bool -> Int -> Bool Source # unsafeShiftL :: Bool -> Int -> Bool Source # shiftR :: Bool -> Int -> Bool Source # unsafeShiftR :: Bool -> Int -> Bool Source # rotateL :: Bool -> Int -> Bool Source # | |
| FiniteBits Bool | Since: base-4.7.0.0 |
| Data Bool | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bool -> c Bool Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bool Source # toConstr :: Bool -> Constr Source # dataTypeOf :: Bool -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bool) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bool) Source # gmapT :: (forall b. Data b => b -> b) -> Bool -> Bool Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Bool -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Bool -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bool -> m Bool Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool Source # | |
| Bounded Bool | Since: base-2.1 |
| Enum Bool | Since: base-2.1 |
| Generic Bool | |
| SingKind Bool | Since: base-4.9.0.0 |
Defined in GHC.Generics Associated Types type DemoteRep Bool | |
| Ix Bool | Since: base-2.1 |
| Read Bool | Since: base-2.1 |
| Show Bool | Since: base-2.1 |
| Binary Bool | |
| NFData Bool | |
Defined in Control.DeepSeq | |
| Eq Bool | |
| Ord Bool | |
| IArray UArray Bool | |
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Bool -> (i, i) Source # numElements :: Ix i => UArray i Bool -> Int unsafeArray :: Ix i => (i, i) -> [(Int, Bool)] -> UArray i Bool unsafeAt :: Ix i => UArray i Bool -> Int -> Bool unsafeReplace :: Ix i => UArray i Bool -> [(Int, Bool)] -> UArray i Bool unsafeAccum :: Ix i => (Bool -> e' -> Bool) -> UArray i Bool -> [(Int, e')] -> UArray i Bool unsafeAccumArray :: Ix i => (Bool -> e' -> Bool) -> Bool -> (i, i) -> [(Int, e')] -> UArray i Bool | |
| SingI 'False | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| SingI 'True | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Lift Bool | |
| MArray (STUArray s) Bool (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Bool -> ST s (i, i) Source # getNumElements :: Ix i => STUArray s i Bool -> ST s Int newArray :: Ix i => (i, i) -> Bool -> ST s (STUArray s i Bool) Source # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Bool) Source # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Bool) unsafeRead :: Ix i => STUArray s i Bool -> Int -> ST s Bool unsafeWrite :: Ix i => STUArray s i Bool -> Int -> Bool -> ST s () | |
| type DemoteRep Bool | |
Defined in GHC.Generics | |
| type Rep Bool | Since: base-4.6.0.0 |
| data Sing (a :: Bool) | |
Instances
| Structured Char # | |
Defined in Distribution.Utils.Structured | |
| Data Char | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Char -> c Char Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Char Source # toConstr :: Char -> Constr Source # dataTypeOf :: Char -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Char) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Char) Source # gmapT :: (forall b. Data b => b -> b) -> Char -> Char Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Char -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Char -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Char -> m Char Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char Source # | |
| Bounded Char | Since: base-2.1 |
| Enum Char | Since: base-2.1 |
| Ix Char | Since: base-2.1 |
| Read Char | Since: base-2.1 |
| Show Char | Since: base-2.1 |
| Binary Char | |
| NFData Char | |
Defined in Control.DeepSeq | |
| Eq Char | |
| Ord Char | |
| ErrorList Char | |
| Newtype String FilePathNT # | |
Defined in Distribution.FieldGrammar.Newtypes | |
| Newtype String Token # | |
| Newtype String Token' # | |
| IArray UArray Char | |
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Char -> (i, i) Source # numElements :: Ix i => UArray i Char -> Int unsafeArray :: Ix i => (i, i) -> [(Int, Char)] -> UArray i Char unsafeAt :: Ix i => UArray i Char -> Int -> Char unsafeReplace :: Ix i => UArray i Char -> [(Int, Char)] -> UArray i Char unsafeAccum :: Ix i => (Char -> e' -> Char) -> UArray i Char -> [(Int, e')] -> UArray i Char unsafeAccumArray :: Ix i => (Char -> e' -> Char) -> Char -> (i, i) -> [(Int, e')] -> UArray i Char | |
| Lift Char | |
| Monad m => Stream FieldLineStream m Char # | |
Defined in Distribution.Parsec.FieldLineStream Methods uncons :: FieldLineStream -> m (Maybe (Char, FieldLineStream)) Source # | |
| Monad m => Stream ByteString m Char | |
Defined in Text.Parsec.Prim Methods uncons :: ByteString -> m (Maybe (Char, ByteString)) Source # | |
| Monad m => Stream ByteString m Char | |
Defined in Text.Parsec.Prim Methods uncons :: ByteString -> m (Maybe (Char, ByteString)) Source # | |
| Monad m => Stream Text m Char | |
| Monad m => Stream Text m Char | |
| Generic1 (URec Char :: k -> Type) | |
| Foldable (UChar :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UChar m -> m Source # foldMap :: Monoid m => (a -> m) -> UChar a -> m Source # foldMap' :: Monoid m => (a -> m) -> UChar a -> m Source # foldr :: (a -> b -> b) -> b -> UChar a -> b Source # foldr' :: (a -> b -> b) -> b -> UChar a -> b Source # foldl :: (b -> a -> b) -> b -> UChar a -> b Source # foldl' :: (b -> a -> b) -> b -> UChar a -> b Source # foldr1 :: (a -> a -> a) -> UChar a -> a Source # foldl1 :: (a -> a -> a) -> UChar a -> a Source # toList :: UChar a -> [a] Source # null :: UChar a -> Bool Source # length :: UChar a -> Int Source # elem :: Eq a => a -> UChar a -> Bool Source # maximum :: Ord a => UChar a -> a Source # minimum :: Ord a => UChar a -> a Source # | |
| Traversable (UChar :: Type -> Type) | Since: base-4.9.0.0 |
| MArray (STUArray s) Char (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Char -> ST s (i, i) Source # getNumElements :: Ix i => STUArray s i Char -> ST s Int newArray :: Ix i => (i, i) -> Char -> ST s (STUArray s i Char) Source # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Char) Source # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Char) unsafeRead :: Ix i => STUArray s i Char -> Int -> ST s Char unsafeWrite :: Ix i => STUArray s i Char -> Int -> Char -> ST s () | |
| Functor (URec Char :: Type -> Type) | Since: base-4.9.0.0 |
| Generic (URec Char p) | |
| Show (URec Char p) | Since: base-4.9.0.0 |
| Eq (URec Char p) | Since: base-4.9.0.0 |
| Ord (URec Char p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| data URec Char (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
| type Rep1 (URec Char :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| type Rep (URec Char p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Instances
Instances
Instances
| Pretty Int # | |
Defined in Distribution.Pretty | |
| Structured Int # | |
Defined in Distribution.Utils.Structured | |
| Bits Int | Since: base-2.1 |
Defined in Data.Bits Methods (.&.) :: Int -> Int -> Int Source # (.|.) :: Int -> Int -> Int Source # xor :: Int -> Int -> Int Source # complement :: Int -> Int Source # shift :: Int -> Int -> Int Source # rotate :: Int -> Int -> Int Source # setBit :: Int -> Int -> Int Source # clearBit :: Int -> Int -> Int Source # complementBit :: Int -> Int -> Int Source # testBit :: Int -> Int -> Bool Source # bitSizeMaybe :: Int -> Maybe Int Source # bitSize :: Int -> Int Source # isSigned :: Int -> Bool Source # shiftL :: Int -> Int -> Int Source # unsafeShiftL :: Int -> Int -> Int Source # shiftR :: Int -> Int -> Int Source # unsafeShiftR :: Int -> Int -> Int Source # rotateL :: Int -> Int -> Int Source # | |
| FiniteBits Int | Since: base-4.6.0.0 |
| Data Int | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int -> c Int Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int Source # toConstr :: Int -> Constr Source # dataTypeOf :: Int -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int) Source # gmapT :: (forall b. Data b => b -> b) -> Int -> Int Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Int -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int -> m Int Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int Source # | |
| Bounded Int | Since: base-2.1 |
| Enum Int | Since: base-2.1 |
Defined in GHC.Enum | |
| Ix Int | Since: base-2.1 |
| Num Int | Since: base-2.1 |
| Read Int | Since: base-2.1 |
| Integral Int | Since: base-2.0.1 |
| Real Int | Since: base-2.0.1 |
| Show Int | Since: base-2.1 |
| Binary Int | |
| NFData Int | |
Defined in Control.DeepSeq | |
| Eq Int | |
| Ord Int | |
| IArray UArray Int | |
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Int -> (i, i) Source # numElements :: Ix i => UArray i Int -> Int unsafeArray :: Ix i => (i, i) -> [(Int, Int)] -> UArray i Int unsafeAt :: Ix i => UArray i Int -> Int -> Int unsafeReplace :: Ix i => UArray i Int -> [(Int, Int)] -> UArray i Int unsafeAccum :: Ix i => (Int -> e' -> Int) -> UArray i Int -> [(Int, e')] -> UArray i Int unsafeAccumArray :: Ix i => (Int -> e' -> Int) -> Int -> (i, i) -> [(Int, e')] -> UArray i Int | |
| Lift Int | |
| Generic1 (URec Int :: k -> Type) | |
| Foldable (UInt :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UInt m -> m Source # foldMap :: Monoid m => (a -> m) -> UInt a -> m Source # foldMap' :: Monoid m => (a -> m) -> UInt a -> m Source # foldr :: (a -> b -> b) -> b -> UInt a -> b Source # foldr' :: (a -> b -> b) -> b -> UInt a -> b Source # foldl :: (b -> a -> b) -> b -> UInt a -> b Source # foldl' :: (b -> a -> b) -> b -> UInt a -> b Source # foldr1 :: (a -> a -> a) -> UInt a -> a Source # foldl1 :: (a -> a -> a) -> UInt a -> a Source # toList :: UInt a -> [a] Source # null :: UInt a -> Bool Source # length :: UInt a -> Int Source # elem :: Eq a => a -> UInt a -> Bool Source # maximum :: Ord a => UInt a -> a Source # minimum :: Ord a => UInt a -> a Source # | |
| Traversable (UInt :: Type -> Type) | Since: base-4.9.0.0 |
| MArray (STUArray s) Int (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Int -> ST s (i, i) Source # getNumElements :: Ix i => STUArray s i Int -> ST s Int newArray :: Ix i => (i, i) -> Int -> ST s (STUArray s i Int) Source # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int) Source # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int) unsafeRead :: Ix i => STUArray s i Int -> Int -> ST s Int unsafeWrite :: Ix i => STUArray s i Int -> Int -> Int -> ST s () | |
| Functor (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
| Generic (URec Int p) | |
| Show (URec Int p) | Since: base-4.9.0.0 |
| Eq (URec Int p) | Since: base-4.9.0.0 |
| Ord (URec Int p) | Since: base-4.9.0.0 |
| data URec Int (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
| type Rep1 (URec Int :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| type Rep (URec Int p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Instances
The Maybe type encapsulates an optional value. A value of type
either contains a value of type Maybe aa (represented as ),
or it is empty (represented as Just aNothing). Using Maybe is a good way to
deal with errors or exceptional cases without resorting to drastic
measures such as error.
The Maybe type is also a monad. It is a simple kind of error
monad, where all errors are represented by Nothing. A richer
error monad can be built using the Either type.
Instances
| MonadFail Maybe | Since: base-4.9.0.0 |
| Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m Source # foldMap :: Monoid m => (a -> m) -> Maybe a -> m Source # foldMap' :: Monoid m => (a -> m) -> Maybe a -> m Source # foldr :: (a -> b -> b) -> b -> Maybe a -> b Source # foldr' :: (a -> b -> b) -> b -> Maybe a -> b Source # foldl :: (b -> a -> b) -> b -> Maybe a -> b Source # foldl' :: (b -> a -> b) -> b -> Maybe a -> b Source # foldr1 :: (a -> a -> a) -> Maybe a -> a Source # foldl1 :: (a -> a -> a) -> Maybe a -> a Source # toList :: Maybe a -> [a] Source # null :: Maybe a -> Bool Source # length :: Maybe a -> Int Source # elem :: Eq a => a -> Maybe a -> Bool Source # maximum :: Ord a => Maybe a -> a Source # minimum :: Ord a => Maybe a -> a Source # | |
| Eq1 Maybe | Since: base-4.9.0.0 |
| Ord1 Maybe | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
| Read1 Maybe | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes Methods liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Maybe a) Source # liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [Maybe a] Source # liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (Maybe a) Source # liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [Maybe a] Source # | |
| Show1 Maybe | Since: base-4.9.0.0 |
| Traversable Maybe | Since: base-2.1 |
| Alternative Maybe | Since: base-2.1 |
| Applicative Maybe | Since: base-2.1 |
| Functor Maybe | Since: base-2.1 |
| Monad Maybe | Since: base-2.1 |
| MonadPlus Maybe | Since: base-2.1 |
| NFData1 Maybe | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
| Lift a => Lift (Maybe a :: Type) | |
| Structured a => Structured (Maybe a) # | |
Defined in Distribution.Utils.Structured | |
| Data a => Data (Maybe a) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Maybe a -> c (Maybe a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Maybe a) Source # toConstr :: Maybe a -> Constr Source # dataTypeOf :: Maybe a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Maybe a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Maybe a)) Source # gmapT :: (forall b. Data b => b -> b) -> Maybe a -> Maybe a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Maybe a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Maybe a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) Source # | |
| Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 |
| Semigroup a => Semigroup (Maybe a) | Since: base-4.9.0.0 |
| Generic (Maybe a) | |
| SingKind a => SingKind (Maybe a) | Since: base-4.9.0.0 |
Defined in GHC.Generics Associated Types type DemoteRep (Maybe a) | |
| Read a => Read (Maybe a) | Since: base-2.1 |
| Show a => Show (Maybe a) | Since: base-2.1 |
| Binary a => Binary (Maybe a) | |
| NFData a => NFData (Maybe a) | |
Defined in Control.DeepSeq | |
| Eq a => Eq (Maybe a) | Since: base-2.1 |
| Ord a => Ord (Maybe a) | Since: base-2.1 |
| Generic1 Maybe | |
| SingI ('Nothing :: Maybe a) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| SingI a2 => SingI ('Just a2 :: Maybe a1) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| type DemoteRep (Maybe a) | |
Defined in GHC.Generics | |
| type Rep (Maybe a) | Since: base-4.6.0.0 |
Defined in GHC.Generics | |
| data Sing (b :: Maybe a) | |
| type Rep1 Maybe | Since: base-4.6.0.0 |
Instances
| Structured Ordering # | |
Defined in Distribution.Utils.Structured | |
| Data Ordering | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ordering -> c Ordering Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Ordering Source # toConstr :: Ordering -> Constr Source # dataTypeOf :: Ordering -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Ordering) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Ordering) Source # gmapT :: (forall b. Data b => b -> b) -> Ordering -> Ordering Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Ordering -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ordering -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering Source # | |
| Monoid Ordering | Since: base-2.1 |
| Semigroup Ordering | Since: base-4.9.0.0 |
| Bounded Ordering | Since: base-2.1 |
| Enum Ordering | Since: base-2.1 |
Defined in GHC.Enum Methods succ :: Ordering -> Ordering Source # pred :: Ordering -> Ordering Source # toEnum :: Int -> Ordering Source # fromEnum :: Ordering -> Int Source # enumFrom :: Ordering -> [Ordering] Source # enumFromThen :: Ordering -> Ordering -> [Ordering] Source # enumFromTo :: Ordering -> Ordering -> [Ordering] Source # enumFromThenTo :: Ordering -> Ordering -> Ordering -> [Ordering] Source # | |
| Generic Ordering | |
| Ix Ordering | Since: base-2.1 |
Defined in GHC.Ix | |
| Read Ordering | Since: base-2.1 |
| Show Ordering | Since: base-2.1 |
| Binary Ordering | |
| NFData Ordering | |
Defined in Control.DeepSeq | |
| Eq Ordering | |
| Ord Ordering | |
Defined in GHC.Classes | |
| type Rep Ordering | Since: base-4.6.0.0 |
Instances
| MonadFail IO | Since: base-4.9.0.0 |
| Alternative IO | Since: base-4.9.0.0 |
| Applicative IO | Since: base-2.1 |
| Functor IO | Since: base-2.1 |
| Monad IO | Since: base-2.1 |
| MonadPlus IO | Since: base-4.9.0.0 |
| Quasi IO | |
Defined in Language.Haskell.TH.Syntax Methods qReport :: Bool -> String -> IO () qRecover :: IO a -> IO a -> IO a qLookupName :: Bool -> String -> IO (Maybe Name) qReifyFixity :: Name -> IO (Maybe Fixity) qReifyType :: Name -> IO Type qReifyInstances :: Name -> [Type] -> IO [Dec] qReifyRoles :: Name -> IO [Role] qReifyAnnotations :: Data a => AnnLookup -> IO [a] qReifyModule :: Module -> IO ModuleInfo qReifyConStrictness :: Name -> IO [DecidedStrictness] qAddDependentFile :: FilePath -> IO () qAddTempFile :: String -> IO FilePath qAddTopDecls :: [Dec] -> IO () qAddForeignFilePath :: ForeignSrcLang -> String -> IO () qAddModFinalizer :: Q () -> IO () qAddCorePlugin :: String -> IO () qGetQ :: Typeable a => IO (Maybe a) qPutQ :: Typeable a => a -> IO () qIsExtEnabled :: Extension -> IO Bool qExtsEnabled :: IO [Extension] | |
| Quote IO | |
Defined in Language.Haskell.TH.Syntax | |
| MArray IOArray e IO | |
Defined in Data.Array.Base Methods getBounds :: Ix i => IOArray i e -> IO (i, i) Source # getNumElements :: Ix i => IOArray i e -> IO Int newArray :: Ix i => (i, i) -> e -> IO (IOArray i e) Source # newArray_ :: Ix i => (i, i) -> IO (IOArray i e) Source # unsafeNewArray_ :: Ix i => (i, i) -> IO (IOArray i e) unsafeRead :: Ix i => IOArray i e -> Int -> IO e unsafeWrite :: Ix i => IOArray i e -> Int -> e -> IO () | |
| Monoid a => Monoid (IO a) | Since: base-4.9.0.0 |
| Semigroup a => Semigroup (IO a) | Since: base-4.10.0.0 |
The Either type represents values with two possibilities: a value of
type is either Either a b or Left a.Right b
The Either type is sometimes used to represent a value which is
either correct or an error; by convention, the Left constructor is
used to hold an error value and the Right constructor is used to
hold a correct value (mnemonic: "right" also means "correct").
Examples
The type is the type of values which can be either
a Either String IntString or an Int. The Left constructor can be used only on
Strings, and the Right constructor can be used only on Ints:
>>>let s = Left "foo" :: Either String Int>>>sLeft "foo">>>let n = Right 3 :: Either String Int>>>nRight 3>>>:type ss :: Either String Int>>>:type nn :: Either String Int
The fmap from our Functor instance will ignore Left values, but
will apply the supplied function to values contained in a Right:
>>>let s = Left "foo" :: Either String Int>>>let n = Right 3 :: Either String Int>>>fmap (*2) sLeft "foo">>>fmap (*2) nRight 6
The Monad instance for Either allows us to chain together multiple
actions which may fail, and fail overall if any of the individual
steps failed. First we'll write a function that can either parse an
Int from a Char, or fail.
>>>import Data.Char ( digitToInt, isDigit )>>>:{let parseEither :: Char -> Either String Int parseEither c | isDigit c = Right (digitToInt c) | otherwise = Left "parse error">>>:}
The following should work, since both '1' and '2' can be
parsed as Ints.
>>>:{let parseMultiple :: Either String Int parseMultiple = do x <- parseEither '1' y <- parseEither '2' return (x + y)>>>:}
>>>parseMultipleRight 3
But the following should fail overall, since the first operation where
we attempt to parse 'm' as an Int will fail:
>>>:{let parseMultiple :: Either String Int parseMultiple = do x <- parseEither 'm' y <- parseEither '2' return (x + y)>>>:}
>>>parseMultipleLeft "parse error"
Instances
| Eq2 Either | Since: base-4.9.0.0 |
| Ord2 Either | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
| Read2 Either | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes Methods liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (Either a b) Source # liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [Either a b] Source # liftReadPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec (Either a b) Source # liftReadListPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [Either a b] Source # | |
| Show2 Either | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
| NFData2 Either | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
| (Lift a, Lift b) => Lift (Either a b :: Type) | |
| Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Either a m -> m Source # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m Source # foldMap' :: Monoid m => (a0 -> m) -> Either a a0 -> m Source # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b Source # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b Source # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b Source # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b Source # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 Source # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 Source # toList :: Either a a0 -> [a0] Source # null :: Either a a0 -> Bool Source # length :: Either a a0 -> Int Source # elem :: Eq a0 => a0 -> Either a a0 -> Bool Source # maximum :: Ord a0 => Either a a0 -> a0 Source # minimum :: Ord a0 => Either a a0 -> a0 Source # | |
| Eq a => Eq1 (Either a) | Since: base-4.9.0.0 |
| Ord a => Ord1 (Either a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
| Read a => Read1 (Either a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes Methods liftReadsPrec :: (Int -> ReadS a0) -> ReadS [a0] -> Int -> ReadS (Either a a0) Source # liftReadList :: (Int -> ReadS a0) -> ReadS [a0] -> ReadS [Either a a0] Source # liftReadPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec (Either a a0) Source # liftReadListPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec [Either a a0] Source # | |
| Show a => Show1 (Either a) | Since: base-4.9.0.0 |
| Traversable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Traversable Methods traverse :: Applicative f => (a0 -> f b) -> Either a a0 -> f (Either a b) Source # sequenceA :: Applicative f => Either a (f a0) -> f (Either a a0) Source # mapM :: Monad m => (a0 -> m b) -> Either a a0 -> m (Either a b) Source # sequence :: Monad m => Either a (m a0) -> m (Either a a0) Source # | |
| Applicative (Either e) | Since: base-3.0 |
Defined in Data.Either | |
| Functor (Either a) | Since: base-3.0 |
| Monad (Either e) | Since: base-4.4.0.0 |
| NFData a => NFData1 (Either a) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
| Generic1 (Either a :: Type -> Type) | |
| (IsNode a, IsNode b, Key a ~ Key b) => IsNode (Either a b) # | |
| (Structured a, Structured b) => Structured (Either a b) # | |
Defined in Distribution.Utils.Structured | |
| (Data a, Data b) => Data (Either a b) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Either a b -> c (Either a b) Source # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Either a b) Source # toConstr :: Either a b -> Constr Source # dataTypeOf :: Either a b -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Either a b)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Either a b)) Source # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Either a b -> Either a b Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Either a b -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Either a b -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) Source # | |
| Semigroup (Either a b) | Since: base-4.9.0.0 |
| Generic (Either a b) | |
| (Read a, Read b) => Read (Either a b) | Since: base-3.0 |
| (Show a, Show b) => Show (Either a b) | Since: base-3.0 |
| (Binary a, Binary b) => Binary (Either a b) | |
| (NFData a, NFData b) => NFData (Either a b) | |
Defined in Control.DeepSeq | |
| (Eq a, Eq b) => Eq (Either a b) | Since: base-2.1 |
| (Ord a, Ord b) => Ord (Either a b) | Since: base-2.1 |
| Newtype (Either License License) SpecLicense # | |
Defined in Distribution.FieldGrammar.Newtypes | |
| type Rep1 (Either a :: Type -> Type) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep1 (Either a :: Type -> Type) = D1 ('MetaData "Either" "Data.Either" "base" 'False) (C1 ('MetaCons "Left" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Right" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1)) | |
| type Key (Either a b) # | |
Defined in Distribution.Compat.Graph | |
| type Rep (Either a b) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep (Either a b) = D1 ('MetaData "Either" "Data.Either" "base" 'False) (C1 ('MetaCons "Left" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Right" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b))) | |
writeFile :: FilePath -> String -> IO () Source #
The computation writeFile file str function writes the string str,
to the file file.
readFile :: FilePath -> IO String Source #
The readFile function reads a file and
returns the contents of the file as a string.
The file is read lazily, on demand, as with getContents.
interact :: (String -> String) -> IO () Source #
The interact function takes a function of type String->String
as its argument. The entire input from the standard input device is
passed to this function as its argument, and the resulting string is
output on the standard output device.
getContents :: IO String Source #
The getContents operation returns all user input as a single string,
which is read lazily as it is needed
(same as hGetContents stdin).
appendFile :: FilePath -> String -> IO () Source #
The computation appendFile file str function appends the string str,
to the file file.
Note that writeFile and appendFile write a literal string
to a file. To write a value of any printable type, as with print,
use the show function to convert the value to a string first.
main = appendFile "squares" (show [(x,x*x) | x <- [0,0.1..2]])
type FilePath = String Source #
File and directory names are values of type String, whose precise
meaning is operating system dependent. Files can be opened, yielding a
handle which can then be used to operate on the contents of that file.
type IOError = IOException Source #
sequence_ :: (Foldable t, Monad m) => t (m a) -> m () Source #
Evaluate each monadic action in the structure from left to right,
and ignore the results. For a version that doesn't ignore the
results see sequence.
sequence_ is just like sequenceA_, but specialised to monadic
actions.
or :: Foldable t => t Bool -> Bool Source #
or returns the disjunction of a container of Bools. For the
result to be False, the container must be finite; True, however,
results from a True value finitely far from the left end.
Examples
Basic usage:
>>>or []False
>>>or [True]True
>>>or [False]False
>>>or [True, True, False]True
>>>or (True : repeat False) -- Infinite list [True,False,False,False,...True
>>>or (repeat False)* Hangs forever *
notElem :: (Foldable t, Eq a) => a -> t a -> Bool infix 4 Source #
notElem is the negation of elem.
Examples
Basic usage:
>>>3 `notElem` []True
>>>3 `notElem` [1,2]True
>>>3 `notElem` [1,2,3,4,5]False
For infinite structures, notElem terminates if the value exists at a
finite distance from the left side of the structure:
>>>3 `notElem` [1..]False
>>>3 `notElem` ([4..] ++ [3])* Hangs forever *
concatMap :: Foldable t => (a -> [b]) -> t a -> [b] Source #
Map a function over all the elements of a container and concatenate the resulting lists.
Examples
Basic usage:
>>>concatMap (take 3) [[1..], [10..], [100..], [1000..]][1,2,3,10,11,12,100,101,102,1000,1001,1002]
>>>concatMap (take 3) (Just [1..])[1,2,3]
concat :: Foldable t => t [a] -> [a] Source #
The concatenation of all the elements of a container of lists.
Examples
Basic usage:
>>>concat (Just [1, 2, 3])[1,2,3]
>>>concat (Left 42)[]
>>>concat [[1, 2, 3], [4, 5], [6], []][1,2,3,4,5,6]
and :: Foldable t => t Bool -> Bool Source #
and returns the conjunction of a container of Bools. For the
result to be True, the container must be finite; False, however,
results from a False value finitely far from the left end.
Examples
Basic usage:
>>>and []True
>>>and [True]True
>>>and [False]False
>>>and [True, True, False]False
>>>and (False : repeat True) -- Infinite list [False,True,True,True,...False
>>>and (repeat True)* Hangs forever *
words :: String -> [String] Source #
words breaks a string up into a list of words, which were delimited
by white space.
>>>words "Lorem ipsum\ndolor"["Lorem","ipsum","dolor"]
lines :: String -> [String] Source #
lines breaks a string up into a list of strings at newline
characters. The resulting strings do not contain newlines.
Note that after splitting the string at newline characters, the last part of the string is considered a line even if it doesn't end with a newline. For example,
>>>lines ""[]
>>>lines "\n"[""]
>>>lines "one"["one"]
>>>lines "one\n"["one"]
>>>lines "one\n\n"["one",""]
>>>lines "one\ntwo"["one","two"]
>>>lines "one\ntwo\n"["one","two"]
Thus contains at least as many elements as newlines in lines ss.
either :: (a -> c) -> (b -> c) -> Either a b -> c Source #
Case analysis for the Either type.
If the value is , apply the first function to Left aa;
if it is , apply the second function to Right bb.
Examples
We create two values of type , one using the
Either String IntLeft constructor and another using the Right constructor. Then
we apply "either" the length function (if we have a String)
or the "times-two" function (if we have an Int):
>>>let s = Left "foo" :: Either String Int>>>let n = Right 3 :: Either String Int>>>either length (*2) s3>>>either length (*2) n6
The lex function reads a single lexeme from the input, discarding
initial white space, and returning the characters that constitute the
lexeme. If the input string contains only white space, lex returns a
single successful `lexeme' consisting of the empty string. (Thus
.) If there is no legal lexeme at the
beginning of the input string, lex "" = [("","")]lex fails (i.e. returns []).
This lexer is not completely faithful to the Haskell lexical syntax in the following respects:
- Qualified names are not handled properly
- Octal and hexadecimal numerics are not recognized as a single token
- Comments are not treated properly
lcm :: Integral a => a -> a -> a Source #
is the smallest positive integer that both lcm x yx and y divide.
gcd :: Integral a => a -> a -> a Source #
is the non-negative factor of both gcd x yx and y of which
every common factor of x and y is also a factor; for example
, gcd 4 2 = 2, gcd (-4) 6 = 2 = gcd 0 44. = gcd 0 00.
(That is, the common divisor that is "greatest" in the divisibility
preordering.)
Note: Since for signed fixed-width integer types, ,
the result may be negative if one of the arguments is abs minBound < 0 (and
necessarily is if the other is minBound0 or ) for such types.minBound
(^^) :: (Fractional a, Integral b) => a -> b -> a infixr 8 Source #
raise a number to an integral power
(^) :: (Num a, Integral b) => a -> b -> a infixr 8 Source #
raise a number to a non-negative integral power
showString :: String -> ShowS Source #
utility function converting a String to a show function that
simply prepends the string unchanged.
showChar :: Char -> ShowS Source #
utility function converting a Char to a show function that
simply prepends the character unchanged.
zipWith3 :: (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d] Source #
The zipWith3 function takes a function which combines three
elements, as well as three lists and returns a list of the function applied
to corresponding elements, analogous to zipWith.
It is capable of list fusion, but it is restricted to its
first list argument and its resulting list.
zipWith3 (,,) xs ys zs == zip3 xs ys zs zipWith3 f [x1,x2,x3..] [y1,y2,y3..] [z1,z2,z3..] == [f x1 y1 z1, f x2 y2 z2, f x3 y3 z3..]
zipWith :: (a -> b -> c) -> [a] -> [b] -> [c] Source #
\(\mathcal{O}(\min(m,n))\). zipWith generalises zip by zipping with the
function given as the first argument, instead of a tupling function.
zipWith (,) xs ys == zip xs ys zipWith f [x1,x2,x3..] [y1,y2,y3..] == [f x1 y1, f x2 y2, f x3 y3..]
For example, is applied to two lists to produce the list of
corresponding sums:zipWith (+)
>>>zipWith (+) [1, 2, 3] [4, 5, 6][5,7,9]
zipWith is right-lazy:
>>>zipWith f [] _|_[]
zipWith is capable of list fusion, but it is restricted to its
first list argument and its resulting list.
unzip :: [(a, b)] -> ([a], [b]) Source #
unzip transforms a list of pairs into a list of first components
and a list of second components.
>>>unzip []([],[])>>>unzip [(1, 'a'), (2, 'b')]([1,2],"ab")
takeWhile :: (a -> Bool) -> [a] -> [a] Source #
takeWhile, applied to a predicate p and a list xs, returns the
longest prefix (possibly empty) of xs of elements that satisfy p.
>>>takeWhile (< 3) [1,2,3,4,1,2,3,4][1,2]>>>takeWhile (< 9) [1,2,3][1,2,3]>>>takeWhile (< 0) [1,2,3][]
take :: Int -> [a] -> [a] Source #
take n, applied to a list xs, returns the prefix of xs
of length n, or xs itself if n >= .length xs
>>>take 5 "Hello World!""Hello">>>take 3 [1,2,3,4,5][1,2,3]>>>take 3 [1,2][1,2]>>>take 3 [][]>>>take (-1) [1,2][]>>>take 0 [1,2][]
It is an instance of the more general genericTake,
in which n may be of any integral type.
splitAt :: Int -> [a] -> ([a], [a]) Source #
splitAt n xs returns a tuple where first element is xs prefix of
length n and second element is the remainder of the list:
>>>splitAt 6 "Hello World!"("Hello ","World!")>>>splitAt 3 [1,2,3,4,5]([1,2,3],[4,5])>>>splitAt 1 [1,2,3]([1],[2,3])>>>splitAt 3 [1,2,3]([1,2,3],[])>>>splitAt 4 [1,2,3]([1,2,3],[])>>>splitAt 0 [1,2,3]([],[1,2,3])>>>splitAt (-1) [1,2,3]([],[1,2,3])
It is equivalent to ( when take n xs, drop n xs)n is not _|_
(splitAt _|_ xs = _|_).
splitAt is an instance of the more general genericSplitAt,
in which n may be of any integral type.
span :: (a -> Bool) -> [a] -> ([a], [a]) Source #
span, applied to a predicate p and a list xs, returns a tuple where
first element is longest prefix (possibly empty) of xs of elements that
satisfy p and second element is the remainder of the list:
>>>span (< 3) [1,2,3,4,1,2,3,4]([1,2],[3,4,1,2,3,4])>>>span (< 9) [1,2,3]([1,2,3],[])>>>span (< 0) [1,2,3]([],[1,2,3])
scanr1 :: (a -> a -> a) -> [a] -> [a] Source #
\(\mathcal{O}(n)\). scanr1 is a variant of scanr that has no starting
value argument.
>>>scanr1 (+) [1..4][10,9,7,4]>>>scanr1 (+) [][]>>>scanr1 (-) [1..4][-2,3,-1,4]>>>scanr1 (&&) [True, False, True, True][False,False,True,True]>>>scanr1 (||) [True, True, False, False][True,True,False,False]>>>force $ scanr1 (+) [1..]*** Exception: stack overflow
scanr :: (a -> b -> b) -> b -> [a] -> [b] Source #
\(\mathcal{O}(n)\). scanr is the right-to-left dual of scanl. Note that the order of parameters on the accumulating function are reversed compared to scanl.
Also note that
head (scanr f z xs) == foldr f z xs.
>>>scanr (+) 0 [1..4][10,9,7,4,0]>>>scanr (+) 42 [][42]>>>scanr (-) 100 [1..4][98,-97,99,-96,100]>>>scanr (\nextChar reversedString -> nextChar : reversedString) "foo" ['a', 'b', 'c', 'd']["abcdfoo","bcdfoo","cdfoo","dfoo","foo"]>>>force $ scanr (+) 0 [1..]*** Exception: stack overflow
scanl1 :: (a -> a -> a) -> [a] -> [a] Source #
\(\mathcal{O}(n)\). scanl1 is a variant of scanl that has no starting
value argument:
scanl1 f [x1, x2, ...] == [x1, x1 `f` x2, ...]
>>>scanl1 (+) [1..4][1,3,6,10]>>>scanl1 (+) [][]>>>scanl1 (-) [1..4][1,-1,-4,-8]>>>scanl1 (&&) [True, False, True, True][True,False,False,False]>>>scanl1 (||) [False, False, True, True][False,False,True,True]>>>scanl1 (+) [1..]* Hangs forever *
scanl :: (b -> a -> b) -> b -> [a] -> [b] Source #
\(\mathcal{O}(n)\). scanl is similar to foldl, but returns a list of
successive reduced values from the left:
scanl f z [x1, x2, ...] == [z, z `f` x1, (z `f` x1) `f` x2, ...]
Note that
last (scanl f z xs) == foldl f z xs
>>>scanl (+) 0 [1..4][0,1,3,6,10]>>>scanl (+) 42 [][42]>>>scanl (-) 100 [1..4][100,99,97,94,90]>>>scanl (\reversedString nextChar -> nextChar : reversedString) "foo" ['a', 'b', 'c', 'd']["foo","afoo","bafoo","cbafoo","dcbafoo"]>>>scanl (+) 0 [1..]* Hangs forever *
reverse :: [a] -> [a] Source #
reverse xs returns the elements of xs in reverse order.
xs must be finite.
>>>reverse [][]>>>reverse [42][42]>>>reverse [2,5,7][7,5,2]>>>reverse [1..]* Hangs forever *
replicate :: Int -> a -> [a] Source #
replicate n x is a list of length n with x the value of
every element.
It is an instance of the more general genericReplicate,
in which n may be of any integral type.
>>>replicate 0 True[]>>>replicate (-1) True[]>>>replicate 4 True[True,True,True,True]
repeat x is an infinite list, with x the value of every element.
>>>take 20 $ repeat 17[17,17,17,17,17,17,17,17,17...
lookup :: Eq a => a -> [(a, b)] -> Maybe b Source #
\(\mathcal{O}(n)\). lookup key assocs looks up a key in an association
list.
>>>lookup 2 []Nothing>>>lookup 2 [(1, "first")]Nothing>>>lookup 2 [(1, "first"), (2, "second"), (3, "third")]Just "second"
iterate :: (a -> a) -> a -> [a] Source #
iterate f x returns an infinite list of repeated applications
of f to x:
iterate f x == [x, f x, f (f x), ...]
Note that iterate is lazy, potentially leading to thunk build-up if
the consumer doesn't force each iterate. See iterate' for a strict
variant of this function.
>>>take 10 $ iterate not True[True,False,True,False...>>>take 10 $ iterate (+3) 42[42,45,48,51,54,57,60,63...
drop :: Int -> [a] -> [a] Source #
drop n xs returns the suffix of xs
after the first n elements, or [] if n >= .length xs
>>>drop 6 "Hello World!""World!">>>drop 3 [1,2,3,4,5][4,5]>>>drop 3 [1,2][]>>>drop 3 [][]>>>drop (-1) [1,2][1,2]>>>drop 0 [1,2][1,2]
It is an instance of the more general genericDrop,
in which n may be of any integral type.
cycle ties a finite list into a circular one, or equivalently,
the infinite repetition of the original list. It is the identity
on infinite lists.
>>>cycle []*** Exception: Prelude.cycle: empty list>>>take 20 $ cycle [42][42,42,42,42,42,42,42,42,42,42...>>>take 20 $ cycle [2, 5, 7][2,5,7,2,5,7,2,5,7,2,5,7...
break :: (a -> Bool) -> [a] -> ([a], [a]) Source #
break, applied to a predicate p and a list xs, returns a tuple where
first element is longest prefix (possibly empty) of xs of elements that
do not satisfy p and second element is the remainder of the list:
>>>break (> 3) [1,2,3,4,1,2,3,4]([1,2,3],[4,1,2,3,4])>>>break (< 9) [1,2,3]([],[1,2,3])>>>break (> 9) [1,2,3]([1,2,3],[])
(!!) :: [a] -> Int -> a infixl 9 Source #
List index (subscript) operator, starting from 0.
It is an instance of the more general genericIndex,
which takes an index of any integral type.
>>>['a', 'b', 'c'] !! 0'a'>>>['a', 'b', 'c'] !! 2'c'>>>['a', 'b', 'c'] !! 3Exception: Prelude.!!: index too large>>>['a', 'b', 'c'] !! (-1)Exception: Prelude.!!: negative index
maybe :: b -> (a -> b) -> Maybe a -> b Source #
The maybe function takes a default value, a function, and a Maybe
value. If the Maybe value is Nothing, the function returns the
default value. Otherwise, it applies the function to the value inside
the Just and returns the result.
Examples
Basic usage:
>>>maybe False odd (Just 3)True
>>>maybe False odd NothingFalse
Read an integer from a string using readMaybe. If we succeed,
return twice the integer; that is, apply (*2) to it. If instead
we fail to parse an integer, return 0 by default:
>>>import Text.Read ( readMaybe )>>>maybe 0 (*2) (readMaybe "5")10>>>maybe 0 (*2) (readMaybe "")0
Apply show to a Maybe Int. If we have Just n, we want to show
the underlying Int n. But if we have Nothing, we return the
empty string instead of (for example) "Nothing":
>>>maybe "" show (Just 5)"5">>>maybe "" show Nothing""
(<$>) :: Functor f => (a -> b) -> f a -> f b infixl 4 Source #
An infix synonym for fmap.
The name of this operator is an allusion to $.
Note the similarities between their types:
($) :: (a -> b) -> a -> b (<$>) :: Functor f => (a -> b) -> f a -> f b
Whereas $ is function application, <$> is function
application lifted over a Functor.
Examples
Convert from a to a Maybe Int using Maybe
Stringshow:
>>>show <$> NothingNothing>>>show <$> Just 3Just "3"
Convert from an to an
Either Int IntEither IntString using show:
>>>show <$> Left 17Left 17>>>show <$> Right 17Right "17"
Double each element of a list:
>>>(*2) <$> [1,2,3][2,4,6]
Apply even to the second element of a pair:
>>>even <$> (2,2)(2,True)
uncurry :: (a -> b -> c) -> (a, b) -> c Source #
uncurry converts a curried function to a function on pairs.
Examples
>>>uncurry (+) (1,2)3
>>>uncurry ($) (show, 1)"1"
>>>map (uncurry max) [(1,2), (3,4), (6,8)][2,4,8]
until :: (a -> Bool) -> (a -> a) -> a -> a Source #
yields the result of applying until p ff until p holds.
flip :: (a -> b -> c) -> b -> a -> c Source #
takes its (first) two arguments in the reverse order of flip ff.
>>>flip (++) "hello" "world""worldhello"
const x is a unary function which evaluates to x for all inputs.
>>>const 42 "hello"42
>>>map (const 42) [0..3][42,42,42,42]
(=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1 Source #
Same as >>=, but with the arguments interchanged.
($!) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b infixr 0 Source #
Strict (call-by-value) application operator. It takes a function and an argument, evaluates the argument to weak head normal form (WHNF), then calls the function with that value.
undefined :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => a Source #
errorWithoutStackTrace :: forall (r :: RuntimeRep) (a :: TYPE r). [Char] -> a Source #
A variant of error that does not produce a stack trace.
Since: base-4.9.0.0
error :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => [Char] -> a Source #
error stops execution and displays an error message.
Common type-classes
class Semigroup a where Source #
The class of semigroups (types with an associative binary operation).
Instances should satisfy the following:
Since: base-4.9.0.0
Methods
(<>) :: a -> a -> a infixr 6 Source #
An associative operation.
>>>[1,2,3] <> [4,5,6][1,2,3,4,5,6]
Instances
class Typeable (a :: k) Source #
The class Typeable allows a concrete representation of a type to
be calculated.
Minimal complete definition
typeRep#
type TypeRep = SomeTypeRep Source #
A quantified type representation.
typeRep :: forall {k} proxy (a :: k). Typeable a => proxy a -> TypeRep Source #
Takes a value of type a and returns a concrete representation
of that type.
Since: base-4.7.0.0
class Typeable a => Data a Source #
The Data class comprehends a fundamental primitive gfoldl for
folding over constructor applications, say terms. This primitive can
be instantiated in several ways to map over the immediate subterms
of a term; see the gmap combinators later in this class. Indeed, a
generic programmer does not necessarily need to use the ingenious gfoldl
primitive but rather the intuitive gmap combinators. The gfoldl
primitive is completed by means to query top-level constructors, to
turn constructor representations into proper terms, and to list all
possible datatype constructors. This completion allows us to serve
generic programming scenarios like read, show, equality, term generation.
The combinators gmapT, gmapQ, gmapM, etc are all provided with
default definitions in terms of gfoldl, leaving open the opportunity
to provide datatype-specific definitions.
(The inclusion of the gmap combinators as members of class Data
allows the programmer or the compiler to derive specialised, and maybe
more efficient code per datatype. Note: gfoldl is more higher-order
than the gmap combinators. This is subject to ongoing benchmarking
experiments. It might turn out that the gmap combinators will be
moved out of the class Data.)
Conceptually, the definition of the gmap combinators in terms of the
primitive gfoldl requires the identification of the gfoldl function
arguments. Technically, we also need to identify the type constructor
c for the construction of the result type from the folded term type.
In the definition of gmapQx combinators, we use phantom type
constructors for the c in the type of gfoldl because the result type
of a query does not involve the (polymorphic) type of the term argument.
In the definition of gmapQl we simply use the plain constant type
constructor because gfoldl is left-associative anyway and so it is
readily suited to fold a left-associative binary operation over the
immediate subterms. In the definition of gmapQr, extra effort is
needed. We use a higher-order accumulation trick to mediate between
left-associative constructor application vs. right-associative binary
operation (e.g., (:)). When the query is meant to compute a value
of type r, then the result type within generic folding is r -> r.
So the result of folding is a function to which we finally pass the
right unit.
With the -XDeriveDataTypeable option, GHC can generate instances of the
Data class automatically. For example, given the declaration
data T a b = C1 a b | C2 deriving (Typeable, Data)
GHC will generate an instance that is equivalent to
instance (Data a, Data b) => Data (T a b) where
gfoldl k z (C1 a b) = z C1 `k` a `k` b
gfoldl k z C2 = z C2
gunfold k z c = case constrIndex c of
1 -> k (k (z C1))
2 -> z C2
toConstr (C1 _ _) = con_C1
toConstr C2 = con_C2
dataTypeOf _ = ty_T
con_C1 = mkConstr ty_T "C1" [] Prefix
con_C2 = mkConstr ty_T "C2" [] Prefix
ty_T = mkDataType "Module.T" [con_C1, con_C2]This is suitable for datatypes that are exported transparently.
Minimal complete definition
Instances
| Data OpenModule # | |
Defined in Distribution.Backpack Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> OpenModule -> c OpenModule Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c OpenModule Source # toConstr :: OpenModule -> Constr Source # dataTypeOf :: OpenModule -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c OpenModule) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c OpenModule) Source # gmapT :: (forall b. Data b => b -> b) -> OpenModule -> OpenModule Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> OpenModule -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> OpenModule -> r Source # gmapQ :: (forall d. Data d => d -> u) -> OpenModule -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> OpenModule -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> OpenModule -> m OpenModule Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> OpenModule -> m OpenModule Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> OpenModule -> m OpenModule Source # | |
| Data OpenUnitId # | |
Defined in Distribution.Backpack Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> OpenUnitId -> c OpenUnitId Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c OpenUnitId Source # toConstr :: OpenUnitId -> Constr Source # dataTypeOf :: OpenUnitId -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c OpenUnitId) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c OpenUnitId) Source # gmapT :: (forall b. Data b => b -> b) -> OpenUnitId -> OpenUnitId Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> OpenUnitId -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> OpenUnitId -> r Source # gmapQ :: (forall d. Data d => d -> u) -> OpenUnitId -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> OpenUnitId -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> OpenUnitId -> m OpenUnitId Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> OpenUnitId -> m OpenUnitId Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> OpenUnitId -> m OpenUnitId Source # | |
| Data CabalSpecVersion # | |
Defined in Distribution.CabalSpecVersion Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> CabalSpecVersion -> c CabalSpecVersion Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c CabalSpecVersion Source # toConstr :: CabalSpecVersion -> Constr Source # dataTypeOf :: CabalSpecVersion -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c CabalSpecVersion) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c CabalSpecVersion) Source # gmapT :: (forall b. Data b => b -> b) -> CabalSpecVersion -> CabalSpecVersion Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CabalSpecVersion -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CabalSpecVersion -> r Source # gmapQ :: (forall d. Data d => d -> u) -> CabalSpecVersion -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> CabalSpecVersion -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> CabalSpecVersion -> m CabalSpecVersion Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> CabalSpecVersion -> m CabalSpecVersion Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> CabalSpecVersion -> m CabalSpecVersion Source # | |
| Data CompilerFlavor # | |
Defined in Distribution.Compiler Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> CompilerFlavor -> c CompilerFlavor Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c CompilerFlavor Source # toConstr :: CompilerFlavor -> Constr Source # dataTypeOf :: CompilerFlavor -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c CompilerFlavor) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c CompilerFlavor) Source # gmapT :: (forall b. Data b => b -> b) -> CompilerFlavor -> CompilerFlavor Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CompilerFlavor -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CompilerFlavor -> r Source # gmapQ :: (forall d. Data d => d -> u) -> CompilerFlavor -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> CompilerFlavor -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> CompilerFlavor -> m CompilerFlavor Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> CompilerFlavor -> m CompilerFlavor Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> CompilerFlavor -> m CompilerFlavor Source # | |
| Data License # | |
Defined in Distribution.License Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> License -> c License Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c License Source # toConstr :: License -> Constr Source # dataTypeOf :: License -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c License) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c License) Source # gmapT :: (forall b. Data b => b -> b) -> License -> License Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> License -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> License -> r Source # gmapQ :: (forall d. Data d => d -> u) -> License -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> License -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> License -> m License Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> License -> m License Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> License -> m License Source # | |
| Data ModuleName # | |
Defined in Distribution.ModuleName Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ModuleName -> c ModuleName Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ModuleName Source # toConstr :: ModuleName -> Constr Source # dataTypeOf :: ModuleName -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ModuleName) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ModuleName) Source # gmapT :: (forall b. Data b => b -> b) -> ModuleName -> ModuleName Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ModuleName -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ModuleName -> r Source # gmapQ :: (forall d. Data d => d -> u) -> ModuleName -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> ModuleName -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ModuleName -> m ModuleName Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleName -> m ModuleName Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleName -> m ModuleName Source # | |
| Data License # | |
Defined in Distribution.SPDX.License Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> License -> c License Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c License Source # toConstr :: License -> Constr Source # dataTypeOf :: License -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c License) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c License) Source # gmapT :: (forall b. Data b => b -> b) -> License -> License Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> License -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> License -> r Source # gmapQ :: (forall d. Data d => d -> u) -> License -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> License -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> License -> m License Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> License -> m License Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> License -> m License Source # | |
| Data LicenseExceptionId # | |
Defined in Distribution.SPDX.LicenseExceptionId Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LicenseExceptionId -> c LicenseExceptionId Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LicenseExceptionId Source # toConstr :: LicenseExceptionId -> Constr Source # dataTypeOf :: LicenseExceptionId -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LicenseExceptionId) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LicenseExceptionId) Source # gmapT :: (forall b. Data b => b -> b) -> LicenseExceptionId -> LicenseExceptionId Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LicenseExceptionId -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LicenseExceptionId -> r Source # gmapQ :: (forall d. Data d => d -> u) -> LicenseExceptionId -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> LicenseExceptionId -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> LicenseExceptionId -> m LicenseExceptionId Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LicenseExceptionId -> m LicenseExceptionId Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LicenseExceptionId -> m LicenseExceptionId Source # | |
| Data LicenseExpression # | |
Defined in Distribution.SPDX.LicenseExpression Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LicenseExpression -> c LicenseExpression Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LicenseExpression Source # toConstr :: LicenseExpression -> Constr Source # dataTypeOf :: LicenseExpression -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LicenseExpression) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LicenseExpression) Source # gmapT :: (forall b. Data b => b -> b) -> LicenseExpression -> LicenseExpression Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LicenseExpression -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LicenseExpression -> r Source # gmapQ :: (forall d. Data d => d -> u) -> LicenseExpression -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> LicenseExpression -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> LicenseExpression -> m LicenseExpression Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LicenseExpression -> m LicenseExpression Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LicenseExpression -> m LicenseExpression Source # | |
| Data SimpleLicenseExpression # | |
Defined in Distribution.SPDX.LicenseExpression Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SimpleLicenseExpression -> c SimpleLicenseExpression Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SimpleLicenseExpression Source # toConstr :: SimpleLicenseExpression -> Constr Source # dataTypeOf :: SimpleLicenseExpression -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SimpleLicenseExpression) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SimpleLicenseExpression) Source # gmapT :: (forall b. Data b => b -> b) -> SimpleLicenseExpression -> SimpleLicenseExpression Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SimpleLicenseExpression -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SimpleLicenseExpression -> r Source # gmapQ :: (forall d. Data d => d -> u) -> SimpleLicenseExpression -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> SimpleLicenseExpression -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SimpleLicenseExpression -> m SimpleLicenseExpression Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SimpleLicenseExpression -> m SimpleLicenseExpression Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SimpleLicenseExpression -> m SimpleLicenseExpression Source # | |
| Data LicenseId # | |
Defined in Distribution.SPDX.LicenseId Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LicenseId -> c LicenseId Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LicenseId Source # toConstr :: LicenseId -> Constr Source # dataTypeOf :: LicenseId -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LicenseId) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LicenseId) Source # gmapT :: (forall b. Data b => b -> b) -> LicenseId -> LicenseId Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LicenseId -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LicenseId -> r Source # gmapQ :: (forall d. Data d => d -> u) -> LicenseId -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> LicenseId -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> LicenseId -> m LicenseId Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LicenseId -> m LicenseId Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LicenseId -> m LicenseId Source # | |
| Data LicenseRef # | |
Defined in Distribution.SPDX.LicenseReference Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LicenseRef -> c LicenseRef Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LicenseRef Source # toConstr :: LicenseRef -> Constr Source # dataTypeOf :: LicenseRef -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LicenseRef) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LicenseRef) Source # gmapT :: (forall b. Data b => b -> b) -> LicenseRef -> LicenseRef Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LicenseRef -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LicenseRef -> r Source # gmapQ :: (forall d. Data d => d -> u) -> LicenseRef -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> LicenseRef -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> LicenseRef -> m LicenseRef Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LicenseRef -> m LicenseRef Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LicenseRef -> m LicenseRef Source # | |
| Data Arch # | |
Defined in Distribution.System Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Arch -> c Arch Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Arch Source # toConstr :: Arch -> Constr Source # dataTypeOf :: Arch -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Arch) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Arch) Source # gmapT :: (forall b. Data b => b -> b) -> Arch -> Arch Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Arch -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Arch -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Arch -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Arch -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Arch -> m Arch Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Arch -> m Arch Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Arch -> m Arch Source # | |
| Data OS # | |
Defined in Distribution.System Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> OS -> c OS Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c OS Source # toConstr :: OS -> Constr Source # dataTypeOf :: OS -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c OS) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c OS) Source # gmapT :: (forall b. Data b => b -> b) -> OS -> OS Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> OS -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> OS -> r Source # gmapQ :: (forall d. Data d => d -> u) -> OS -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> OS -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> OS -> m OS Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> OS -> m OS Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> OS -> m OS Source # | |
| Data Platform # | |
Defined in Distribution.System Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Platform -> c Platform Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Platform Source # toConstr :: Platform -> Constr Source # dataTypeOf :: Platform -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Platform) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Platform) Source # gmapT :: (forall b. Data b => b -> b) -> Platform -> Platform Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Platform -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Platform -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Platform -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Platform -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Platform -> m Platform Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Platform -> m Platform Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Platform -> m Platform Source # | |
| Data Benchmark # | |
Defined in Distribution.Types.Benchmark Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Benchmark -> c Benchmark Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Benchmark Source # toConstr :: Benchmark -> Constr Source # dataTypeOf :: Benchmark -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Benchmark) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Benchmark) Source # gmapT :: (forall b. Data b => b -> b) -> Benchmark -> Benchmark Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Benchmark -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Benchmark -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Benchmark -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Benchmark -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Benchmark -> m Benchmark Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Benchmark -> m Benchmark Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Benchmark -> m Benchmark Source # | |
| Data BenchmarkInterface # | |
Defined in Distribution.Types.BenchmarkInterface Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> BenchmarkInterface -> c BenchmarkInterface Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c BenchmarkInterface Source # toConstr :: BenchmarkInterface -> Constr Source # dataTypeOf :: BenchmarkInterface -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c BenchmarkInterface) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c BenchmarkInterface) Source # gmapT :: (forall b. Data b => b -> b) -> BenchmarkInterface -> BenchmarkInterface Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> BenchmarkInterface -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> BenchmarkInterface -> r Source # gmapQ :: (forall d. Data d => d -> u) -> BenchmarkInterface -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> BenchmarkInterface -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> BenchmarkInterface -> m BenchmarkInterface Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> BenchmarkInterface -> m BenchmarkInterface Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> BenchmarkInterface -> m BenchmarkInterface Source # | |
| Data BenchmarkType # | |
Defined in Distribution.Types.BenchmarkType Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> BenchmarkType -> c BenchmarkType Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c BenchmarkType Source # toConstr :: BenchmarkType -> Constr Source # dataTypeOf :: BenchmarkType -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c BenchmarkType) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c BenchmarkType) Source # gmapT :: (forall b. Data b => b -> b) -> BenchmarkType -> BenchmarkType Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> BenchmarkType -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> BenchmarkType -> r Source # gmapQ :: (forall d. Data d => d -> u) -> BenchmarkType -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> BenchmarkType -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> BenchmarkType -> m BenchmarkType Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> BenchmarkType -> m BenchmarkType Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> BenchmarkType -> m BenchmarkType Source # | |
| Data BuildInfo # | |
Defined in Distribution.Types.BuildInfo Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> BuildInfo -> c BuildInfo Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c BuildInfo Source # toConstr :: BuildInfo -> Constr Source # dataTypeOf :: BuildInfo -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c BuildInfo) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c BuildInfo) Source # gmapT :: (forall b. Data b => b -> b) -> BuildInfo -> BuildInfo Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> BuildInfo -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> BuildInfo -> r Source # gmapQ :: (forall d. Data d => d -> u) -> BuildInfo -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> BuildInfo -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> BuildInfo -> m BuildInfo Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> BuildInfo -> m BuildInfo Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> BuildInfo -> m BuildInfo Source # | |
| Data BuildType # | |
Defined in Distribution.Types.BuildType Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> BuildType -> c BuildType Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c BuildType Source # toConstr :: BuildType -> Constr Source # dataTypeOf :: BuildType -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c BuildType) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c BuildType) Source # gmapT :: (forall b. Data b => b -> b) -> BuildType -> BuildType Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> BuildType -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> BuildType -> r Source # gmapQ :: (forall d. Data d => d -> u) -> BuildType -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> BuildType -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> BuildType -> m BuildType Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> BuildType -> m BuildType Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> BuildType -> m BuildType Source # | |
| Data ComponentId # | |
Defined in Distribution.Types.ComponentId Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ComponentId -> c ComponentId Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ComponentId Source # toConstr :: ComponentId -> Constr Source # dataTypeOf :: ComponentId -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ComponentId) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ComponentId) Source # gmapT :: (forall b. Data b => b -> b) -> ComponentId -> ComponentId Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ComponentId -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ComponentId -> r Source # gmapQ :: (forall d. Data d => d -> u) -> ComponentId -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> ComponentId -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ComponentId -> m ComponentId Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ComponentId -> m ComponentId Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ComponentId -> m ComponentId Source # | |
| Data ConfVar # | |
Defined in Distribution.Types.ConfVar Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ConfVar -> c ConfVar Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ConfVar Source # toConstr :: ConfVar -> Constr Source # dataTypeOf :: ConfVar -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ConfVar) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ConfVar) Source # gmapT :: (forall b. Data b => b -> b) -> ConfVar -> ConfVar Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ConfVar -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ConfVar -> r Source # gmapQ :: (forall d. Data d => d -> u) -> ConfVar -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> ConfVar -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ConfVar -> m ConfVar Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ConfVar -> m ConfVar Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ConfVar -> m ConfVar Source # | |
| Data Dependency # | |
Defined in Distribution.Types.Dependency Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Dependency -> c Dependency Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Dependency Source # toConstr :: Dependency -> Constr Source # dataTypeOf :: Dependency -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Dependency) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Dependency) Source # gmapT :: (forall b. Data b => b -> b) -> Dependency -> Dependency Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Dependency -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Dependency -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Dependency -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Dependency -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Dependency -> m Dependency Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Dependency -> m Dependency Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Dependency -> m Dependency Source # | |
| Data ExeDependency # | |
Defined in Distribution.Types.ExeDependency Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ExeDependency -> c ExeDependency Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ExeDependency Source # toConstr :: ExeDependency -> Constr Source # dataTypeOf :: ExeDependency -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ExeDependency) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ExeDependency) Source # gmapT :: (forall b. Data b => b -> b) -> ExeDependency -> ExeDependency Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ExeDependency -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ExeDependency -> r Source # gmapQ :: (forall d. Data d => d -> u) -> ExeDependency -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> ExeDependency -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ExeDependency -> m ExeDependency Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ExeDependency -> m ExeDependency Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ExeDependency -> m ExeDependency Source # | |
| Data Executable # | |
Defined in Distribution.Types.Executable Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Executable -> c Executable Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Executable Source # toConstr :: Executable -> Constr Source # dataTypeOf :: Executable -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Executable) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Executable) Source # gmapT :: (forall b. Data b => b -> b) -> Executable -> Executable Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Executable -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Executable -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Executable -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Executable -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Executable -> m Executable Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Executable -> m Executable Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Executable -> m Executable Source # | |
| Data ExecutableScope # | |
Defined in Distribution.Types.ExecutableScope Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ExecutableScope -> c ExecutableScope Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ExecutableScope Source # toConstr :: ExecutableScope -> Constr Source # dataTypeOf :: ExecutableScope -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ExecutableScope) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ExecutableScope) Source # gmapT :: (forall b. Data b => b -> b) -> ExecutableScope -> ExecutableScope Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ExecutableScope -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ExecutableScope -> r Source # gmapQ :: (forall d. Data d => d -> u) -> ExecutableScope -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> ExecutableScope -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ExecutableScope -> m ExecutableScope Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ExecutableScope -> m ExecutableScope Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ExecutableScope -> m ExecutableScope Source # | |
| Data FlagName # | |
Defined in Distribution.Types.Flag Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FlagName -> c FlagName Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FlagName Source # toConstr :: FlagName -> Constr Source # dataTypeOf :: FlagName -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FlagName) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FlagName) Source # gmapT :: (forall b. Data b => b -> b) -> FlagName -> FlagName Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FlagName -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FlagName -> r Source # gmapQ :: (forall d. Data d => d -> u) -> FlagName -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> FlagName -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FlagName -> m FlagName Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FlagName -> m FlagName Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FlagName -> m FlagName Source # | |
| Data PackageFlag # | |
Defined in Distribution.Types.Flag Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PackageFlag -> c PackageFlag Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PackageFlag Source # toConstr :: PackageFlag -> Constr Source # dataTypeOf :: PackageFlag -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PackageFlag) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PackageFlag) Source # gmapT :: (forall b. Data b => b -> b) -> PackageFlag -> PackageFlag Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PackageFlag -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PackageFlag -> r Source # gmapQ :: (forall d. Data d => d -> u) -> PackageFlag -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> PackageFlag -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PackageFlag -> m PackageFlag Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PackageFlag -> m PackageFlag Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PackageFlag -> m PackageFlag Source # | |
| Data ForeignLib # | |
Defined in Distribution.Types.ForeignLib Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ForeignLib -> c ForeignLib Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ForeignLib Source # toConstr :: ForeignLib -> Constr Source # dataTypeOf :: ForeignLib -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ForeignLib) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ForeignLib) Source # gmapT :: (forall b. Data b => b -> b) -> ForeignLib -> ForeignLib Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ForeignLib -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ForeignLib -> r Source # gmapQ :: (forall d. Data d => d -> u) -> ForeignLib -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> ForeignLib -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ForeignLib -> m ForeignLib Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignLib -> m ForeignLib Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignLib -> m ForeignLib Source # | |
| Data LibVersionInfo # | |
Defined in Distribution.Types.ForeignLib Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LibVersionInfo -> c LibVersionInfo Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LibVersionInfo Source # toConstr :: LibVersionInfo -> Constr Source # dataTypeOf :: LibVersionInfo -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LibVersionInfo) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LibVersionInfo) Source # gmapT :: (forall b. Data b => b -> b) -> LibVersionInfo -> LibVersionInfo Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LibVersionInfo -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LibVersionInfo -> r Source # gmapQ :: (forall d. Data d => d -> u) -> LibVersionInfo -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> LibVersionInfo -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> LibVersionInfo -> m LibVersionInfo Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LibVersionInfo -> m LibVersionInfo Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LibVersionInfo -> m LibVersionInfo Source # | |
| Data ForeignLibOption # | |
Defined in Distribution.Types.ForeignLibOption Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ForeignLibOption -> c ForeignLibOption Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ForeignLibOption Source # toConstr :: ForeignLibOption -> Constr Source # dataTypeOf :: ForeignLibOption -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ForeignLibOption) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ForeignLibOption) Source # gmapT :: (forall b. Data b => b -> b) -> ForeignLibOption -> ForeignLibOption Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ForeignLibOption -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ForeignLibOption -> r Source # gmapQ :: (forall d. Data d => d -> u) -> ForeignLibOption -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> ForeignLibOption -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ForeignLibOption -> m ForeignLibOption Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignLibOption -> m ForeignLibOption Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignLibOption -> m ForeignLibOption Source # | |
| Data ForeignLibType # | |
Defined in Distribution.Types.ForeignLibType Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ForeignLibType -> c ForeignLibType Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ForeignLibType Source # toConstr :: ForeignLibType -> Constr Source # dataTypeOf :: ForeignLibType -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ForeignLibType) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ForeignLibType) Source # gmapT :: (forall b. Data b => b -> b) -> ForeignLibType -> ForeignLibType Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ForeignLibType -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ForeignLibType -> r Source # gmapQ :: (forall d. Data d => d -> u) -> ForeignLibType -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> ForeignLibType -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ForeignLibType -> m ForeignLibType Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignLibType -> m ForeignLibType Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignLibType -> m ForeignLibType Source # | |
| Data GenericPackageDescription # | |
Defined in Distribution.Types.GenericPackageDescription Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> GenericPackageDescription -> c GenericPackageDescription Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c GenericPackageDescription Source # toConstr :: GenericPackageDescription -> Constr Source # dataTypeOf :: GenericPackageDescription -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c GenericPackageDescription) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c GenericPackageDescription) Source # gmapT :: (forall b. Data b => b -> b) -> GenericPackageDescription -> GenericPackageDescription Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> GenericPackageDescription -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> GenericPackageDescription -> r Source # gmapQ :: (forall d. Data d => d -> u) -> GenericPackageDescription -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> GenericPackageDescription -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> GenericPackageDescription -> m GenericPackageDescription Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> GenericPackageDescription -> m GenericPackageDescription Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> GenericPackageDescription -> m GenericPackageDescription Source # | |
| Data IncludeRenaming # | |
Defined in Distribution.Types.IncludeRenaming Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IncludeRenaming -> c IncludeRenaming Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c IncludeRenaming Source # toConstr :: IncludeRenaming -> Constr Source # dataTypeOf :: IncludeRenaming -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c IncludeRenaming) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c IncludeRenaming) Source # gmapT :: (forall b. Data b => b -> b) -> IncludeRenaming -> IncludeRenaming Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IncludeRenaming -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IncludeRenaming -> r Source # gmapQ :: (forall d. Data d => d -> u) -> IncludeRenaming -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> IncludeRenaming -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IncludeRenaming -> m IncludeRenaming Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IncludeRenaming -> m IncludeRenaming Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IncludeRenaming -> m IncludeRenaming Source # | |
| Data LegacyExeDependency # | |
Defined in Distribution.Types.LegacyExeDependency Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LegacyExeDependency -> c LegacyExeDependency Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LegacyExeDependency Source # toConstr :: LegacyExeDependency -> Constr Source # dataTypeOf :: LegacyExeDependency -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LegacyExeDependency) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LegacyExeDependency) Source # gmapT :: (forall b. Data b => b -> b) -> LegacyExeDependency -> LegacyExeDependency Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LegacyExeDependency -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LegacyExeDependency -> r Source # gmapQ :: (forall d. Data d => d -> u) -> LegacyExeDependency -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> LegacyExeDependency -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> LegacyExeDependency -> m LegacyExeDependency Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LegacyExeDependency -> m LegacyExeDependency Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LegacyExeDependency -> m LegacyExeDependency Source # | |
| Data Library # | |
Defined in Distribution.Types.Library Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Library -> c Library Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Library Source # toConstr :: Library -> Constr Source # dataTypeOf :: Library -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Library) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Library) Source # gmapT :: (forall b. Data b => b -> b) -> Library -> Library Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Library -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Library -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Library -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Library -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Library -> m Library Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Library -> m Library Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Library -> m Library Source # | |
| Data LibraryName # | |
Defined in Distribution.Types.LibraryName Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LibraryName -> c LibraryName Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LibraryName Source # toConstr :: LibraryName -> Constr Source # dataTypeOf :: LibraryName -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LibraryName) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LibraryName) Source # gmapT :: (forall b. Data b => b -> b) -> LibraryName -> LibraryName Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LibraryName -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LibraryName -> r Source # gmapQ :: (forall d. Data d => d -> u) -> LibraryName -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> LibraryName -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> LibraryName -> m LibraryName Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LibraryName -> m LibraryName Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LibraryName -> m LibraryName Source # | |
| Data LibraryVisibility # | |
Defined in Distribution.Types.LibraryVisibility Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LibraryVisibility -> c LibraryVisibility Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LibraryVisibility Source # toConstr :: LibraryVisibility -> Constr Source # dataTypeOf :: LibraryVisibility -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LibraryVisibility) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LibraryVisibility) Source # gmapT :: (forall b. Data b => b -> b) -> LibraryVisibility -> LibraryVisibility Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LibraryVisibility -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LibraryVisibility -> r Source # gmapQ :: (forall d. Data d => d -> u) -> LibraryVisibility -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> LibraryVisibility -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> LibraryVisibility -> m LibraryVisibility Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LibraryVisibility -> m LibraryVisibility Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LibraryVisibility -> m LibraryVisibility Source # | |
| Data Mixin # | |
Defined in Distribution.Types.Mixin Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Mixin -> c Mixin Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Mixin Source # toConstr :: Mixin -> Constr Source # dataTypeOf :: Mixin -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Mixin) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Mixin) Source # gmapT :: (forall b. Data b => b -> b) -> Mixin -> Mixin Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Mixin -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Mixin -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Mixin -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Mixin -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Mixin -> m Mixin Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Mixin -> m Mixin Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Mixin -> m Mixin Source # | |
| Data Module # | |
Defined in Distribution.Types.Module Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Module -> c Module Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Module Source # toConstr :: Module -> Constr Source # dataTypeOf :: Module -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Module) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Module) Source # gmapT :: (forall b. Data b => b -> b) -> Module -> Module Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Module -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Module -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Module -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Module -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Module -> m Module Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Module -> m Module Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Module -> m Module Source # | |
| Data ModuleReexport # | |
Defined in Distribution.Types.ModuleReexport Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ModuleReexport -> c ModuleReexport Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ModuleReexport Source # toConstr :: ModuleReexport -> Constr Source # dataTypeOf :: ModuleReexport -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ModuleReexport) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ModuleReexport) Source # gmapT :: (forall b. Data b => b -> b) -> ModuleReexport -> ModuleReexport Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ModuleReexport -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ModuleReexport -> r Source # gmapQ :: (forall d. Data d => d -> u) -> ModuleReexport -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> ModuleReexport -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ModuleReexport -> m ModuleReexport Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleReexport -> m ModuleReexport Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleReexport -> m ModuleReexport Source # | |
| Data ModuleRenaming # | |
Defined in Distribution.Types.ModuleRenaming Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ModuleRenaming -> c ModuleRenaming Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ModuleRenaming Source # toConstr :: ModuleRenaming -> Constr Source # dataTypeOf :: ModuleRenaming -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ModuleRenaming) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ModuleRenaming) Source # gmapT :: (forall b. Data b => b -> b) -> ModuleRenaming -> ModuleRenaming Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ModuleRenaming -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ModuleRenaming -> r Source # gmapQ :: (forall d. Data d => d -> u) -> ModuleRenaming -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> ModuleRenaming -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ModuleRenaming -> m ModuleRenaming Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleRenaming -> m ModuleRenaming Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleRenaming -> m ModuleRenaming Source # | |
| Data MungedPackageId # | |
Defined in Distribution.Types.MungedPackageId Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> MungedPackageId -> c MungedPackageId Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c MungedPackageId Source # toConstr :: MungedPackageId -> Constr Source # dataTypeOf :: MungedPackageId -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c MungedPackageId) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c MungedPackageId) Source # gmapT :: (forall b. Data b => b -> b) -> MungedPackageId -> MungedPackageId Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> MungedPackageId -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> MungedPackageId -> r Source # gmapQ :: (forall d. Data d => d -> u) -> MungedPackageId -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> MungedPackageId -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> MungedPackageId -> m MungedPackageId Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> MungedPackageId -> m MungedPackageId Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> MungedPackageId -> m MungedPackageId Source # | |
| Data MungedPackageName # | |
Defined in Distribution.Types.MungedPackageName Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> MungedPackageName -> c MungedPackageName Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c MungedPackageName Source # toConstr :: MungedPackageName -> Constr Source # dataTypeOf :: MungedPackageName -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c MungedPackageName) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c MungedPackageName) Source # gmapT :: (forall b. Data b => b -> b) -> MungedPackageName -> MungedPackageName Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> MungedPackageName -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> MungedPackageName -> r Source # gmapQ :: (forall d. Data d => d -> u) -> MungedPackageName -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> MungedPackageName -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> MungedPackageName -> m MungedPackageName Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> MungedPackageName -> m MungedPackageName Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> MungedPackageName -> m MungedPackageName Source # | |
| Data PackageDescription # | |
Defined in Distribution.Types.PackageDescription Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PackageDescription -> c PackageDescription Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PackageDescription Source # toConstr :: PackageDescription -> Constr Source # dataTypeOf :: PackageDescription -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PackageDescription) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PackageDescription) Source # gmapT :: (forall b. Data b => b -> b) -> PackageDescription -> PackageDescription Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PackageDescription -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PackageDescription -> r Source # gmapQ :: (forall d. Data d => d -> u) -> PackageDescription -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> PackageDescription -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PackageDescription -> m PackageDescription Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PackageDescription -> m PackageDescription Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PackageDescription -> m PackageDescription Source # | |
| Data PackageIdentifier # | |
Defined in Distribution.Types.PackageId Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PackageIdentifier -> c PackageIdentifier Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PackageIdentifier Source # toConstr :: PackageIdentifier -> Constr Source # dataTypeOf :: PackageIdentifier -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PackageIdentifier) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PackageIdentifier) Source # gmapT :: (forall b. Data b => b -> b) -> PackageIdentifier -> PackageIdentifier Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PackageIdentifier -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PackageIdentifier -> r Source # gmapQ :: (forall d. Data d => d -> u) -> PackageIdentifier -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> PackageIdentifier -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PackageIdentifier -> m PackageIdentifier Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PackageIdentifier -> m PackageIdentifier Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PackageIdentifier -> m PackageIdentifier Source # | |
| Data PackageName # | |
Defined in Distribution.Types.PackageName Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PackageName -> c PackageName Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PackageName Source # toConstr :: PackageName -> Constr Source # dataTypeOf :: PackageName -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PackageName) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PackageName) Source # gmapT :: (forall b. Data b => b -> b) -> PackageName -> PackageName Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PackageName -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PackageName -> r Source # gmapQ :: (forall d. Data d => d -> u) -> PackageName -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> PackageName -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PackageName -> m PackageName Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PackageName -> m PackageName Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PackageName -> m PackageName Source # | |
| Data PackageVersionConstraint # | |
Defined in Distribution.Types.PackageVersionConstraint Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PackageVersionConstraint -> c PackageVersionConstraint Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PackageVersionConstraint Source # toConstr :: PackageVersionConstraint -> Constr Source # dataTypeOf :: PackageVersionConstraint -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PackageVersionConstraint) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PackageVersionConstraint) Source # gmapT :: (forall b. Data b => b -> b) -> PackageVersionConstraint -> PackageVersionConstraint Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PackageVersionConstraint -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PackageVersionConstraint -> r Source # gmapQ :: (forall d. Data d => d -> u) -> PackageVersionConstraint -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> PackageVersionConstraint -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PackageVersionConstraint -> m PackageVersionConstraint Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PackageVersionConstraint -> m PackageVersionConstraint Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PackageVersionConstraint -> m PackageVersionConstraint Source # | |
| Data PkgconfigDependency # | |
Defined in Distribution.Types.PkgconfigDependency Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PkgconfigDependency -> c PkgconfigDependency Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PkgconfigDependency Source # toConstr :: PkgconfigDependency -> Constr Source # dataTypeOf :: PkgconfigDependency -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PkgconfigDependency) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PkgconfigDependency) Source # gmapT :: (forall b. Data b => b -> b) -> PkgconfigDependency -> PkgconfigDependency Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PkgconfigDependency -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PkgconfigDependency -> r Source # gmapQ :: (forall d. Data d => d -> u) -> PkgconfigDependency -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> PkgconfigDependency -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PkgconfigDependency -> m PkgconfigDependency Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgconfigDependency -> m PkgconfigDependency Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgconfigDependency -> m PkgconfigDependency Source # | |
| Data PkgconfigName # | |
Defined in Distribution.Types.PkgconfigName Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PkgconfigName -> c PkgconfigName Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PkgconfigName Source # toConstr :: PkgconfigName -> Constr Source # dataTypeOf :: PkgconfigName -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PkgconfigName) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PkgconfigName) Source # gmapT :: (forall b. Data b => b -> b) -> PkgconfigName -> PkgconfigName Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PkgconfigName -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PkgconfigName -> r Source # gmapQ :: (forall d. Data d => d -> u) -> PkgconfigName -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> PkgconfigName -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PkgconfigName -> m PkgconfigName Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgconfigName -> m PkgconfigName Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgconfigName -> m PkgconfigName Source # | |
| Data PkgconfigVersion # | |
Defined in Distribution.Types.PkgconfigVersion Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PkgconfigVersion -> c PkgconfigVersion Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PkgconfigVersion Source # toConstr :: PkgconfigVersion -> Constr Source # dataTypeOf :: PkgconfigVersion -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PkgconfigVersion) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PkgconfigVersion) Source # gmapT :: (forall b. Data b => b -> b) -> PkgconfigVersion -> PkgconfigVersion Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PkgconfigVersion -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PkgconfigVersion -> r Source # gmapQ :: (forall d. Data d => d -> u) -> PkgconfigVersion -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> PkgconfigVersion -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PkgconfigVersion -> m PkgconfigVersion Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgconfigVersion -> m PkgconfigVersion Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgconfigVersion -> m PkgconfigVersion Source # | |
| Data PkgconfigVersionRange # | |
Defined in Distribution.Types.PkgconfigVersionRange Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PkgconfigVersionRange -> c PkgconfigVersionRange Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PkgconfigVersionRange Source # toConstr :: PkgconfigVersionRange -> Constr Source # dataTypeOf :: PkgconfigVersionRange -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PkgconfigVersionRange) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PkgconfigVersionRange) Source # gmapT :: (forall b. Data b => b -> b) -> PkgconfigVersionRange -> PkgconfigVersionRange Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PkgconfigVersionRange -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PkgconfigVersionRange -> r Source # gmapQ :: (forall d. Data d => d -> u) -> PkgconfigVersionRange -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> PkgconfigVersionRange -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PkgconfigVersionRange -> m PkgconfigVersionRange Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgconfigVersionRange -> m PkgconfigVersionRange Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgconfigVersionRange -> m PkgconfigVersionRange Source # | |
| Data SetupBuildInfo # | |
Defined in Distribution.Types.SetupBuildInfo Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SetupBuildInfo -> c SetupBuildInfo Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SetupBuildInfo Source # toConstr :: SetupBuildInfo -> Constr Source # dataTypeOf :: SetupBuildInfo -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SetupBuildInfo) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SetupBuildInfo) Source # gmapT :: (forall b. Data b => b -> b) -> SetupBuildInfo -> SetupBuildInfo Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SetupBuildInfo -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SetupBuildInfo -> r Source # gmapQ :: (forall d. Data d => d -> u) -> SetupBuildInfo -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> SetupBuildInfo -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SetupBuildInfo -> m SetupBuildInfo Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SetupBuildInfo -> m SetupBuildInfo Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SetupBuildInfo -> m SetupBuildInfo Source # | |
| Data KnownRepoType # | |
Defined in Distribution.Types.SourceRepo Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> KnownRepoType -> c KnownRepoType Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c KnownRepoType Source # toConstr :: KnownRepoType -> Constr Source # dataTypeOf :: KnownRepoType -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c KnownRepoType) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c KnownRepoType) Source # gmapT :: (forall b. Data b => b -> b) -> KnownRepoType -> KnownRepoType Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> KnownRepoType -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> KnownRepoType -> r Source # gmapQ :: (forall d. Data d => d -> u) -> KnownRepoType -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> KnownRepoType -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> KnownRepoType -> m KnownRepoType Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> KnownRepoType -> m KnownRepoType Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> KnownRepoType -> m KnownRepoType Source # | |
| Data RepoKind # | |
Defined in Distribution.Types.SourceRepo Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> RepoKind -> c RepoKind Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c RepoKind Source # toConstr :: RepoKind -> Constr Source # dataTypeOf :: RepoKind -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c RepoKind) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c RepoKind) Source # gmapT :: (forall b. Data b => b -> b) -> RepoKind -> RepoKind Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> RepoKind -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> RepoKind -> r Source # gmapQ :: (forall d. Data d => d -> u) -> RepoKind -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> RepoKind -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> RepoKind -> m RepoKind Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> RepoKind -> m RepoKind Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> RepoKind -> m RepoKind Source # | |
| Data RepoType # | |
Defined in Distribution.Types.SourceRepo Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> RepoType -> c RepoType Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c RepoType Source # toConstr :: RepoType -> Constr Source # dataTypeOf :: RepoType -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c RepoType) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c RepoType) Source # gmapT :: (forall b. Data b => b -> b) -> RepoType -> RepoType Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> RepoType -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> RepoType -> r Source # gmapQ :: (forall d. Data d => d -> u) -> RepoType -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> RepoType -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> RepoType -> m RepoType Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> RepoType -> m RepoType Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> RepoType -> m RepoType Source # | |
| Data SourceRepo # | |
Defined in Distribution.Types.SourceRepo Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceRepo -> c SourceRepo Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceRepo Source # toConstr :: SourceRepo -> Constr Source # dataTypeOf :: SourceRepo -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceRepo) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceRepo) Source # gmapT :: (forall b. Data b => b -> b) -> SourceRepo -> SourceRepo Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceRepo -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceRepo -> r Source # gmapQ :: (forall d. Data d => d -> u) -> SourceRepo -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceRepo -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceRepo -> m SourceRepo Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceRepo -> m SourceRepo Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceRepo -> m SourceRepo Source # | |
| Data TestSuite # | |
Defined in Distribution.Types.TestSuite Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TestSuite -> c TestSuite Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TestSuite Source # toConstr :: TestSuite -> Constr Source # dataTypeOf :: TestSuite -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TestSuite) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TestSuite) Source # gmapT :: (forall b. Data b => b -> b) -> TestSuite -> TestSuite Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TestSuite -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TestSuite -> r Source # gmapQ :: (forall d. Data d => d -> u) -> TestSuite -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> TestSuite -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TestSuite -> m TestSuite Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TestSuite -> m TestSuite Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TestSuite -> m TestSuite Source # | |
| Data TestSuiteInterface # | |
Defined in Distribution.Types.TestSuiteInterface Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TestSuiteInterface -> c TestSuiteInterface Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TestSuiteInterface Source # toConstr :: TestSuiteInterface -> Constr Source # dataTypeOf :: TestSuiteInterface -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TestSuiteInterface) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TestSuiteInterface) Source # gmapT :: (forall b. Data b => b -> b) -> TestSuiteInterface -> TestSuiteInterface Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TestSuiteInterface -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TestSuiteInterface -> r Source # gmapQ :: (forall d. Data d => d -> u) -> TestSuiteInterface -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> TestSuiteInterface -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TestSuiteInterface -> m TestSuiteInterface Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TestSuiteInterface -> m TestSuiteInterface Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TestSuiteInterface -> m TestSuiteInterface Source # | |
| Data TestType # | |
Defined in Distribution.Types.TestType Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TestType -> c TestType Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TestType Source # toConstr :: TestType -> Constr Source # dataTypeOf :: TestType -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TestType) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TestType) Source # gmapT :: (forall b. Data b => b -> b) -> TestType -> TestType Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TestType -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TestType -> r Source # gmapQ :: (forall d. Data d => d -> u) -> TestType -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> TestType -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TestType -> m TestType Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TestType -> m TestType Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TestType -> m TestType Source # | |
| Data DefUnitId # | |
Defined in Distribution.Types.UnitId Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DefUnitId -> c DefUnitId Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DefUnitId Source # toConstr :: DefUnitId -> Constr Source # dataTypeOf :: DefUnitId -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DefUnitId) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DefUnitId) Source # gmapT :: (forall b. Data b => b -> b) -> DefUnitId -> DefUnitId Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DefUnitId -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DefUnitId -> r Source # gmapQ :: (forall d. Data d => d -> u) -> DefUnitId -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> DefUnitId -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DefUnitId -> m DefUnitId Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DefUnitId -> m DefUnitId Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DefUnitId -> m DefUnitId Source # | |
| Data UnitId # | |
Defined in Distribution.Types.UnitId Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> UnitId -> c UnitId Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c UnitId Source # toConstr :: UnitId -> Constr Source # dataTypeOf :: UnitId -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c UnitId) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c UnitId) Source # gmapT :: (forall b. Data b => b -> b) -> UnitId -> UnitId Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> UnitId -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> UnitId -> r Source # gmapQ :: (forall d. Data d => d -> u) -> UnitId -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> UnitId -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> UnitId -> m UnitId Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> UnitId -> m UnitId Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> UnitId -> m UnitId Source # | |
| Data UnqualComponentName # | |
Defined in Distribution.Types.UnqualComponentName Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> UnqualComponentName -> c UnqualComponentName Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c UnqualComponentName Source # toConstr :: UnqualComponentName -> Constr Source # dataTypeOf :: UnqualComponentName -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c UnqualComponentName) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c UnqualComponentName) Source # gmapT :: (forall b. Data b => b -> b) -> UnqualComponentName -> UnqualComponentName Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> UnqualComponentName -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> UnqualComponentName -> r Source # gmapQ :: (forall d. Data d => d -> u) -> UnqualComponentName -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> UnqualComponentName -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> UnqualComponentName -> m UnqualComponentName Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> UnqualComponentName -> m UnqualComponentName Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> UnqualComponentName -> m UnqualComponentName Source # | |
| Data Version # | |
Defined in Distribution.Types.Version Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Version -> c Version Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Version Source # toConstr :: Version -> Constr Source # dataTypeOf :: Version -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Version) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Version) Source # gmapT :: (forall b. Data b => b -> b) -> Version -> Version Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Version -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Version -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Version -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Version -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Version -> m Version Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Version -> m Version Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Version -> m Version Source # | |
| Data VersionRange # | |
Defined in Distribution.Types.VersionRange.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> VersionRange -> c VersionRange Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c VersionRange Source # toConstr :: VersionRange -> Constr Source # dataTypeOf :: VersionRange -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c VersionRange) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c VersionRange) Source # gmapT :: (forall b. Data b => b -> b) -> VersionRange -> VersionRange Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> VersionRange -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> VersionRange -> r Source # gmapQ :: (forall d. Data d => d -> u) -> VersionRange -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> VersionRange -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> VersionRange -> m VersionRange Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> VersionRange -> m VersionRange Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> VersionRange -> m VersionRange Source # | |
| Data ShortText # | |
Defined in Distribution.Utils.ShortText Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ShortText -> c ShortText Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ShortText Source # toConstr :: ShortText -> Constr Source # dataTypeOf :: ShortText -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ShortText) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ShortText) Source # gmapT :: (forall b. Data b => b -> b) -> ShortText -> ShortText Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ShortText -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ShortText -> r Source # gmapQ :: (forall d. Data d => d -> u) -> ShortText -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> ShortText -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ShortText -> m ShortText Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ShortText -> m ShortText Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ShortText -> m ShortText Source # | |
| Data Extension # | |
Defined in Language.Haskell.Extension Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Extension -> c Extension Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Extension Source # toConstr :: Extension -> Constr Source # dataTypeOf :: Extension -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Extension) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Extension) Source # gmapT :: (forall b. Data b => b -> b) -> Extension -> Extension Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Extension -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Extension -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Extension -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Extension -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Extension -> m Extension Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Extension -> m Extension Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Extension -> m Extension Source # | |
| Data KnownExtension # | |
Defined in Language.Haskell.Extension Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> KnownExtension -> c KnownExtension Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c KnownExtension Source # toConstr :: KnownExtension -> Constr Source # dataTypeOf :: KnownExtension -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c KnownExtension) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c KnownExtension) Source # gmapT :: (forall b. Data b => b -> b) -> KnownExtension -> KnownExtension Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> KnownExtension -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> KnownExtension -> r Source # gmapQ :: (forall d. Data d => d -> u) -> KnownExtension -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> KnownExtension -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> KnownExtension -> m KnownExtension Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> KnownExtension -> m KnownExtension Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> KnownExtension -> m KnownExtension Source # | |
| Data Language # | |
Defined in Language.Haskell.Extension Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Language -> c Language Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Language Source # toConstr :: Language -> Constr Source # dataTypeOf :: Language -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Language) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Language) Source # gmapT :: (forall b. Data b => b -> b) -> Language -> Language Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Language -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Language -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Language -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Language -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Language -> m Language Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Language -> m Language Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Language -> m Language Source # | |
| Data All | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> All -> c All Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c All Source # toConstr :: All -> Constr Source # dataTypeOf :: All -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c All) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c All) Source # gmapT :: (forall b. Data b => b -> b) -> All -> All Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> All -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> All -> r Source # gmapQ :: (forall d. Data d => d -> u) -> All -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> All -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> All -> m All Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> All -> m All Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> All -> m All Source # | |
| Data Any | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Any -> c Any Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Any Source # toConstr :: Any -> Constr Source # dataTypeOf :: Any -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Any) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Any) Source # gmapT :: (forall b. Data b => b -> b) -> Any -> Any Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Any -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Any -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Any -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Any -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Any -> m Any Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Any -> m Any Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Any -> m Any Source # | |
| Data Version | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Version -> c Version Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Version Source # toConstr :: Version -> Constr Source # dataTypeOf :: Version -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Version) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Version) Source # gmapT :: (forall b. Data b => b -> b) -> Version -> Version Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Version -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Version -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Version -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Version -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Version -> m Version Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Version -> m Version Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Version -> m Version Source # | |
| Data Void | Since: base-4.8.0.0 |
Defined in Data.Void Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Void -> c Void Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Void Source # toConstr :: Void -> Constr Source # dataTypeOf :: Void -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Void) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Void) Source # gmapT :: (forall b. Data b => b -> b) -> Void -> Void Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Void -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Void -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Void -> m Void Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void Source # | |
| Data IntPtr | Since: base-4.11.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntPtr -> c IntPtr Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c IntPtr Source # toConstr :: IntPtr -> Constr Source # dataTypeOf :: IntPtr -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c IntPtr) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c IntPtr) Source # gmapT :: (forall b. Data b => b -> b) -> IntPtr -> IntPtr Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntPtr -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntPtr -> r Source # gmapQ :: (forall d. Data d => d -> u) -> IntPtr -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntPtr -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntPtr -> m IntPtr Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntPtr -> m IntPtr Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntPtr -> m IntPtr Source # | |
| Data WordPtr | Since: base-4.11.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> WordPtr -> c WordPtr Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c WordPtr Source # toConstr :: WordPtr -> Constr Source # dataTypeOf :: WordPtr -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c WordPtr) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c WordPtr) Source # gmapT :: (forall b. Data b => b -> b) -> WordPtr -> WordPtr Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WordPtr -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WordPtr -> r Source # gmapQ :: (forall d. Data d => d -> u) -> WordPtr -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> WordPtr -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> WordPtr -> m WordPtr Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> WordPtr -> m WordPtr Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> WordPtr -> m WordPtr Source # | |
| Data SpecConstrAnnotation | Since: base-4.3.0.0 |
Defined in GHC.Exts Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SpecConstrAnnotation -> c SpecConstrAnnotation Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SpecConstrAnnotation Source # toConstr :: SpecConstrAnnotation -> Constr Source # dataTypeOf :: SpecConstrAnnotation -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SpecConstrAnnotation) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SpecConstrAnnotation) Source # gmapT :: (forall b. Data b => b -> b) -> SpecConstrAnnotation -> SpecConstrAnnotation Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SpecConstrAnnotation -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SpecConstrAnnotation -> r Source # gmapQ :: (forall d. Data d => d -> u) -> SpecConstrAnnotation -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> SpecConstrAnnotation -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation Source # | |
| Data Associativity | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Associativity -> c Associativity Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Associativity Source # toConstr :: Associativity -> Constr Source # dataTypeOf :: Associativity -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Associativity) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Associativity) Source # gmapT :: (forall b. Data b => b -> b) -> Associativity -> Associativity Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Associativity -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Associativity -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Associativity -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Associativity -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity Source # | |
| Data DecidedStrictness | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DecidedStrictness -> c DecidedStrictness Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DecidedStrictness Source # toConstr :: DecidedStrictness -> Constr Source # dataTypeOf :: DecidedStrictness -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DecidedStrictness) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DecidedStrictness) Source # gmapT :: (forall b. Data b => b -> b) -> DecidedStrictness -> DecidedStrictness Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r Source # gmapQ :: (forall d. Data d => d -> u) -> DecidedStrictness -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> DecidedStrictness -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness Source # | |
| Data Fixity | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Fixity -> c Fixity Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Fixity Source # toConstr :: Fixity -> Constr Source # dataTypeOf :: Fixity -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Fixity) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Fixity) Source # gmapT :: (forall b. Data b => b -> b) -> Fixity -> Fixity Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Fixity -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Fixity -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity Source # | |
| Data SourceStrictness | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceStrictness -> c SourceStrictness Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceStrictness Source # toConstr :: SourceStrictness -> Constr Source # dataTypeOf :: SourceStrictness -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceStrictness) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceStrictness) Source # gmapT :: (forall b. Data b => b -> b) -> SourceStrictness -> SourceStrictness Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r Source # gmapQ :: (forall d. Data d => d -> u) -> SourceStrictness -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceStrictness -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness Source # | |
| Data SourceUnpackedness | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceUnpackedness -> c SourceUnpackedness Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceUnpackedness Source # toConstr :: SourceUnpackedness -> Constr Source # dataTypeOf :: SourceUnpackedness -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceUnpackedness) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceUnpackedness) Source # gmapT :: (forall b. Data b => b -> b) -> SourceUnpackedness -> SourceUnpackedness Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r Source # gmapQ :: (forall d. Data d => d -> u) -> SourceUnpackedness -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceUnpackedness -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness Source # | |
| Data Int16 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int16 -> c Int16 Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int16 Source # toConstr :: Int16 -> Constr Source # dataTypeOf :: Int16 -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int16) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int16) Source # gmapT :: (forall b. Data b => b -> b) -> Int16 -> Int16 Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int16 -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int16 -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Int16 -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int16 -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 Source # | |
| Data Int32 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int32 -> c Int32 Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int32 Source # toConstr :: Int32 -> Constr Source # dataTypeOf :: Int32 -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int32) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int32) Source # gmapT :: (forall b. Data b => b -> b) -> Int32 -> Int32 Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int32 -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int32 -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Int32 -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int32 -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 Source # | |
| Data Int64 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int64 -> c Int64 Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int64 Source # toConstr :: Int64 -> Constr Source # dataTypeOf :: Int64 -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int64) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int64) Source # gmapT :: (forall b. Data b => b -> b) -> Int64 -> Int64 Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int64 -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int64 -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Int64 -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int64 -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 Source # | |
| Data Int8 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int8 -> c Int8 Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int8 Source # toConstr :: Int8 -> Constr Source # dataTypeOf :: Int8 -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int8) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int8) Source # gmapT :: (forall b. Data b => b -> b) -> Int8 -> Int8 Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int8 -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int8 -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Int8 -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int8 -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 Source # | |
| Data Word16 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word16 -> c Word16 Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word16 Source # toConstr :: Word16 -> Constr Source # dataTypeOf :: Word16 -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word16) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word16) Source # gmapT :: (forall b. Data b => b -> b) -> Word16 -> Word16 Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Word16 -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word16 -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 Source # | |
| Data Word32 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word32 -> c Word32 Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word32 Source # toConstr :: Word32 -> Constr Source # dataTypeOf :: Word32 -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word32) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word32) Source # gmapT :: (forall b. Data b => b -> b) -> Word32 -> Word32 Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Word32 -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word32 -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 Source # | |
| Data Word64 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word64 -> c Word64 Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word64 Source # toConstr :: Word64 -> Constr Source # dataTypeOf :: Word64 -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word64) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word64) Source # gmapT :: (forall b. Data b => b -> b) -> Word64 -> Word64 Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Word64 -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word64 -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 Source # | |
| Data ByteString | |
Defined in Data.ByteString.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ByteString -> c ByteString Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ByteString Source # toConstr :: ByteString -> Constr Source # dataTypeOf :: ByteString -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ByteString) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ByteString) Source # gmapT :: (forall b. Data b => b -> b) -> ByteString -> ByteString Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r Source # gmapQ :: (forall d. Data d => d -> u) -> ByteString -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> ByteString -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString Source # | |
| Data ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ByteString -> c ByteString Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ByteString Source # toConstr :: ByteString -> Constr Source # dataTypeOf :: ByteString -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ByteString) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ByteString) Source # gmapT :: (forall b. Data b => b -> b) -> ByteString -> ByteString Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r Source # gmapQ :: (forall d. Data d => d -> u) -> ByteString -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> ByteString -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString Source # | |
| Data ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ShortByteString -> c ShortByteString Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ShortByteString Source # toConstr :: ShortByteString -> Constr Source # dataTypeOf :: ShortByteString -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ShortByteString) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ShortByteString) Source # gmapT :: (forall b. Data b => b -> b) -> ShortByteString -> ShortByteString Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ShortByteString -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ShortByteString -> r Source # gmapQ :: (forall d. Data d => d -> u) -> ShortByteString -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> ShortByteString -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ShortByteString -> m ShortByteString Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ShortByteString -> m ShortByteString Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ShortByteString -> m ShortByteString Source # | |
| Data IntSet | |
Defined in Data.IntSet.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntSet -> c IntSet Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c IntSet Source # toConstr :: IntSet -> Constr Source # dataTypeOf :: IntSet -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c IntSet) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c IntSet) Source # gmapT :: (forall b. Data b => b -> b) -> IntSet -> IntSet Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntSet -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntSet -> r Source # gmapQ :: (forall d. Data d => d -> u) -> IntSet -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntSet -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet Source # | |
| Data Ordering | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ordering -> c Ordering Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Ordering Source # toConstr :: Ordering -> Constr Source # dataTypeOf :: Ordering -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Ordering) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Ordering) Source # gmapT :: (forall b. Data b => b -> b) -> Ordering -> Ordering Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Ordering -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ordering -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering Source # | |
| Data SourcePos | |
Defined in Text.Parsec.Pos Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourcePos -> c SourcePos Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourcePos Source # toConstr :: SourcePos -> Constr Source # dataTypeOf :: SourcePos -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourcePos) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourcePos) Source # gmapT :: (forall b. Data b => b -> b) -> SourcePos -> SourcePos Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourcePos -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourcePos -> r Source # gmapQ :: (forall d. Data d => d -> u) -> SourcePos -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourcePos -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourcePos -> m SourcePos Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourcePos -> m SourcePos Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourcePos -> m SourcePos Source # | |
| Data AnnLookup | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> AnnLookup -> c AnnLookup Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c AnnLookup Source # toConstr :: AnnLookup -> Constr Source # dataTypeOf :: AnnLookup -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c AnnLookup) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c AnnLookup) Source # gmapT :: (forall b. Data b => b -> b) -> AnnLookup -> AnnLookup Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> AnnLookup -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> AnnLookup -> r Source # gmapQ :: (forall d. Data d => d -> u) -> AnnLookup -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> AnnLookup -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> AnnLookup -> m AnnLookup Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnLookup -> m AnnLookup Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnLookup -> m AnnLookup Source # | |
| Data AnnTarget | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> AnnTarget -> c AnnTarget Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c AnnTarget Source # toConstr :: AnnTarget -> Constr Source # dataTypeOf :: AnnTarget -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c AnnTarget) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c AnnTarget) Source # gmapT :: (forall b. Data b => b -> b) -> AnnTarget -> AnnTarget Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> AnnTarget -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> AnnTarget -> r Source # gmapQ :: (forall d. Data d => d -> u) -> AnnTarget -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> AnnTarget -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> AnnTarget -> m AnnTarget Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnTarget -> m AnnTarget Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnTarget -> m AnnTarget Source # | |
| Data Bang | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bang -> c Bang Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bang Source # toConstr :: Bang -> Constr Source # dataTypeOf :: Bang -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bang) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bang) Source # gmapT :: (forall b. Data b => b -> b) -> Bang -> Bang Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bang -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bang -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Bang -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Bang -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bang -> m Bang Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bang -> m Bang Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bang -> m Bang Source # | |
| Data Body | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Body -> c Body Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Body Source # toConstr :: Body -> Constr Source # dataTypeOf :: Body -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Body) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Body) Source # gmapT :: (forall b. Data b => b -> b) -> Body -> Body Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Body -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Body -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Body -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Body -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Body -> m Body Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Body -> m Body Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Body -> m Body Source # | |
| Data Bytes | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bytes -> c Bytes Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bytes Source # toConstr :: Bytes -> Constr Source # dataTypeOf :: Bytes -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bytes) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bytes) Source # gmapT :: (forall b. Data b => b -> b) -> Bytes -> Bytes Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bytes -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bytes -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Bytes -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Bytes -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bytes -> m Bytes Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bytes -> m Bytes Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bytes -> m Bytes Source # | |
| Data Callconv | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Callconv -> c Callconv Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Callconv Source # toConstr :: Callconv -> Constr Source # dataTypeOf :: Callconv -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Callconv) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Callconv) Source # gmapT :: (forall b. Data b => b -> b) -> Callconv -> Callconv Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Callconv -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Callconv -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Callconv -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Callconv -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Callconv -> m Callconv Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Callconv -> m Callconv Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Callconv -> m Callconv Source # | |
| Data Clause | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Clause -> c Clause Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Clause Source # toConstr :: Clause -> Constr Source # dataTypeOf :: Clause -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Clause) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Clause) Source # gmapT :: (forall b. Data b => b -> b) -> Clause -> Clause Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Clause -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Clause -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Clause -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Clause -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Clause -> m Clause Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Clause -> m Clause Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Clause -> m Clause Source # | |
| Data Con | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Con -> c Con Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Con Source # toConstr :: Con -> Constr Source # dataTypeOf :: Con -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Con) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Con) Source # gmapT :: (forall b. Data b => b -> b) -> Con -> Con Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Con -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Con -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Con -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Con -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Con -> m Con Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Con -> m Con Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Con -> m Con Source # | |
| Data Dec | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Dec -> c Dec Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Dec Source # toConstr :: Dec -> Constr Source # dataTypeOf :: Dec -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Dec) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Dec) Source # gmapT :: (forall b. Data b => b -> b) -> Dec -> Dec Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Dec -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Dec -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Dec -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Dec -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Dec -> m Dec Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Dec -> m Dec Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Dec -> m Dec Source # | |
| Data DecidedStrictness | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DecidedStrictness -> c DecidedStrictness Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DecidedStrictness Source # toConstr :: DecidedStrictness -> Constr Source # dataTypeOf :: DecidedStrictness -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DecidedStrictness) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DecidedStrictness) Source # gmapT :: (forall b. Data b => b -> b) -> DecidedStrictness -> DecidedStrictness Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r Source # gmapQ :: (forall d. Data d => d -> u) -> DecidedStrictness -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> DecidedStrictness -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness Source # | |
| Data DerivClause | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DerivClause -> c DerivClause Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DerivClause Source # toConstr :: DerivClause -> Constr Source # dataTypeOf :: DerivClause -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DerivClause) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DerivClause) Source # gmapT :: (forall b. Data b => b -> b) -> DerivClause -> DerivClause Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DerivClause -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DerivClause -> r Source # gmapQ :: (forall d. Data d => d -> u) -> DerivClause -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> DerivClause -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DerivClause -> m DerivClause Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DerivClause -> m DerivClause Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DerivClause -> m DerivClause Source # | |
| Data DerivStrategy | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DerivStrategy -> c DerivStrategy Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DerivStrategy Source # toConstr :: DerivStrategy -> Constr Source # dataTypeOf :: DerivStrategy -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DerivStrategy) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DerivStrategy) Source # gmapT :: (forall b. Data b => b -> b) -> DerivStrategy -> DerivStrategy Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DerivStrategy -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DerivStrategy -> r Source # gmapQ :: (forall d. Data d => d -> u) -> DerivStrategy -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> DerivStrategy -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DerivStrategy -> m DerivStrategy Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DerivStrategy -> m DerivStrategy Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DerivStrategy -> m DerivStrategy Source # | |
| Data Exp | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Exp -> c Exp Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Exp Source # toConstr :: Exp -> Constr Source # dataTypeOf :: Exp -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Exp) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Exp) Source # gmapT :: (forall b. Data b => b -> b) -> Exp -> Exp Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Exp -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Exp -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Exp -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Exp -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Exp -> m Exp Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Exp -> m Exp Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Exp -> m Exp Source # | |
| Data FamilyResultSig | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FamilyResultSig -> c FamilyResultSig Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FamilyResultSig Source # toConstr :: FamilyResultSig -> Constr Source # dataTypeOf :: FamilyResultSig -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FamilyResultSig) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FamilyResultSig) Source # gmapT :: (forall b. Data b => b -> b) -> FamilyResultSig -> FamilyResultSig Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FamilyResultSig -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FamilyResultSig -> r Source # gmapQ :: (forall d. Data d => d -> u) -> FamilyResultSig -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> FamilyResultSig -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FamilyResultSig -> m FamilyResultSig Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FamilyResultSig -> m FamilyResultSig Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FamilyResultSig -> m FamilyResultSig Source # | |
| Data Fixity | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Fixity -> c Fixity Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Fixity Source # toConstr :: Fixity -> Constr Source # dataTypeOf :: Fixity -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Fixity) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Fixity) Source # gmapT :: (forall b. Data b => b -> b) -> Fixity -> Fixity Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Fixity -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Fixity -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity Source # | |
| Data FixityDirection | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FixityDirection -> c FixityDirection Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FixityDirection Source # toConstr :: FixityDirection -> Constr Source # dataTypeOf :: FixityDirection -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FixityDirection) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FixityDirection) Source # gmapT :: (forall b. Data b => b -> b) -> FixityDirection -> FixityDirection Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FixityDirection -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FixityDirection -> r Source # gmapQ :: (forall d. Data d => d -> u) -> FixityDirection -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> FixityDirection -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FixityDirection -> m FixityDirection Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FixityDirection -> m FixityDirection Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FixityDirection -> m FixityDirection Source # | |
| Data Foreign | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Foreign -> c Foreign Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Foreign Source # toConstr :: Foreign -> Constr Source # dataTypeOf :: Foreign -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Foreign) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Foreign) Source # gmapT :: (forall b. Data b => b -> b) -> Foreign -> Foreign Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Foreign -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Foreign -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Foreign -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Foreign -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Foreign -> m Foreign Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Foreign -> m Foreign Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Foreign -> m Foreign Source # | |
| Data FunDep | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FunDep -> c FunDep Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FunDep Source # toConstr :: FunDep -> Constr Source # dataTypeOf :: FunDep -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FunDep) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FunDep) Source # gmapT :: (forall b. Data b => b -> b) -> FunDep -> FunDep Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FunDep -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FunDep -> r Source # gmapQ :: (forall d. Data d => d -> u) -> FunDep -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> FunDep -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FunDep -> m FunDep Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FunDep -> m FunDep Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FunDep -> m FunDep Source # | |
| Data Guard | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Guard -> c Guard Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Guard Source # toConstr :: Guard -> Constr Source # dataTypeOf :: Guard -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Guard) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Guard) Source # gmapT :: (forall b. Data b => b -> b) -> Guard -> Guard Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Guard -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Guard -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Guard -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Guard -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Guard -> m Guard Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Guard -> m Guard Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Guard -> m Guard Source # | |
| Data Info | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Info -> c Info Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Info Source # toConstr :: Info -> Constr Source # dataTypeOf :: Info -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Info) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Info) Source # gmapT :: (forall b. Data b => b -> b) -> Info -> Info Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Info -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Info -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Info -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Info -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Info -> m Info Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Info -> m Info Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Info -> m Info Source # | |
| Data InjectivityAnn | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> InjectivityAnn -> c InjectivityAnn Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c InjectivityAnn Source # toConstr :: InjectivityAnn -> Constr Source # dataTypeOf :: InjectivityAnn -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c InjectivityAnn) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c InjectivityAnn) Source # gmapT :: (forall b. Data b => b -> b) -> InjectivityAnn -> InjectivityAnn Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> InjectivityAnn -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> InjectivityAnn -> r Source # gmapQ :: (forall d. Data d => d -> u) -> InjectivityAnn -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> InjectivityAnn -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> InjectivityAnn -> m InjectivityAnn Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> InjectivityAnn -> m InjectivityAnn Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> InjectivityAnn -> m InjectivityAnn Source # | |
| Data Inline | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Inline -> c Inline Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Inline Source # toConstr :: Inline -> Constr Source # dataTypeOf :: Inline -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Inline) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Inline) Source # gmapT :: (forall b. Data b => b -> b) -> Inline -> Inline Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Inline -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Inline -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Inline -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Inline -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Inline -> m Inline Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Inline -> m Inline Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Inline -> m Inline Source # | |
| Data Lit | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Lit -> c Lit Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Lit Source # toConstr :: Lit -> Constr Source # dataTypeOf :: Lit -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Lit) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Lit) Source # gmapT :: (forall b. Data b => b -> b) -> Lit -> Lit Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Lit -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Lit -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Lit -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Lit -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Lit -> m Lit Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Lit -> m Lit Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Lit -> m Lit Source # | |
| Data Loc | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Loc -> c Loc Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Loc Source # toConstr :: Loc -> Constr Source # dataTypeOf :: Loc -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Loc) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Loc) Source # gmapT :: (forall b. Data b => b -> b) -> Loc -> Loc Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Loc -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Loc -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Loc -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Loc -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Loc -> m Loc Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Loc -> m Loc Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Loc -> m Loc Source # | |
| Data Match | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Match -> c Match Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Match Source # toConstr :: Match -> Constr Source # dataTypeOf :: Match -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Match) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Match) Source # gmapT :: (forall b. Data b => b -> b) -> Match -> Match Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Match -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Match -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Match -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Match -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Match -> m Match Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Match -> m Match Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Match -> m Match Source # | |
| Data ModName | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ModName -> c ModName Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ModName Source # toConstr :: ModName -> Constr Source # dataTypeOf :: ModName -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ModName) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ModName) Source # gmapT :: (forall b. Data b => b -> b) -> ModName -> ModName Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ModName -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ModName -> r Source # gmapQ :: (forall d. Data d => d -> u) -> ModName -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> ModName -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ModName -> m ModName Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ModName -> m ModName Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ModName -> m ModName Source # | |
| Data Module | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Module -> c Module Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Module Source # toConstr :: Module -> Constr Source # dataTypeOf :: Module -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Module) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Module) Source # gmapT :: (forall b. Data b => b -> b) -> Module -> Module Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Module -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Module -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Module -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Module -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Module -> m Module Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Module -> m Module Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Module -> m Module Source # | |
| Data ModuleInfo | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ModuleInfo -> c ModuleInfo Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ModuleInfo Source # toConstr :: ModuleInfo -> Constr Source # dataTypeOf :: ModuleInfo -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ModuleInfo) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ModuleInfo) Source # gmapT :: (forall b. Data b => b -> b) -> ModuleInfo -> ModuleInfo Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ModuleInfo -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ModuleInfo -> r Source # gmapQ :: (forall d. Data d => d -> u) -> ModuleInfo -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> ModuleInfo -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ModuleInfo -> m ModuleInfo Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleInfo -> m ModuleInfo Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleInfo -> m ModuleInfo Source # | |
| Data Name | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Name -> c Name Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Name Source # toConstr :: Name -> Constr Source # dataTypeOf :: Name -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Name) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Name) Source # gmapT :: (forall b. Data b => b -> b) -> Name -> Name Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Name -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Name -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Name -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Name -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Name -> m Name Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Name -> m Name Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Name -> m Name Source # | |
| Data NameFlavour | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NameFlavour -> c NameFlavour Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c NameFlavour Source # toConstr :: NameFlavour -> Constr Source # dataTypeOf :: NameFlavour -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c NameFlavour) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c NameFlavour) Source # gmapT :: (forall b. Data b => b -> b) -> NameFlavour -> NameFlavour Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NameFlavour -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NameFlavour -> r Source # gmapQ :: (forall d. Data d => d -> u) -> NameFlavour -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> NameFlavour -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NameFlavour -> m NameFlavour Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NameFlavour -> m NameFlavour Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NameFlavour -> m NameFlavour Source # | |
| Data NameSpace | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NameSpace -> c NameSpace Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c NameSpace Source # toConstr :: NameSpace -> Constr Source # dataTypeOf :: NameSpace -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c NameSpace) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c NameSpace) Source # gmapT :: (forall b. Data b => b -> b) -> NameSpace -> NameSpace Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NameSpace -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NameSpace -> r Source # gmapQ :: (forall d. Data d => d -> u) -> NameSpace -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> NameSpace -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NameSpace -> m NameSpace Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NameSpace -> m NameSpace Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NameSpace -> m NameSpace Source # | |
| Data OccName | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> OccName -> c OccName Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c OccName Source # toConstr :: OccName -> Constr Source # dataTypeOf :: OccName -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c OccName) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c OccName) Source # gmapT :: (forall b. Data b => b -> b) -> OccName -> OccName Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> OccName -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> OccName -> r Source # gmapQ :: (forall d. Data d => d -> u) -> OccName -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> OccName -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> OccName -> m OccName Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> OccName -> m OccName Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> OccName -> m OccName Source # | |
| Data Overlap | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Overlap -> c Overlap Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Overlap Source # toConstr :: Overlap -> Constr Source # dataTypeOf :: Overlap -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Overlap) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Overlap) Source # gmapT :: (forall b. Data b => b -> b) -> Overlap -> Overlap Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Overlap -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Overlap -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Overlap -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Overlap -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Overlap -> m Overlap Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Overlap -> m Overlap Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Overlap -> m Overlap Source # | |
| Data Pat | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Pat -> c Pat Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Pat Source # toConstr :: Pat -> Constr Source # dataTypeOf :: Pat -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Pat) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Pat) Source # gmapT :: (forall b. Data b => b -> b) -> Pat -> Pat Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Pat -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Pat -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Pat -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Pat -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Pat -> m Pat Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Pat -> m Pat Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Pat -> m Pat Source # | |
| Data PatSynArgs | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PatSynArgs -> c PatSynArgs Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PatSynArgs Source # toConstr :: PatSynArgs -> Constr Source # dataTypeOf :: PatSynArgs -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PatSynArgs) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PatSynArgs) Source # gmapT :: (forall b. Data b => b -> b) -> PatSynArgs -> PatSynArgs Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PatSynArgs -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PatSynArgs -> r Source # gmapQ :: (forall d. Data d => d -> u) -> PatSynArgs -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> PatSynArgs -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PatSynArgs -> m PatSynArgs Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynArgs -> m PatSynArgs Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynArgs -> m PatSynArgs Source # | |
| Data PatSynDir | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PatSynDir -> c PatSynDir Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PatSynDir Source # toConstr :: PatSynDir -> Constr Source # dataTypeOf :: PatSynDir -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PatSynDir) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PatSynDir) Source # gmapT :: (forall b. Data b => b -> b) -> PatSynDir -> PatSynDir Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PatSynDir -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PatSynDir -> r Source # gmapQ :: (forall d. Data d => d -> u) -> PatSynDir -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> PatSynDir -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PatSynDir -> m PatSynDir Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynDir -> m PatSynDir Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynDir -> m PatSynDir Source # | |
| Data Phases | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Phases -> c Phases Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Phases Source # toConstr :: Phases -> Constr Source # dataTypeOf :: Phases -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Phases) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Phases) Source # gmapT :: (forall b. Data b => b -> b) -> Phases -> Phases Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Phases -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Phases -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Phases -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Phases -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Phases -> m Phases Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Phases -> m Phases Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Phases -> m Phases Source # | |
| Data PkgName | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PkgName -> c PkgName Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PkgName Source # toConstr :: PkgName -> Constr Source # dataTypeOf :: PkgName -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PkgName) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PkgName) Source # gmapT :: (forall b. Data b => b -> b) -> PkgName -> PkgName Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PkgName -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PkgName -> r Source # gmapQ :: (forall d. Data d => d -> u) -> PkgName -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> PkgName -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PkgName -> m PkgName Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgName -> m PkgName Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgName -> m PkgName Source # | |
| Data Pragma | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Pragma -> c Pragma Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Pragma Source # toConstr :: Pragma -> Constr Source # dataTypeOf :: Pragma -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Pragma) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Pragma) Source # gmapT :: (forall b. Data b => b -> b) -> Pragma -> Pragma Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Pragma -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Pragma -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Pragma -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Pragma -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Pragma -> m Pragma Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Pragma -> m Pragma Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Pragma -> m Pragma Source # | |
| Data Range | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Range -> c Range Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Range Source # toConstr :: Range -> Constr Source # dataTypeOf :: Range -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Range) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Range) Source # gmapT :: (forall b. Data b => b -> b) -> Range -> Range Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Range -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Range -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Range -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Range -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Range -> m Range Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Range -> m Range Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Range -> m Range Source # | |
| Data Role | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Role -> c Role Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Role Source # toConstr :: Role -> Constr Source # dataTypeOf :: Role -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Role) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Role) Source # gmapT :: (forall b. Data b => b -> b) -> Role -> Role Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Role -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Role -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Role -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Role -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Role -> m Role Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Role -> m Role Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Role -> m Role Source # | |
| Data RuleBndr | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> RuleBndr -> c RuleBndr Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c RuleBndr Source # toConstr :: RuleBndr -> Constr Source # dataTypeOf :: RuleBndr -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c RuleBndr) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c RuleBndr) Source # gmapT :: (forall b. Data b => b -> b) -> RuleBndr -> RuleBndr Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> RuleBndr -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> RuleBndr -> r Source # gmapQ :: (forall d. Data d => d -> u) -> RuleBndr -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> RuleBndr -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> RuleBndr -> m RuleBndr Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleBndr -> m RuleBndr Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleBndr -> m RuleBndr Source # | |
| Data RuleMatch | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> RuleMatch -> c RuleMatch Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c RuleMatch Source # toConstr :: RuleMatch -> Constr Source # dataTypeOf :: RuleMatch -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c RuleMatch) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c RuleMatch) Source # gmapT :: (forall b. Data b => b -> b) -> RuleMatch -> RuleMatch Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> RuleMatch -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> RuleMatch -> r Source # gmapQ :: (forall d. Data d => d -> u) -> RuleMatch -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> RuleMatch -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> RuleMatch -> m RuleMatch Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleMatch -> m RuleMatch Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleMatch -> m RuleMatch Source # | |
| Data Safety | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Safety -> c Safety Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Safety Source # toConstr :: Safety -> Constr Source # dataTypeOf :: Safety -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Safety) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Safety) Source # gmapT :: (forall b. Data b => b -> b) -> Safety -> Safety Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Safety -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Safety -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Safety -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Safety -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Safety -> m Safety Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Safety -> m Safety Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Safety -> m Safety Source # | |
| Data SourceStrictness | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceStrictness -> c SourceStrictness Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceStrictness Source # toConstr :: SourceStrictness -> Constr Source # dataTypeOf :: SourceStrictness -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceStrictness) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceStrictness) Source # gmapT :: (forall b. Data b => b -> b) -> SourceStrictness -> SourceStrictness Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r Source # gmapQ :: (forall d. Data d => d -> u) -> SourceStrictness -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceStrictness -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness Source # | |
| Data SourceUnpackedness | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceUnpackedness -> c SourceUnpackedness Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceUnpackedness Source # toConstr :: SourceUnpackedness -> Constr Source # dataTypeOf :: SourceUnpackedness -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceUnpackedness) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceUnpackedness) Source # gmapT :: (forall b. Data b => b -> b) -> SourceUnpackedness -> SourceUnpackedness Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r Source # gmapQ :: (forall d. Data d => d -> u) -> SourceUnpackedness -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceUnpackedness -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness Source # | |
| Data Specificity | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Specificity -> c Specificity Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Specificity Source # toConstr :: Specificity -> Constr Source # dataTypeOf :: Specificity -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Specificity) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Specificity) Source # gmapT :: (forall b. Data b => b -> b) -> Specificity -> Specificity Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Specificity -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Specificity -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Specificity -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Specificity -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Specificity -> m Specificity Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Specificity -> m Specificity Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Specificity -> m Specificity Source # | |
| Data Stmt | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Stmt -> c Stmt Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Stmt Source # toConstr :: Stmt -> Constr Source # dataTypeOf :: Stmt -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Stmt) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Stmt) Source # gmapT :: (forall b. Data b => b -> b) -> Stmt -> Stmt Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Stmt -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Stmt -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Stmt -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Stmt -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Stmt -> m Stmt Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Stmt -> m Stmt Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Stmt -> m Stmt Source # | |
| Data TyLit | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TyLit -> c TyLit Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TyLit Source # toConstr :: TyLit -> Constr Source # dataTypeOf :: TyLit -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TyLit) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TyLit) Source # gmapT :: (forall b. Data b => b -> b) -> TyLit -> TyLit Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TyLit -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TyLit -> r Source # gmapQ :: (forall d. Data d => d -> u) -> TyLit -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> TyLit -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit Source # | |
| Data TySynEqn | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TySynEqn -> c TySynEqn Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TySynEqn Source # toConstr :: TySynEqn -> Constr Source # dataTypeOf :: TySynEqn -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TySynEqn) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TySynEqn) Source # gmapT :: (forall b. Data b => b -> b) -> TySynEqn -> TySynEqn Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TySynEqn -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TySynEqn -> r Source # gmapQ :: (forall d. Data d => d -> u) -> TySynEqn -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> TySynEqn -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TySynEqn -> m TySynEqn Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TySynEqn -> m TySynEqn Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TySynEqn -> m TySynEqn Source # | |
| Data Type | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Type -> c Type Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Type Source # toConstr :: Type -> Constr Source # dataTypeOf :: Type -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Type) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Type) Source # gmapT :: (forall b. Data b => b -> b) -> Type -> Type Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Type -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Type -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Type -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Type -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Type -> m Type Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Type -> m Type Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Type -> m Type Source # | |
| Data TypeFamilyHead | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TypeFamilyHead -> c TypeFamilyHead Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TypeFamilyHead Source # toConstr :: TypeFamilyHead -> Constr Source # dataTypeOf :: TypeFamilyHead -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TypeFamilyHead) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TypeFamilyHead) Source # gmapT :: (forall b. Data b => b -> b) -> TypeFamilyHead -> TypeFamilyHead Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TypeFamilyHead -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TypeFamilyHead -> r Source # gmapQ :: (forall d. Data d => d -> u) -> TypeFamilyHead -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> TypeFamilyHead -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TypeFamilyHead -> m TypeFamilyHead Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TypeFamilyHead -> m TypeFamilyHead Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TypeFamilyHead -> m TypeFamilyHead Source # | |
| Data Day | |
Defined in Data.Time.Calendar.Days Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Day -> c Day Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Day Source # toConstr :: Day -> Constr Source # dataTypeOf :: Day -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Day) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Day) Source # gmapT :: (forall b. Data b => b -> b) -> Day -> Day Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Day -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Day -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Day -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Day -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Day -> m Day Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Day -> m Day Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Day -> m Day Source # | |
| Data DiffTime | |
Defined in Data.Time.Clock.Internal.DiffTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DiffTime -> c DiffTime Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DiffTime Source # toConstr :: DiffTime -> Constr Source # dataTypeOf :: DiffTime -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DiffTime) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DiffTime) Source # gmapT :: (forall b. Data b => b -> b) -> DiffTime -> DiffTime Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DiffTime -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DiffTime -> r Source # gmapQ :: (forall d. Data d => d -> u) -> DiffTime -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> DiffTime -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DiffTime -> m DiffTime Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DiffTime -> m DiffTime Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DiffTime -> m DiffTime Source # | |
| Data NominalDiffTime | |
Defined in Data.Time.Clock.Internal.NominalDiffTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NominalDiffTime -> c NominalDiffTime Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c NominalDiffTime Source # toConstr :: NominalDiffTime -> Constr Source # dataTypeOf :: NominalDiffTime -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c NominalDiffTime) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c NominalDiffTime) Source # gmapT :: (forall b. Data b => b -> b) -> NominalDiffTime -> NominalDiffTime Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NominalDiffTime -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NominalDiffTime -> r Source # gmapQ :: (forall d. Data d => d -> u) -> NominalDiffTime -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> NominalDiffTime -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NominalDiffTime -> m NominalDiffTime Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NominalDiffTime -> m NominalDiffTime Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NominalDiffTime -> m NominalDiffTime Source # | |
| Data UTCTime | |
Defined in Data.Time.Clock.Internal.UTCTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> UTCTime -> c UTCTime Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c UTCTime Source # toConstr :: UTCTime -> Constr Source # dataTypeOf :: UTCTime -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c UTCTime) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c UTCTime) Source # gmapT :: (forall b. Data b => b -> b) -> UTCTime -> UTCTime Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> UTCTime -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> UTCTime -> r Source # gmapQ :: (forall d. Data d => d -> u) -> UTCTime -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> UTCTime -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> UTCTime -> m UTCTime Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> UTCTime -> m UTCTime Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> UTCTime -> m UTCTime Source # | |
| Data UniversalTime | |
Defined in Data.Time.Clock.Internal.UniversalTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> UniversalTime -> c UniversalTime Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c UniversalTime Source # toConstr :: UniversalTime -> Constr Source # dataTypeOf :: UniversalTime -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c UniversalTime) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c UniversalTime) Source # gmapT :: (forall b. Data b => b -> b) -> UniversalTime -> UniversalTime Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> UniversalTime -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> UniversalTime -> r Source # gmapQ :: (forall d. Data d => d -> u) -> UniversalTime -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> UniversalTime -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> UniversalTime -> m UniversalTime Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> UniversalTime -> m UniversalTime Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> UniversalTime -> m UniversalTime Source # | |
| Data LocalTime | |
Defined in Data.Time.LocalTime.Internal.LocalTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LocalTime -> c LocalTime Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LocalTime Source # toConstr :: LocalTime -> Constr Source # dataTypeOf :: LocalTime -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LocalTime) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LocalTime) Source # gmapT :: (forall b. Data b => b -> b) -> LocalTime -> LocalTime Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LocalTime -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LocalTime -> r Source # gmapQ :: (forall d. Data d => d -> u) -> LocalTime -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> LocalTime -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> LocalTime -> m LocalTime Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LocalTime -> m LocalTime Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LocalTime -> m LocalTime Source # | |
| Data TimeOfDay | |
Defined in Data.Time.LocalTime.Internal.TimeOfDay Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TimeOfDay -> c TimeOfDay Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TimeOfDay Source # toConstr :: TimeOfDay -> Constr Source # dataTypeOf :: TimeOfDay -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TimeOfDay) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TimeOfDay) Source # gmapT :: (forall b. Data b => b -> b) -> TimeOfDay -> TimeOfDay Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TimeOfDay -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TimeOfDay -> r Source # gmapQ :: (forall d. Data d => d -> u) -> TimeOfDay -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> TimeOfDay -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TimeOfDay -> m TimeOfDay Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TimeOfDay -> m TimeOfDay Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TimeOfDay -> m TimeOfDay Source # | |
| Data TimeZone | |
Defined in Data.Time.LocalTime.Internal.TimeZone Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TimeZone -> c TimeZone Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TimeZone Source # toConstr :: TimeZone -> Constr Source # dataTypeOf :: TimeZone -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TimeZone) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TimeZone) Source # gmapT :: (forall b. Data b => b -> b) -> TimeZone -> TimeZone Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TimeZone -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TimeZone -> r Source # gmapQ :: (forall d. Data d => d -> u) -> TimeZone -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> TimeZone -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TimeZone -> m TimeZone Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TimeZone -> m TimeZone Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TimeZone -> m TimeZone Source # | |
| Data ZonedTime | |
Defined in Data.Time.LocalTime.Internal.ZonedTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ZonedTime -> c ZonedTime Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ZonedTime Source # toConstr :: ZonedTime -> Constr Source # dataTypeOf :: ZonedTime -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ZonedTime) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ZonedTime) Source # gmapT :: (forall b. Data b => b -> b) -> ZonedTime -> ZonedTime Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ZonedTime -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ZonedTime -> r Source # gmapQ :: (forall d. Data d => d -> u) -> ZonedTime -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> ZonedTime -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ZonedTime -> m ZonedTime Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ZonedTime -> m ZonedTime Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ZonedTime -> m ZonedTime Source # | |
| Data Word8 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word8 -> c Word8 Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word8 Source # toConstr :: Word8 -> Constr Source # dataTypeOf :: Word8 -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word8) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word8) Source # gmapT :: (forall b. Data b => b -> b) -> Word8 -> Word8 Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Word8 -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word8 -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 Source # | |
| Data Integer | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Integer -> c Integer Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Integer Source # toConstr :: Integer -> Constr Source # dataTypeOf :: Integer -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Integer) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Integer) Source # gmapT :: (forall b. Data b => b -> b) -> Integer -> Integer Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Integer -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Integer -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Integer -> m Integer Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer Source # | |
| Data Natural | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Natural -> c Natural Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Natural Source # toConstr :: Natural -> Constr Source # dataTypeOf :: Natural -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Natural) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Natural) Source # gmapT :: (forall b. Data b => b -> b) -> Natural -> Natural Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Natural -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Natural -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Natural -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Natural -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Natural -> m Natural Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Natural -> m Natural Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Natural -> m Natural Source # | |
| Data () | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> () -> c () Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c () Source # toConstr :: () -> Constr Source # dataTypeOf :: () -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ()) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ()) Source # gmapT :: (forall b. Data b => b -> b) -> () -> () Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> () -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> () -> r Source # gmapQ :: (forall d. Data d => d -> u) -> () -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> () -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> () -> m () Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> () -> m () Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> () -> m () Source # | |
| Data Bool | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bool -> c Bool Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bool Source # toConstr :: Bool -> Constr Source # dataTypeOf :: Bool -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bool) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bool) Source # gmapT :: (forall b. Data b => b -> b) -> Bool -> Bool Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Bool -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Bool -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bool -> m Bool Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool Source # | |
| Data Char | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Char -> c Char Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Char Source # toConstr :: Char -> Constr Source # dataTypeOf :: Char -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Char) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Char) Source # gmapT :: (forall b. Data b => b -> b) -> Char -> Char Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Char -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Char -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Char -> m Char Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char Source # | |
| Data Double | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Double -> c Double Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Double Source # toConstr :: Double -> Constr Source # dataTypeOf :: Double -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Double) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Double) Source # gmapT :: (forall b. Data b => b -> b) -> Double -> Double Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Double -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Double -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Double -> m Double Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double Source # | |
| Data Float | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Float -> c Float Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Float Source # toConstr :: Float -> Constr Source # dataTypeOf :: Float -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Float) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Float) Source # gmapT :: (forall b. Data b => b -> b) -> Float -> Float Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Float -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Float -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Float -> m Float Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float Source # | |
| Data Int | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int -> c Int Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int Source # toConstr :: Int -> Constr Source # dataTypeOf :: Int -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int) Source # gmapT :: (forall b. Data b => b -> b) -> Int -> Int Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Int -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int -> m Int Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int Source # | |
| Data Word | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word -> c Word Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word Source # toConstr :: Word -> Constr Source # dataTypeOf :: Word -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word) Source # gmapT :: (forall b. Data b => b -> b) -> Word -> Word Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Word -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word -> m Word Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word Source # | |
| (Data a, Ord a) => Data (NonEmptySet a) # | |
Defined in Distribution.Compat.NonEmptySet Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NonEmptySet a -> c (NonEmptySet a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (NonEmptySet a) Source # toConstr :: NonEmptySet a -> Constr Source # dataTypeOf :: NonEmptySet a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (NonEmptySet a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (NonEmptySet a)) Source # gmapT :: (forall b. Data b => b -> b) -> NonEmptySet a -> NonEmptySet a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NonEmptySet a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NonEmptySet a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> NonEmptySet a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> NonEmptySet a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NonEmptySet a -> m (NonEmptySet a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmptySet a -> m (NonEmptySet a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmptySet a -> m (NonEmptySet a) Source # | |
| Data v => Data (PerCompilerFlavor v) # | |
Defined in Distribution.Compiler Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PerCompilerFlavor v -> c (PerCompilerFlavor v) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (PerCompilerFlavor v) Source # toConstr :: PerCompilerFlavor v -> Constr Source # dataTypeOf :: PerCompilerFlavor v -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (PerCompilerFlavor v)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (PerCompilerFlavor v)) Source # gmapT :: (forall b. Data b => b -> b) -> PerCompilerFlavor v -> PerCompilerFlavor v Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PerCompilerFlavor v -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PerCompilerFlavor v -> r Source # gmapQ :: (forall d. Data d => d -> u) -> PerCompilerFlavor v -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> PerCompilerFlavor v -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PerCompilerFlavor v -> m (PerCompilerFlavor v) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PerCompilerFlavor v -> m (PerCompilerFlavor v) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PerCompilerFlavor v -> m (PerCompilerFlavor v) Source # | |
| Data c => Data (Condition c) # | |
Defined in Distribution.Types.Condition Methods gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> Condition c -> c0 (Condition c) Source # gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (Condition c) Source # toConstr :: Condition c -> Constr Source # dataTypeOf :: Condition c -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (Condition c)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (Condition c)) Source # gmapT :: (forall b. Data b => b -> b) -> Condition c -> Condition c Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Condition c -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Condition c -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Condition c -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Condition c -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Condition c -> m (Condition c) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Condition c -> m (Condition c) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Condition c -> m (Condition c) Source # | |
| Data a => Data (VersionRangeF a) # | |
Defined in Distribution.Types.VersionRange.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> VersionRangeF a -> c (VersionRangeF a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (VersionRangeF a) Source # toConstr :: VersionRangeF a -> Constr Source # dataTypeOf :: VersionRangeF a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (VersionRangeF a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (VersionRangeF a)) Source # gmapT :: (forall b. Data b => b -> b) -> VersionRangeF a -> VersionRangeF a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> VersionRangeF a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> VersionRangeF a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> VersionRangeF a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> VersionRangeF a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> VersionRangeF a -> m (VersionRangeF a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> VersionRangeF a -> m (VersionRangeF a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> VersionRangeF a -> m (VersionRangeF a) Source # | |
| Data a => Data (ZipList a) | Since: base-4.14.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ZipList a -> c (ZipList a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ZipList a) Source # toConstr :: ZipList a -> Constr Source # dataTypeOf :: ZipList a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ZipList a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ZipList a)) Source # gmapT :: (forall b. Data b => b -> b) -> ZipList a -> ZipList a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ZipList a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ZipList a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> ZipList a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> ZipList a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ZipList a -> m (ZipList a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ZipList a -> m (ZipList a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ZipList a -> m (ZipList a) Source # | |
| Data a => Data (Complex a) | Since: base-2.1 |
Defined in Data.Complex Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Complex a -> c (Complex a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Complex a) Source # toConstr :: Complex a -> Constr Source # dataTypeOf :: Complex a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Complex a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Complex a)) Source # gmapT :: (forall b. Data b => b -> b) -> Complex a -> Complex a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Complex a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Complex a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Complex a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Complex a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) Source # | |
| Data a => Data (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Identity a -> c (Identity a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Identity a) Source # toConstr :: Identity a -> Constr Source # dataTypeOf :: Identity a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Identity a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Identity a)) Source # gmapT :: (forall b. Data b => b -> b) -> Identity a -> Identity a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Identity a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Identity a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Identity a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Identity a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) Source # | |
| Data a => Data (First a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> First a -> c (First a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (First a) Source # toConstr :: First a -> Constr Source # dataTypeOf :: First a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (First a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (First a)) Source # gmapT :: (forall b. Data b => b -> b) -> First a -> First a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> First a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> First a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> First a -> m (First a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) Source # | |
| Data a => Data (Last a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Last a -> c (Last a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Last a) Source # toConstr :: Last a -> Constr Source # dataTypeOf :: Last a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Last a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Last a)) Source # gmapT :: (forall b. Data b => b -> b) -> Last a -> Last a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Last a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Last a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) Source # | |
| Data a => Data (Down a) | Since: base-4.12.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Down a -> c (Down a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Down a) Source # toConstr :: Down a -> Constr Source # dataTypeOf :: Down a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Down a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Down a)) Source # gmapT :: (forall b. Data b => b -> b) -> Down a -> Down a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Down a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Down a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Down a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Down a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) Source # | |
| Data a => Data (First a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> First a -> c (First a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (First a) Source # toConstr :: First a -> Constr Source # dataTypeOf :: First a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (First a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (First a)) Source # gmapT :: (forall b. Data b => b -> b) -> First a -> First a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> First a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> First a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> First a -> m (First a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) Source # | |
| Data a => Data (Last a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Last a -> c (Last a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Last a) Source # toConstr :: Last a -> Constr Source # dataTypeOf :: Last a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Last a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Last a)) Source # gmapT :: (forall b. Data b => b -> b) -> Last a -> Last a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Last a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Last a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) Source # | |
| Data a => Data (Max a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Max a -> c (Max a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Max a) Source # toConstr :: Max a -> Constr Source # dataTypeOf :: Max a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Max a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Max a)) Source # gmapT :: (forall b. Data b => b -> b) -> Max a -> Max a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Max a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Max a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Max a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Max a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) Source # | |
| Data a => Data (Min a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Min a -> c (Min a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Min a) Source # toConstr :: Min a -> Constr Source # dataTypeOf :: Min a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Min a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Min a)) Source # gmapT :: (forall b. Data b => b -> b) -> Min a -> Min a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Min a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Min a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Min a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Min a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) Source # | |
| Data a => Data (Option a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Option a -> c (Option a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Option a) Source # toConstr :: Option a -> Constr Source # dataTypeOf :: Option a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Option a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Option a)) Source # gmapT :: (forall b. Data b => b -> b) -> Option a -> Option a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Option a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Option a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Option a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Option a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Option a -> m (Option a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Option a -> m (Option a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Option a -> m (Option a) Source # | |
| Data m => Data (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> WrappedMonoid m -> c (WrappedMonoid m) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (WrappedMonoid m) Source # toConstr :: WrappedMonoid m -> Constr Source # dataTypeOf :: WrappedMonoid m -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (WrappedMonoid m)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (WrappedMonoid m)) Source # gmapT :: (forall b. Data b => b -> b) -> WrappedMonoid m -> WrappedMonoid m Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonoid m -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonoid m -> r Source # gmapQ :: (forall d. Data d => d -> u) -> WrappedMonoid m -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> WrappedMonoid m -> u Source # gmapM :: Monad m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) Source # gmapMp :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) Source # gmapMo :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) Source # | |
| Data a => Data (Dual a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Dual a -> c (Dual a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Dual a) Source # toConstr :: Dual a -> Constr Source # dataTypeOf :: Dual a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Dual a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Dual a)) Source # gmapT :: (forall b. Data b => b -> b) -> Dual a -> Dual a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Dual a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Dual a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Dual a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Dual a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) Source # | |
| Data a => Data (Product a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Product a -> c (Product a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Product a) Source # toConstr :: Product a -> Constr Source # dataTypeOf :: Product a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Product a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Product a)) Source # gmapT :: (forall b. Data b => b -> b) -> Product a -> Product a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Product a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Product a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Product a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Product a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) Source # | |
| Data a => Data (Sum a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Sum a -> c (Sum a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Sum a) Source # toConstr :: Sum a -> Constr Source # dataTypeOf :: Sum a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Sum a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Sum a)) Source # gmapT :: (forall b. Data b => b -> b) -> Sum a -> Sum a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Sum a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Sum a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Sum a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Sum a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) Source # | |
| Data a => Data (NonEmpty a) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NonEmpty a -> c (NonEmpty a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (NonEmpty a) Source # toConstr :: NonEmpty a -> Constr Source # dataTypeOf :: NonEmpty a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (NonEmpty a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (NonEmpty a)) Source # gmapT :: (forall b. Data b => b -> b) -> NonEmpty a -> NonEmpty a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> NonEmpty a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> NonEmpty a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) Source # | |
| Data a => Data (ForeignPtr a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ForeignPtr a -> c (ForeignPtr a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ForeignPtr a) Source # toConstr :: ForeignPtr a -> Constr Source # dataTypeOf :: ForeignPtr a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ForeignPtr a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ForeignPtr a)) Source # gmapT :: (forall b. Data b => b -> b) -> ForeignPtr a -> ForeignPtr a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ForeignPtr a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ForeignPtr a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> ForeignPtr a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> ForeignPtr a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) Source # | |
| Data p => Data (Par1 p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Par1 p -> c (Par1 p) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Par1 p) Source # toConstr :: Par1 p -> Constr Source # dataTypeOf :: Par1 p -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Par1 p)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Par1 p)) Source # gmapT :: (forall b. Data b => b -> b) -> Par1 p -> Par1 p Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Par1 p -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Par1 p -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Par1 p -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Par1 p -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Par1 p -> m (Par1 p) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Par1 p -> m (Par1 p) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Par1 p -> m (Par1 p) Source # | |
| Data a => Data (Ptr a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ptr a -> c (Ptr a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ptr a) Source # toConstr :: Ptr a -> Constr Source # dataTypeOf :: Ptr a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ptr a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ptr a)) Source # gmapT :: (forall b. Data b => b -> b) -> Ptr a -> Ptr a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ptr a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ptr a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Ptr a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ptr a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) Source # | |
| (Data a, Integral a) => Data (Ratio a) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ratio a -> c (Ratio a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ratio a) Source # toConstr :: Ratio a -> Constr Source # dataTypeOf :: Ratio a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ratio a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ratio a)) Source # gmapT :: (forall b. Data b => b -> b) -> Ratio a -> Ratio a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ratio a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ratio a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Ratio a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ratio a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) Source # | |
| Data vertex => Data (SCC vertex) | Since: containers-0.5.9 |
Defined in Data.Graph Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SCC vertex -> c (SCC vertex) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (SCC vertex) Source # toConstr :: SCC vertex -> Constr Source # dataTypeOf :: SCC vertex -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (SCC vertex)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (SCC vertex)) Source # gmapT :: (forall b. Data b => b -> b) -> SCC vertex -> SCC vertex Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SCC vertex -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SCC vertex -> r Source # gmapQ :: (forall d. Data d => d -> u) -> SCC vertex -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> SCC vertex -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SCC vertex -> m (SCC vertex) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SCC vertex -> m (SCC vertex) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SCC vertex -> m (SCC vertex) Source # | |
| Data a => Data (IntMap a) | |
Defined in Data.IntMap.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntMap a -> c (IntMap a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (IntMap a) Source # toConstr :: IntMap a -> Constr Source # dataTypeOf :: IntMap a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (IntMap a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (IntMap a)) Source # gmapT :: (forall b. Data b => b -> b) -> IntMap a -> IntMap a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntMap a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntMap a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> IntMap a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntMap a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) Source # | |
| Data a => Data (Seq a) | |
Defined in Data.Sequence.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Seq a -> c (Seq a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Seq a) Source # toConstr :: Seq a -> Constr Source # dataTypeOf :: Seq a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Seq a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Seq a)) Source # gmapT :: (forall b. Data b => b -> b) -> Seq a -> Seq a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Seq a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Seq a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Seq a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Seq a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) Source # | |
| Data a => Data (ViewL a) | |
Defined in Data.Sequence.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ViewL a -> c (ViewL a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ViewL a) Source # toConstr :: ViewL a -> Constr Source # dataTypeOf :: ViewL a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ViewL a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ViewL a)) Source # gmapT :: (forall b. Data b => b -> b) -> ViewL a -> ViewL a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ViewL a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ViewL a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> ViewL a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> ViewL a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ViewL a -> m (ViewL a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewL a -> m (ViewL a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewL a -> m (ViewL a) Source # | |
| Data a => Data (ViewR a) | |
Defined in Data.Sequence.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ViewR a -> c (ViewR a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ViewR a) Source # toConstr :: ViewR a -> Constr Source # dataTypeOf :: ViewR a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ViewR a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ViewR a)) Source # gmapT :: (forall b. Data b => b -> b) -> ViewR a -> ViewR a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ViewR a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ViewR a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> ViewR a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> ViewR a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ViewR a -> m (ViewR a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewR a -> m (ViewR a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewR a -> m (ViewR a) Source # | |
| (Data a, Ord a) => Data (Set a) | |
Defined in Data.Set.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Set a -> c (Set a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Set a) Source # toConstr :: Set a -> Constr Source # dataTypeOf :: Set a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Set a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Set a)) Source # gmapT :: (forall b. Data b => b -> b) -> Set a -> Set a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Set a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Set a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Set a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Set a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) Source # | |
| Data a => Data (Tree a) | |
Defined in Data.Tree Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Tree a -> c (Tree a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Tree a) Source # toConstr :: Tree a -> Constr Source # dataTypeOf :: Tree a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Tree a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Tree a)) Source # gmapT :: (forall b. Data b => b -> b) -> Tree a -> Tree a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Tree a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Tree a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Tree a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Tree a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Tree a -> m (Tree a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Tree a -> m (Tree a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Tree a -> m (Tree a) Source # | |
| Data flag => Data (TyVarBndr flag) | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TyVarBndr flag -> c (TyVarBndr flag) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (TyVarBndr flag) Source # toConstr :: TyVarBndr flag -> Constr Source # dataTypeOf :: TyVarBndr flag -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (TyVarBndr flag)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (TyVarBndr flag)) Source # gmapT :: (forall b. Data b => b -> b) -> TyVarBndr flag -> TyVarBndr flag Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TyVarBndr flag -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TyVarBndr flag -> r Source # gmapQ :: (forall d. Data d => d -> u) -> TyVarBndr flag -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> TyVarBndr flag -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TyVarBndr flag -> m (TyVarBndr flag) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TyVarBndr flag -> m (TyVarBndr flag) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TyVarBndr flag -> m (TyVarBndr flag) Source # | |
| Data a => Data (Maybe a) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Maybe a -> c (Maybe a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Maybe a) Source # toConstr :: Maybe a -> Constr Source # dataTypeOf :: Maybe a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Maybe a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Maybe a)) Source # gmapT :: (forall b. Data b => b -> b) -> Maybe a -> Maybe a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Maybe a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Maybe a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) Source # | |
| Data a => Data (a) | Since: base-4.15 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> (a) -> c (a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a) Source # toConstr :: (a) -> Constr Source # dataTypeOf :: (a) -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a)) Source # gmapT :: (forall b. Data b => b -> b) -> (a) -> (a) Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a) -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a) -> r Source # gmapQ :: (forall d. Data d => d -> u) -> (a) -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a) -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a) -> m (a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a) -> m (a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a) -> m (a) Source # | |
| Data a => Data [a] | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> [a] -> c [a] Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c [a] Source # toConstr :: [a] -> Constr Source # dataTypeOf :: [a] -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c [a]) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c [a]) Source # gmapT :: (forall b. Data b => b -> b) -> [a] -> [a] Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> [a] -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> [a] -> r Source # gmapQ :: (forall d. Data d => d -> u) -> [a] -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> [a] -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> [a] -> m [a] Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> [a] -> m [a] Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> [a] -> m [a] Source # | |
| (Typeable m, Typeable a, Data (m a)) => Data (WrappedMonad m a) | Since: base-4.14.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> WrappedMonad m a -> c (WrappedMonad m a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (WrappedMonad m a) Source # toConstr :: WrappedMonad m a -> Constr Source # dataTypeOf :: WrappedMonad m a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (WrappedMonad m a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (WrappedMonad m a)) Source # gmapT :: (forall b. Data b => b -> b) -> WrappedMonad m a -> WrappedMonad m a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonad m a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonad m a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> WrappedMonad m a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> WrappedMonad m a -> u Source # gmapM :: Monad m0 => (forall d. Data d => d -> m0 d) -> WrappedMonad m a -> m0 (WrappedMonad m a) Source # gmapMp :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonad m a -> m0 (WrappedMonad m a) Source # gmapMo :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonad m a -> m0 (WrappedMonad m a) Source # | |
| (Data a, Data b) => Data (Either a b) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Either a b -> c (Either a b) Source # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Either a b) Source # toConstr :: Either a b -> Constr Source # dataTypeOf :: Either a b -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Either a b)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Either a b)) Source # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Either a b -> Either a b Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Either a b -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Either a b -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) Source # | |
| (Typeable k, Typeable a) => Data (Fixed a) | Since: base-4.1.0.0 |
Defined in Data.Fixed Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Fixed a -> c (Fixed a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Fixed a) Source # toConstr :: Fixed a -> Constr Source # dataTypeOf :: Fixed a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Fixed a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Fixed a)) Source # gmapT :: (forall b. Data b => b -> b) -> Fixed a -> Fixed a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Fixed a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Fixed a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Fixed a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Fixed a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Fixed a -> m (Fixed a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixed a -> m (Fixed a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixed a -> m (Fixed a) Source # | |
| Data t => Data (Proxy t) | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Proxy t -> c (Proxy t) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Proxy t) Source # toConstr :: Proxy t -> Constr Source # dataTypeOf :: Proxy t -> DataType Source # dataCast1 :: Typeable t0 => (forall d. Data d => c (t0 d)) -> Maybe (c (Proxy t)) Source # dataCast2 :: Typeable t0 => (forall d e. (Data d, Data e) => c (t0 d e)) -> Maybe (c (Proxy t)) Source # gmapT :: (forall b. Data b => b -> b) -> Proxy t -> Proxy t Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Proxy t -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Proxy t -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Proxy t -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Proxy t -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) Source # | |
| (Data a, Data b) => Data (Arg a b) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Arg a b -> c (Arg a b) Source # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Arg a b) Source # toConstr :: Arg a b -> Constr Source # dataTypeOf :: Arg a b -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Arg a b)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Arg a b)) Source # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Arg a b -> Arg a b Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Arg a b -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Arg a b -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Arg a b -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Arg a b -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) Source # | |
| (Data a, Data b, Ix a) => Data (Array a b) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Array a b -> c (Array a b) Source # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Array a b) Source # toConstr :: Array a b -> Constr Source # dataTypeOf :: Array a b -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Array a b)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Array a b)) Source # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Array a b -> Array a b Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Array a b -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Array a b -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Array a b -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Array a b -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Array a b -> m (Array a b) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Array a b -> m (Array a b) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Array a b -> m (Array a b) Source # | |
| Data p => Data (U1 p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> U1 p -> c (U1 p) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (U1 p) Source # toConstr :: U1 p -> Constr Source # dataTypeOf :: U1 p -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (U1 p)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (U1 p)) Source # gmapT :: (forall b. Data b => b -> b) -> U1 p -> U1 p Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> U1 p -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> U1 p -> r Source # gmapQ :: (forall d. Data d => d -> u) -> U1 p -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> U1 p -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) Source # | |
| Data p => Data (V1 p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> V1 p -> c (V1 p) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (V1 p) Source # toConstr :: V1 p -> Constr Source # dataTypeOf :: V1 p -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (V1 p)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (V1 p)) Source # gmapT :: (forall b. Data b => b -> b) -> V1 p -> V1 p Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> V1 p -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> V1 p -> r Source # gmapQ :: (forall d. Data d => d -> u) -> V1 p -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> V1 p -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) Source # | |
| (Data k, Data a, Ord k) => Data (Map k a) | |
Defined in Data.Map.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Map k a -> c (Map k a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Map k a) Source # toConstr :: Map k a -> Constr Source # dataTypeOf :: Map k a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Map k a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Map k a)) Source # gmapT :: (forall b. Data b => b -> b) -> Map k a -> Map k a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Map k a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Map k a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) Source # | |
| (Data a, Data b) => Data (a, b) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> (a, b) -> c (a, b) Source # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a, b) Source # toConstr :: (a, b) -> Constr Source # dataTypeOf :: (a, b) -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (a, b)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a, b)) Source # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b) -> (a, b) Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a, b) -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a, b) -> r Source # gmapQ :: (forall d. Data d => d -> u) -> (a, b) -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a, b) -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a, b) -> m (a, b) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b) -> m (a, b) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b) -> m (a, b) Source # | |
| (Data v, Data c, Data a) => Data (CondBranch v c a) # | |
Defined in Distribution.Types.CondTree Methods gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> CondBranch v c a -> c0 (CondBranch v c a) Source # gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (CondBranch v c a) Source # toConstr :: CondBranch v c a -> Constr Source # dataTypeOf :: CondBranch v c a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (CondBranch v c a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (CondBranch v c a)) Source # gmapT :: (forall b. Data b => b -> b) -> CondBranch v c a -> CondBranch v c a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CondBranch v c a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CondBranch v c a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> CondBranch v c a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> CondBranch v c a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> CondBranch v c a -> m (CondBranch v c a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> CondBranch v c a -> m (CondBranch v c a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> CondBranch v c a -> m (CondBranch v c a) Source # | |
| (Data v, Data c, Data a) => Data (CondTree v c a) # | |
Defined in Distribution.Types.CondTree Methods gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> CondTree v c a -> c0 (CondTree v c a) Source # gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (CondTree v c a) Source # toConstr :: CondTree v c a -> Constr Source # dataTypeOf :: CondTree v c a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (CondTree v c a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (CondTree v c a)) Source # gmapT :: (forall b. Data b => b -> b) -> CondTree v c a -> CondTree v c a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CondTree v c a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CondTree v c a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> CondTree v c a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> CondTree v c a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> CondTree v c a -> m (CondTree v c a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> CondTree v c a -> m (CondTree v c a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> CondTree v c a -> m (CondTree v c a) Source # | |
| (Typeable a, Typeable b, Typeable c, Data (a b c)) => Data (WrappedArrow a b c) | Since: base-4.14.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c0 (d -> b0) -> d -> c0 b0) -> (forall g. g -> c0 g) -> WrappedArrow a b c -> c0 (WrappedArrow a b c) Source # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (WrappedArrow a b c) Source # toConstr :: WrappedArrow a b c -> Constr Source # dataTypeOf :: WrappedArrow a b c -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (WrappedArrow a b c)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (WrappedArrow a b c)) Source # gmapT :: (forall b0. Data b0 => b0 -> b0) -> WrappedArrow a b c -> WrappedArrow a b c Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WrappedArrow a b c -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WrappedArrow a b c -> r Source # gmapQ :: (forall d. Data d => d -> u) -> WrappedArrow a b c -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> WrappedArrow a b c -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> WrappedArrow a b c -> m (WrappedArrow a b c) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> WrappedArrow a b c -> m (WrappedArrow a b c) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> WrappedArrow a b c -> m (WrappedArrow a b c) Source # | |
| (Typeable k, Data a, Typeable b) => Data (Const a b) | Since: base-4.10.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Const a b -> c (Const a b) Source # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Const a b) Source # toConstr :: Const a b -> Constr Source # dataTypeOf :: Const a b -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Const a b)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Const a b)) Source # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Const a b -> Const a b Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Const a b -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Const a b -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) Source # | |
| (Data (f a), Data a, Typeable f) => Data (Ap f a) | Since: base-4.12.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ap f a -> c (Ap f a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ap f a) Source # toConstr :: Ap f a -> Constr Source # dataTypeOf :: Ap f a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ap f a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ap f a)) Source # gmapT :: (forall b. Data b => b -> b) -> Ap f a -> Ap f a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ap f a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ap f a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Ap f a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ap f a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) Source # | |
| (Data (f a), Data a, Typeable f) => Data (Alt f a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Alt f a -> c (Alt f a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Alt f a) Source # toConstr :: Alt f a -> Constr Source # dataTypeOf :: Alt f a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Alt f a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Alt f a)) Source # gmapT :: (forall b. Data b => b -> b) -> Alt f a -> Alt f a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Alt f a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Alt f a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Alt f a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Alt f a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) Source # | |
| (Coercible a b, Data a, Data b) => Data (Coercion a b) | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Coercion a b -> c (Coercion a b) Source # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Coercion a b) Source # toConstr :: Coercion a b -> Constr Source # dataTypeOf :: Coercion a b -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Coercion a b)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Coercion a b)) Source # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Coercion a b -> Coercion a b Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Coercion a b -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Coercion a b -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Coercion a b -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Coercion a b -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) Source # | |
| (a ~ b, Data a) => Data (a :~: b) | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> (a :~: b) -> c (a :~: b) Source # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a :~: b) Source # toConstr :: (a :~: b) -> Constr Source # dataTypeOf :: (a :~: b) -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (a :~: b)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a :~: b)) Source # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a :~: b) -> a :~: b Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a :~: b) -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a :~: b) -> r Source # gmapQ :: (forall d. Data d => d -> u) -> (a :~: b) -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a :~: b) -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) Source # | |
| (Data (f p), Typeable f, Data p) => Data (Rec1 f p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Rec1 f p -> c (Rec1 f p) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Rec1 f p) Source # toConstr :: Rec1 f p -> Constr Source # dataTypeOf :: Rec1 f p -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Rec1 f p)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Rec1 f p)) Source # gmapT :: (forall b. Data b => b -> b) -> Rec1 f p -> Rec1 f p Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Rec1 f p -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Rec1 f p -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Rec1 f p -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Rec1 f p -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) Source # | |
| (Data a, Data b, Data c) => Data (a, b, c) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c0 (d -> b0) -> d -> c0 b0) -> (forall g. g -> c0 g) -> (a, b, c) -> c0 (a, b, c) Source # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c) Source # toConstr :: (a, b, c) -> Constr Source # dataTypeOf :: (a, b, c) -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (a, b, c)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (a, b, c)) Source # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c) -> (a, b, c) Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a, b, c) -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a, b, c) -> r Source # gmapQ :: (forall d. Data d => d -> u) -> (a, b, c) -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a, b, c) -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a, b, c) -> m (a, b, c) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b, c) -> m (a, b, c) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b, c) -> m (a, b, c) Source # | |
| (Typeable a, Typeable f, Typeable g, Typeable k, Data (f a), Data (g a)) => Data (Product f g a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> Product f g a -> c (Product f g a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Product f g a) Source # toConstr :: Product f g a -> Constr Source # dataTypeOf :: Product f g a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Product f g a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Product f g a)) Source # gmapT :: (forall b. Data b => b -> b) -> Product f g a -> Product f g a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Product f g a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Product f g a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Product f g a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Product f g a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Product f g a -> m (Product f g a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Product f g a -> m (Product f g a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Product f g a -> m (Product f g a) Source # | |
| (Typeable a, Typeable f, Typeable g, Typeable k, Data (f a), Data (g a)) => Data (Sum f g a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Sum Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> Sum f g a -> c (Sum f g a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Sum f g a) Source # toConstr :: Sum f g a -> Constr Source # dataTypeOf :: Sum f g a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Sum f g a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Sum f g a)) Source # gmapT :: (forall b. Data b => b -> b) -> Sum f g a -> Sum f g a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Sum f g a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Sum f g a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Sum f g a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Sum f g a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Sum f g a -> m (Sum f g a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum f g a -> m (Sum f g a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum f g a -> m (Sum f g a) Source # | |
| (Typeable i, Typeable j, Typeable a, Typeable b, a ~~ b) => Data (a :~~: b) | Since: base-4.10.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> (a :~~: b) -> c (a :~~: b) Source # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a :~~: b) Source # toConstr :: (a :~~: b) -> Constr Source # dataTypeOf :: (a :~~: b) -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (a :~~: b)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a :~~: b)) Source # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a :~~: b) -> a :~~: b Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a :~~: b) -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a :~~: b) -> r Source # gmapQ :: (forall d. Data d => d -> u) -> (a :~~: b) -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a :~~: b) -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a :~~: b) -> m (a :~~: b) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~~: b) -> m (a :~~: b) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~~: b) -> m (a :~~: b) Source # | |
| (Typeable f, Typeable g, Data p, Data (f p), Data (g p)) => Data ((f :*: g) p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :*: g) p -> c ((f :*: g) p) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :*: g) p) Source # toConstr :: (f :*: g) p -> Constr Source # dataTypeOf :: (f :*: g) p -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :*: g) p)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :*: g) p)) Source # gmapT :: (forall b. Data b => b -> b) -> (f :*: g) p -> (f :*: g) p Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :*: g) p -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :*: g) p -> r Source # gmapQ :: (forall d. Data d => d -> u) -> (f :*: g) p -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :*: g) p -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) Source # | |
| (Typeable f, Typeable g, Data p, Data (f p), Data (g p)) => Data ((f :+: g) p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :+: g) p -> c ((f :+: g) p) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :+: g) p) Source # toConstr :: (f :+: g) p -> Constr Source # dataTypeOf :: (f :+: g) p -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :+: g) p)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :+: g) p)) Source # gmapT :: (forall b. Data b => b -> b) -> (f :+: g) p -> (f :+: g) p Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :+: g) p -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :+: g) p -> r Source # gmapQ :: (forall d. Data d => d -> u) -> (f :+: g) p -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :+: g) p -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) Source # | |
| (Typeable i, Data p, Data c) => Data (K1 i c p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> K1 i c p -> c0 (K1 i c p) Source # gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (K1 i c p) Source # toConstr :: K1 i c p -> Constr Source # dataTypeOf :: K1 i c p -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (K1 i c p)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (K1 i c p)) Source # gmapT :: (forall b. Data b => b -> b) -> K1 i c p -> K1 i c p Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> K1 i c p -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> K1 i c p -> r Source # gmapQ :: (forall d. Data d => d -> u) -> K1 i c p -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> K1 i c p -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) Source # | |
| (Data a, Data b, Data c, Data d) => Data (a, b, c, d) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d0 b0. Data d0 => c0 (d0 -> b0) -> d0 -> c0 b0) -> (forall g. g -> c0 g) -> (a, b, c, d) -> c0 (a, b, c, d) Source # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c, d) Source # toConstr :: (a, b, c, d) -> Constr Source # dataTypeOf :: (a, b, c, d) -> DataType Source # dataCast1 :: Typeable t => (forall d0. Data d0 => c0 (t d0)) -> Maybe (c0 (a, b, c, d)) Source # dataCast2 :: Typeable t => (forall d0 e. (Data d0, Data e) => c0 (t d0 e)) -> Maybe (c0 (a, b, c, d)) Source # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c, d) -> (a, b, c, d) Source # gmapQl :: (r -> r' -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d) -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d) -> r Source # gmapQ :: (forall d0. Data d0 => d0 -> u) -> (a, b, c, d) -> [u] Source # gmapQi :: Int -> (forall d0. Data d0 => d0 -> u) -> (a, b, c, d) -> u Source # gmapM :: Monad m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d) -> m (a, b, c, d) Source # gmapMp :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d) -> m (a, b, c, d) Source # gmapMo :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d) -> m (a, b, c, d) Source # | |
| (Typeable a, Typeable f, Typeable g, Typeable k1, Typeable k2, Data (f (g a))) => Data (Compose f g a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> Compose f g a -> c (Compose f g a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Compose f g a) Source # toConstr :: Compose f g a -> Constr Source # dataTypeOf :: Compose f g a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Compose f g a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Compose f g a)) Source # gmapT :: (forall b. Data b => b -> b) -> Compose f g a -> Compose f g a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Compose f g a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Compose f g a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Compose f g a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Compose f g a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Compose f g a -> m (Compose f g a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Compose f g a -> m (Compose f g a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Compose f g a -> m (Compose f g a) Source # | |
| (Typeable f, Typeable g, Data p, Data (f (g p))) => Data ((f :.: g) p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :.: g) p -> c ((f :.: g) p) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :.: g) p) Source # toConstr :: (f :.: g) p -> Constr Source # dataTypeOf :: (f :.: g) p -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :.: g) p)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :.: g) p)) Source # gmapT :: (forall b. Data b => b -> b) -> (f :.: g) p -> (f :.: g) p Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :.: g) p -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :.: g) p -> r Source # gmapQ :: (forall d. Data d => d -> u) -> (f :.: g) p -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :.: g) p -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) Source # | |
| (Data p, Data (f p), Typeable c, Typeable i, Typeable f) => Data (M1 i c f p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> M1 i c f p -> c0 (M1 i c f p) Source # gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (M1 i c f p) Source # toConstr :: M1 i c f p -> Constr Source # dataTypeOf :: M1 i c f p -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (M1 i c f p)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (M1 i c f p)) Source # gmapT :: (forall b. Data b => b -> b) -> M1 i c f p -> M1 i c f p Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> M1 i c f p -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> M1 i c f p -> r Source # gmapQ :: (forall d. Data d => d -> u) -> M1 i c f p -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> M1 i c f p -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) Source # | |
| (Data a, Data b, Data c, Data d, Data e) => Data (a, b, c, d, e) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d0 b0. Data d0 => c0 (d0 -> b0) -> d0 -> c0 b0) -> (forall g. g -> c0 g) -> (a, b, c, d, e) -> c0 (a, b, c, d, e) Source # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c, d, e) Source # toConstr :: (a, b, c, d, e) -> Constr Source # dataTypeOf :: (a, b, c, d, e) -> DataType Source # dataCast1 :: Typeable t => (forall d0. Data d0 => c0 (t d0)) -> Maybe (c0 (a, b, c, d, e)) Source # dataCast2 :: Typeable t => (forall d0 e0. (Data d0, Data e0) => c0 (t d0 e0)) -> Maybe (c0 (a, b, c, d, e)) Source # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c, d, e) -> (a, b, c, d, e) Source # gmapQl :: (r -> r' -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e) -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e) -> r Source # gmapQ :: (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e) -> [u] Source # gmapQi :: Int -> (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e) -> u Source # gmapM :: Monad m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e) -> m (a, b, c, d, e) Source # gmapMp :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e) -> m (a, b, c, d, e) Source # gmapMo :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e) -> m (a, b, c, d, e) Source # | |
| (Data a, Data b, Data c, Data d, Data e, Data f) => Data (a, b, c, d, e, f) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d0 b0. Data d0 => c0 (d0 -> b0) -> d0 -> c0 b0) -> (forall g. g -> c0 g) -> (a, b, c, d, e, f) -> c0 (a, b, c, d, e, f) Source # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c, d, e, f) Source # toConstr :: (a, b, c, d, e, f) -> Constr Source # dataTypeOf :: (a, b, c, d, e, f) -> DataType Source # dataCast1 :: Typeable t => (forall d0. Data d0 => c0 (t d0)) -> Maybe (c0 (a, b, c, d, e, f)) Source # dataCast2 :: Typeable t => (forall d0 e0. (Data d0, Data e0) => c0 (t d0 e0)) -> Maybe (c0 (a, b, c, d, e, f)) Source # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) Source # gmapQl :: (r -> r' -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e, f) -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e, f) -> r Source # gmapQ :: (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e, f) -> [u] Source # gmapQi :: Int -> (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e, f) -> u Source # gmapM :: Monad m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f) -> m (a, b, c, d, e, f) Source # gmapMp :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f) -> m (a, b, c, d, e, f) Source # gmapMo :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f) -> m (a, b, c, d, e, f) Source # | |
| (Data a, Data b, Data c, Data d, Data e, Data f, Data g) => Data (a, b, c, d, e, f, g) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d0 b0. Data d0 => c0 (d0 -> b0) -> d0 -> c0 b0) -> (forall g0. g0 -> c0 g0) -> (a, b, c, d, e, f, g) -> c0 (a, b, c, d, e, f, g) Source # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c, d, e, f, g) Source # toConstr :: (a, b, c, d, e, f, g) -> Constr Source # dataTypeOf :: (a, b, c, d, e, f, g) -> DataType Source # dataCast1 :: Typeable t => (forall d0. Data d0 => c0 (t d0)) -> Maybe (c0 (a, b, c, d, e, f, g)) Source # dataCast2 :: Typeable t => (forall d0 e0. (Data d0, Data e0) => c0 (t d0 e0)) -> Maybe (c0 (a, b, c, d, e, f, g)) Source # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) Source # gmapQl :: (r -> r' -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e, f, g) -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e, f, g) -> r Source # gmapQ :: (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e, f, g) -> [u] Source # gmapQi :: Int -> (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e, f, g) -> u Source # gmapM :: Monad m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f, g) -> m (a, b, c, d, e, f, g) Source # gmapMp :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f, g) -> m (a, b, c, d, e, f, g) Source # gmapMo :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f, g) -> m (a, b, c, d, e, f, g) Source # | |
Representable types of kind *.
This class is derivable in GHC with the DeriveGeneric flag on.
A Generic instance must satisfy the following laws:
from.to≡idto.from≡id
Instances
A class of types that can be fully evaluated.
Since: deepseq-1.1.0.0
Minimal complete definition
Nothing
Methods
rnf should reduce its argument to normal form (that is, fully
evaluate all sub-components), and then return ().
Generic NFData deriving
Starting with GHC 7.2, you can automatically derive instances
for types possessing a Generic instance.
Note: Generic1 can be auto-derived starting with GHC 7.4
{-# LANGUAGE DeriveGeneric #-}
import GHC.Generics (Generic, Generic1)
import Control.DeepSeq
data Foo a = Foo a String
deriving (Eq, Generic, Generic1)
instance NFData a => NFData (Foo a)
instance NFData1 Foo
data Colour = Red | Green | Blue
deriving Generic
instance NFData ColourStarting with GHC 7.10, the example above can be written more
concisely by enabling the new DeriveAnyClass extension:
{-# LANGUAGE DeriveGeneric, DeriveAnyClass #-}
import GHC.Generics (Generic)
import Control.DeepSeq
data Foo a = Foo a String
deriving (Eq, Generic, Generic1, NFData, NFData1)
data Colour = Red | Green | Blue
deriving (Generic, NFData)
Compatibility with previous deepseq versions
Prior to version 1.4.0.0, the default implementation of the rnf
method was defined as
rnfa =seqa ()
However, starting with deepseq-1.4.0.0, the default
implementation is based on DefaultSignatures allowing for
more accurate auto-derived NFData instances. If you need the
previously used exact default rnf method implementation
semantics, use
instance NFData Colour where rnf x = seq x ()
or alternatively
instance NFData Colour where rnf = rwhnf
or
{-# LANGUAGE BangPatterns #-}
instance NFData Colour where rnf !_ = ()Instances
genericRnf :: (Generic a, GNFData (Rep a)) => a -> () #
GHC.Generics-based rnf implementation
This is needed in order to support deepseq < 1.4 which didn't
have a Generic-based default rnf implementation yet.
In order to define instances, use e.g.
instance NFData MyType where rnf = genericRnf
The implementation has been taken from deepseq-1.4.2's default
rnf implementation.
The Binary class provides put and get, methods to encode and
decode a Haskell value to a lazy ByteString. It mirrors the Read and
Show classes for textual representation of Haskell types, and is
suitable for serialising Haskell values to disk, over the network.
For decoding and generating simple external binary formats (e.g. C
structures), Binary may be used, but in general is not suitable
for complex protocols. Instead use the Put and Get primitives
directly.
Instances of Binary should satisfy the following property:
decode . encode == id
That is, the get and put methods should be the inverse of each
other. A range of instances are provided for basic Haskell types.
Minimal complete definition
Nothing
Methods
Encode a value in the Put monad.
Decode a value in the Get monad
putList :: [t] -> Put Source #
Encode a list of values in the Put monad. The default implementation may be overridden to be more efficient but must still have the same encoding format.
Instances
class Typeable a => Structured a #
Class of types with a known Structure.
For regular data types Structured can be derived generically.
data Record = Record { a :: Int, b :: Bool, c :: [Char] } deriving (Generic)
instance Structured Record
Since: Cabal-3.2.0.0
Instances
class Applicative f => Alternative (f :: Type -> Type) where Source #
A monoid on applicative functors.
If defined, some and many should be the least solutions
of the equations:
Methods
The identity of <|>
(<|>) :: f a -> f a -> f a infixl 3 Source #
An associative binary operation
One or more.
Zero or more.
Instances
class (Alternative m, Monad m) => MonadPlus (m :: Type -> Type) where Source #
Monads that also support choice and failure.
Minimal complete definition
Nothing
Methods
The identity of mplus. It should also satisfy the equations
mzero >>= f = mzero v >> mzero = mzero
The default definition is
mzero = empty
mplus :: m a -> m a -> m a Source #
An associative operation. The default definition is
mplus = (<|>)
Instances
class IsString a where Source #
Class for string-like datastructures; used by the overloaded string extension (-XOverloadedStrings in GHC).
Methods
fromString :: String -> a Source #
Instances
| IsString ModuleName # | Construct a This is just a convenience function intended for valid module strings. It is
an error if it is used with a string that is not a valid module name. If you
are parsing user input then use |
Defined in Distribution.ModuleName Methods fromString :: String -> ModuleName Source # | |
| IsString AbiHash # | Since: Cabal-2.0.0.2 |
Defined in Distribution.Types.AbiHash Methods fromString :: String -> AbiHash Source # | |
| IsString ComponentId # | Since: Cabal-2.0.0.2 |
Defined in Distribution.Types.ComponentId Methods fromString :: String -> ComponentId Source # | |
| IsString FlagName # | Since: Cabal-2.0.0.2 |
Defined in Distribution.Types.Flag Methods fromString :: String -> FlagName Source # | |
| IsString PackageName # | Since: Cabal-2.0.0.2 |
Defined in Distribution.Types.PackageName Methods fromString :: String -> PackageName Source # | |
| IsString PkgconfigName # | Since: Cabal-2.0.0.2 |
Defined in Distribution.Types.PkgconfigName Methods fromString :: String -> PkgconfigName Source # | |
| IsString UnitId # | Since: Cabal-2.0.0.2 |
Defined in Distribution.Types.UnitId Methods fromString :: String -> UnitId Source # | |
| IsString UnqualComponentName # | Since: Cabal-2.0.0.2 |
Defined in Distribution.Types.UnqualComponentName Methods | |
| IsString ShortText # | |
Defined in Distribution.Utils.ShortText Methods fromString :: String -> ShortText Source # | |
| IsString ByteString | Beware: |
Defined in Data.ByteString.Internal Methods fromString :: String -> ByteString Source # | |
| IsString ByteString | Beware: |
Defined in Data.ByteString.Lazy.Internal Methods fromString :: String -> ByteString Source # | |
| IsString ShortByteString | Beware: |
Defined in Data.ByteString.Short.Internal Methods fromString :: String -> ShortByteString Source # | |
| IsString Doc | |
Defined in Text.PrettyPrint.HughesPJ Methods fromString :: String -> Doc Source # | |
| IsString CmdSpec | construct a Since: process-1.2.1.0 |
Defined in System.Process.Common Methods fromString :: String -> CmdSpec Source # | |
| IsString a => IsString (Identity a) | Since: base-4.9.0.0 |
Defined in Data.String Methods fromString :: String -> Identity a Source # | |
| a ~ Char => IsString (Seq a) | Since: containers-0.5.7 |
Defined in Data.Sequence.Internal Methods fromString :: String -> Seq a Source # | |
| IsString (Doc a) | |
Defined in Text.PrettyPrint.Annotated.HughesPJ Methods fromString :: String -> Doc a Source # | |
| a ~ Char => IsString [a] |
Since: base-2.1 |
Defined in Data.String Methods fromString :: String -> [a] Source # | |
| IsString a => IsString (Const a b) | Since: base-4.9.0.0 |
Defined in Data.String Methods fromString :: String -> Const a b Source # | |
Some types
A Map from keys k to values a.
The Semigroup operation for Map is union, which prefers
values from the left operand. If m1 maps a key k to a value
a1, and m2 maps the same key to a different value a2, then
their union m1 <> m2 maps k to a1.
Instances
| Bifoldable Map | Since: containers-0.6.3.1 |
| Eq2 Map | Since: containers-0.5.9 |
| Ord2 Map | Since: containers-0.5.9 |
Defined in Data.Map.Internal | |
| Show2 Map | Since: containers-0.5.9 |
| Foldable (Map k) | Folds in order of increasing key. |
Defined in Data.Map.Internal Methods fold :: Monoid m => Map k m -> m Source # foldMap :: Monoid m => (a -> m) -> Map k a -> m Source # foldMap' :: Monoid m => (a -> m) -> Map k a -> m Source # foldr :: (a -> b -> b) -> b -> Map k a -> b Source # foldr' :: (a -> b -> b) -> b -> Map k a -> b Source # foldl :: (b -> a -> b) -> b -> Map k a -> b Source # foldl' :: (b -> a -> b) -> b -> Map k a -> b Source # foldr1 :: (a -> a -> a) -> Map k a -> a Source # foldl1 :: (a -> a -> a) -> Map k a -> a Source # toList :: Map k a -> [a] Source # null :: Map k a -> Bool Source # length :: Map k a -> Int Source # elem :: Eq a => a -> Map k a -> Bool Source # maximum :: Ord a => Map k a -> a Source # minimum :: Ord a => Map k a -> a Source # | |
| Eq k => Eq1 (Map k) | Since: containers-0.5.9 |
| Ord k => Ord1 (Map k) | Since: containers-0.5.9 |
Defined in Data.Map.Internal | |
| (Ord k, Read k) => Read1 (Map k) | Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Map k a) Source # liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [Map k a] Source # liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (Map k a) Source # liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [Map k a] Source # | |
| Show k => Show1 (Map k) | Since: containers-0.5.9 |
| Traversable (Map k) | Traverses in order of increasing key. |
| Functor (Map k) | |
| ModSubst a => ModSubst (Map k a) # | |
Defined in Distribution.Backpack.ModSubst Methods modSubst :: OpenModuleSubst -> Map k a -> Map k a # | |
| (Structured k, Structured v) => Structured (Map k v) # | |
Defined in Distribution.Utils.Structured | |
| (Data k, Data a, Ord k) => Data (Map k a) | |
Defined in Data.Map.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Map k a -> c (Map k a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Map k a) Source # toConstr :: Map k a -> Constr Source # dataTypeOf :: Map k a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Map k a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Map k a)) Source # gmapT :: (forall b. Data b => b -> b) -> Map k a -> Map k a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Map k a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Map k a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) Source # | |
| Ord k => Monoid (Map k v) | |
| Ord k => Semigroup (Map k v) | |
| Ord k => IsList (Map k v) | Since: containers-0.5.6.2 |
| (Ord k, Read k, Read e) => Read (Map k e) | |
| (Show k, Show a) => Show (Map k a) | |
| (Binary k, Binary e) => Binary (Map k e) | |
| (NFData k, NFData a) => NFData (Map k a) | |
Defined in Data.Map.Internal | |
| (Eq k, Eq a) => Eq (Map k a) | |
| (Ord k, Ord v) => Ord (Map k v) | |
| type Item (Map k v) | |
Defined in Data.Map.Internal | |
A set of values a.
Instances
| Foldable Set | Folds in order of increasing key. |
Defined in Data.Set.Internal Methods fold :: Monoid m => Set m -> m Source # foldMap :: Monoid m => (a -> m) -> Set a -> m Source # foldMap' :: Monoid m => (a -> m) -> Set a -> m Source # foldr :: (a -> b -> b) -> b -> Set a -> b Source # foldr' :: (a -> b -> b) -> b -> Set a -> b Source # foldl :: (b -> a -> b) -> b -> Set a -> b Source # foldl' :: (b -> a -> b) -> b -> Set a -> b Source # foldr1 :: (a -> a -> a) -> Set a -> a Source # foldl1 :: (a -> a -> a) -> Set a -> a Source # toList :: Set a -> [a] Source # null :: Set a -> Bool Source # length :: Set a -> Int Source # elem :: Eq a => a -> Set a -> Bool Source # maximum :: Ord a => Set a -> a Source # minimum :: Ord a => Set a -> a Source # | |
| Eq1 Set | Since: containers-0.5.9 |
| Ord1 Set | Since: containers-0.5.9 |
Defined in Data.Set.Internal | |
| Show1 Set | Since: containers-0.5.9 |
| ModSubst (Set ModuleName) # | |
Defined in Distribution.Backpack.ModSubst Methods modSubst :: OpenModuleSubst -> Set ModuleName -> Set ModuleName # | |
| Structured k => Structured (Set k) # | |
Defined in Distribution.Utils.Structured | |
| (Data a, Ord a) => Data (Set a) | |
Defined in Data.Set.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Set a -> c (Set a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Set a) Source # toConstr :: Set a -> Constr Source # dataTypeOf :: Set a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Set a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Set a)) Source # gmapT :: (forall b. Data b => b -> b) -> Set a -> Set a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Set a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Set a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Set a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Set a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) Source # | |
| Ord a => Monoid (Set a) | |
| Ord a => Semigroup (Set a) | Since: containers-0.5.7 |
| Ord a => IsList (Set a) | Since: containers-0.5.6.2 |
| (Read a, Ord a) => Read (Set a) | |
| Show a => Show (Set a) | |
| Binary a => Binary (Set a) | |
| NFData a => NFData (Set a) | |
Defined in Data.Set.Internal | |
| Eq a => Eq (Set a) | |
| Ord a => Ord (Set a) | |
| Newtype (Set a) (Set' sep wrapper a) # | |
| type Item (Set a) | |
Defined in Data.Set.Internal | |
data NonEmptySet a #
Since: Cabal-3.4.0.0
Instances
Identity functor and monad. (a non-strict monad)
Since: base-4.8.0.0
Constructors
| Identity | |
Fields
| |
Instances
Proxy is a type that holds no data, but has a phantom parameter of
arbitrary type (or even kind). Its use is to provide type information, even
though there is no value available of that type (or it may be too costly to
create one).
Historically, is a safer alternative to the
Proxy :: Proxy a idiom.undefined :: a
>>>Proxy :: Proxy (Void, Int -> Int)Proxy
Proxy can even hold types of higher kinds,
>>>Proxy :: Proxy EitherProxy
>>>Proxy :: Proxy FunctorProxy
>>>Proxy :: Proxy complicatedStructureProxy
Constructors
| Proxy |
Instances
| Generic1 (Proxy :: k -> Type) | |
| Foldable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Proxy m -> m Source # foldMap :: Monoid m => (a -> m) -> Proxy a -> m Source # foldMap' :: Monoid m => (a -> m) -> Proxy a -> m Source # foldr :: (a -> b -> b) -> b -> Proxy a -> b Source # foldr' :: (a -> b -> b) -> b -> Proxy a -> b Source # foldl :: (b -> a -> b) -> b -> Proxy a -> b Source # foldl' :: (b -> a -> b) -> b -> Proxy a -> b Source # foldr1 :: (a -> a -> a) -> Proxy a -> a Source # foldl1 :: (a -> a -> a) -> Proxy a -> a Source # toList :: Proxy a -> [a] Source # null :: Proxy a -> Bool Source # length :: Proxy a -> Int Source # elem :: Eq a => a -> Proxy a -> Bool Source # maximum :: Ord a => Proxy a -> a Source # minimum :: Ord a => Proxy a -> a Source # | |
| Eq1 (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
| Ord1 (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
| Read1 (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes Methods liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Proxy a) Source # liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [Proxy a] Source # liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (Proxy a) Source # liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [Proxy a] Source # | |
| Show1 (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
| Traversable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
| Alternative (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
| Applicative (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
| Functor (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
| Monad (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
| MonadPlus (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
| NFData1 (Proxy :: Type -> Type) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
| Data t => Data (Proxy t) | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Proxy t -> c (Proxy t) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Proxy t) Source # toConstr :: Proxy t -> Constr Source # dataTypeOf :: Proxy t -> DataType Source # dataCast1 :: Typeable t0 => (forall d. Data d => c (t0 d)) -> Maybe (c (Proxy t)) Source # dataCast2 :: Typeable t0 => (forall d e. (Data d, Data e) => c (t0 d e)) -> Maybe (c (Proxy t)) Source # gmapT :: (forall b. Data b => b -> b) -> Proxy t -> Proxy t Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Proxy t -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Proxy t -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Proxy t -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Proxy t -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) Source # | |
| Monoid (Proxy s) | Since: base-4.7.0.0 |
| Semigroup (Proxy s) | Since: base-4.9.0.0 |
| Bounded (Proxy t) | Since: base-4.7.0.0 |
| Enum (Proxy s) | Since: base-4.7.0.0 |
Defined in Data.Proxy Methods succ :: Proxy s -> Proxy s Source # pred :: Proxy s -> Proxy s Source # toEnum :: Int -> Proxy s Source # fromEnum :: Proxy s -> Int Source # enumFrom :: Proxy s -> [Proxy s] Source # enumFromThen :: Proxy s -> Proxy s -> [Proxy s] Source # enumFromTo :: Proxy s -> Proxy s -> [Proxy s] Source # enumFromThenTo :: Proxy s -> Proxy s -> Proxy s -> [Proxy s] Source # | |
| Generic (Proxy t) | |
| Ix (Proxy s) | Since: base-4.7.0.0 |
| Read (Proxy t) | Since: base-4.7.0.0 |
| Show (Proxy s) | Since: base-4.7.0.0 |
| NFData (Proxy a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| Eq (Proxy s) | Since: base-4.7.0.0 |
| Ord (Proxy s) | Since: base-4.7.0.0 |
| type Rep1 (Proxy :: k -> Type) | Since: base-4.6.0.0 |
| type Rep (Proxy t) | Since: base-4.6.0.0 |
newtype Const a (b :: k) Source #
The Const functor.
Instances
| Generic1 (Const a :: k -> Type) | |
| Eq2 (Const :: Type -> Type -> Type) | Since: base-4.9.0.0 |
| Ord2 (Const :: Type -> Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
| Read2 (Const :: Type -> Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes Methods liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (Const a b) Source # liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [Const a b] Source # liftReadPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec (Const a b) Source # liftReadListPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [Const a b] Source # | |
| Show2 (Const :: Type -> Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
| NFData2 (Const :: Type -> Type -> Type) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
| Foldable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Functor.Const Methods fold :: Monoid m0 => Const m m0 -> m0 Source # foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 Source # foldMap' :: Monoid m0 => (a -> m0) -> Const m a -> m0 Source # foldr :: (a -> b -> b) -> b -> Const m a -> b Source # foldr' :: (a -> b -> b) -> b -> Const m a -> b Source # foldl :: (b -> a -> b) -> b -> Const m a -> b Source # foldl' :: (b -> a -> b) -> b -> Const m a -> b Source # foldr1 :: (a -> a -> a) -> Const m a -> a Source # foldl1 :: (a -> a -> a) -> Const m a -> a Source # toList :: Const m a -> [a] Source # null :: Const m a -> Bool Source # length :: Const m a -> Int Source # elem :: Eq a => a -> Const m a -> Bool Source # maximum :: Ord a => Const m a -> a Source # minimum :: Ord a => Const m a -> a Source # | |
| Eq a => Eq1 (Const a :: Type -> Type) | Since: base-4.9.0.0 |
| Ord a => Ord1 (Const a :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
| Read a => Read1 (Const a :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes Methods liftReadsPrec :: (Int -> ReadS a0) -> ReadS [a0] -> Int -> ReadS (Const a a0) Source # liftReadList :: (Int -> ReadS a0) -> ReadS [a0] -> ReadS [Const a a0] Source # liftReadPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec (Const a a0) Source # liftReadListPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec [Const a a0] Source # | |
| Show a => Show1 (Const a :: Type -> Type) | Since: base-4.9.0.0 |
| Traversable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Traversable | |
| Monoid m => Applicative (Const m :: Type -> Type) | Since: base-2.0.1 |
Defined in Data.Functor.Const | |
| Functor (Const m :: Type -> Type) | Since: base-2.1 |
| NFData a => NFData1 (Const a :: Type -> Type) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
| Bits a => Bits (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods (.&.) :: Const a b -> Const a b -> Const a b Source # (.|.) :: Const a b -> Const a b -> Const a b Source # xor :: Const a b -> Const a b -> Const a b Source # complement :: Const a b -> Const a b Source # shift :: Const a b -> Int -> Const a b Source # rotate :: Const a b -> Int -> Const a b Source # zeroBits :: Const a b Source # bit :: Int -> Const a b Source # setBit :: Const a b -> Int -> Const a b Source # clearBit :: Const a b -> Int -> Const a b Source # complementBit :: Const a b -> Int -> Const a b Source # testBit :: Const a b -> Int -> Bool Source # bitSizeMaybe :: Const a b -> Maybe Int Source # bitSize :: Const a b -> Int Source # isSigned :: Const a b -> Bool Source # shiftL :: Const a b -> Int -> Const a b Source # unsafeShiftL :: Const a b -> Int -> Const a b Source # shiftR :: Const a b -> Int -> Const a b Source # unsafeShiftR :: Const a b -> Int -> Const a b Source # rotateL :: Const a b -> Int -> Const a b Source # | |
| FiniteBits a => FiniteBits (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods finiteBitSize :: Const a b -> Int Source # countLeadingZeros :: Const a b -> Int Source # countTrailingZeros :: Const a b -> Int Source # | |
| (Typeable k, Data a, Typeable b) => Data (Const a b) | Since: base-4.10.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Const a b -> c (Const a b) Source # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Const a b) Source # toConstr :: Const a b -> Constr Source # dataTypeOf :: Const a b -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Const a b)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Const a b)) Source # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Const a b -> Const a b Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Const a b -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Const a b -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) Source # | |
| IsString a => IsString (Const a b) | Since: base-4.9.0.0 |
Defined in Data.String Methods fromString :: String -> Const a b Source # | |
| Storable a => Storable (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods sizeOf :: Const a b -> Int Source # alignment :: Const a b -> Int Source # peekElemOff :: Ptr (Const a b) -> Int -> IO (Const a b) Source # pokeElemOff :: Ptr (Const a b) -> Int -> Const a b -> IO () Source # peekByteOff :: Ptr b0 -> Int -> IO (Const a b) Source # pokeByteOff :: Ptr b0 -> Int -> Const a b -> IO () Source # | |
| Monoid a => Monoid (Const a b) | Since: base-4.9.0.0 |
| Semigroup a => Semigroup (Const a b) | Since: base-4.9.0.0 |
| Bounded a => Bounded (Const a b) | Since: base-4.9.0.0 |
| Enum a => Enum (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods succ :: Const a b -> Const a b Source # pred :: Const a b -> Const a b Source # toEnum :: Int -> Const a b Source # fromEnum :: Const a b -> Int Source # enumFrom :: Const a b -> [Const a b] Source # enumFromThen :: Const a b -> Const a b -> [Const a b] Source # enumFromTo :: Const a b -> Const a b -> [Const a b] Source # enumFromThenTo :: Const a b -> Const a b -> Const a b -> [Const a b] Source # | |
| Floating a => Floating (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods exp :: Const a b -> Const a b Source # log :: Const a b -> Const a b Source # sqrt :: Const a b -> Const a b Source # (**) :: Const a b -> Const a b -> Const a b Source # logBase :: Const a b -> Const a b -> Const a b Source # sin :: Const a b -> Const a b Source # cos :: Const a b -> Const a b Source # tan :: Const a b -> Const a b Source # asin :: Const a b -> Const a b Source # acos :: Const a b -> Const a b Source # atan :: Const a b -> Const a b Source # sinh :: Const a b -> Const a b Source # cosh :: Const a b -> Const a b Source # tanh :: Const a b -> Const a b Source # asinh :: Const a b -> Const a b Source # acosh :: Const a b -> Const a b Source # atanh :: Const a b -> Const a b Source # log1p :: Const a b -> Const a b Source # expm1 :: Const a b -> Const a b Source # | |
| RealFloat a => RealFloat (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods floatRadix :: Const a b -> Integer Source # floatDigits :: Const a b -> Int Source # floatRange :: Const a b -> (Int, Int) Source # decodeFloat :: Const a b -> (Integer, Int) Source # encodeFloat :: Integer -> Int -> Const a b Source # exponent :: Const a b -> Int Source # significand :: Const a b -> Const a b Source # scaleFloat :: Int -> Const a b -> Const a b Source # isNaN :: Const a b -> Bool Source # isInfinite :: Const a b -> Bool Source # isDenormalized :: Const a b -> Bool Source # isNegativeZero :: Const a b -> Bool Source # | |
| Generic (Const a b) | |
| Ix a => Ix (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods range :: (Const a b, Const a b) -> [Const a b] Source # index :: (Const a b, Const a b) -> Const a b -> Int Source # unsafeIndex :: (Const a b, Const a b) -> Const a b -> Int Source # inRange :: (Const a b, Const a b) -> Const a b -> Bool Source # | |
| Num a => Num (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods (+) :: Const a b -> Const a b -> Const a b Source # (-) :: Const a b -> Const a b -> Const a b Source # (*) :: Const a b -> Const a b -> Const a b Source # negate :: Const a b -> Const a b Source # abs :: Const a b -> Const a b Source # signum :: Const a b -> Const a b Source # fromInteger :: Integer -> Const a b Source # | |
| Read a => Read (Const a b) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
| Fractional a => Fractional (Const a b) | Since: base-4.9.0.0 |
| Integral a => Integral (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods quot :: Const a b -> Const a b -> Const a b Source # rem :: Const a b -> Const a b -> Const a b Source # div :: Const a b -> Const a b -> Const a b Source # mod :: Const a b -> Const a b -> Const a b Source # quotRem :: Const a b -> Const a b -> (Const a b, Const a b) Source # divMod :: Const a b -> Const a b -> (Const a b, Const a b) Source # | |
| Real a => Real (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods toRational :: Const a b -> Rational Source # | |
| RealFrac a => RealFrac (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
| Show a => Show (Const a b) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
| NFData a => NFData (Const a b) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| Eq a => Eq (Const a b) | Since: base-4.9.0.0 |
| Ord a => Ord (Const a b) | Since: base-4.9.0.0 |
| type Rep1 (Const a :: k -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
| type Rep (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
Uninhabited data type
Since: base-4.8.0.0
Instances
| Data Void | Since: base-4.8.0.0 |
Defined in Data.Void Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Void -> c Void Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Void Source # toConstr :: Void -> Constr Source # dataTypeOf :: Void -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Void) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Void) Source # gmapT :: (forall b. Data b => b -> b) -> Void -> Void Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Void -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Void -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Void -> m Void Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void Source # | |
| Semigroup Void | Since: base-4.9.0.0 |
| Exception Void | Since: base-4.8.0.0 |
Defined in Data.Void Methods toException :: Void -> SomeException Source # fromException :: SomeException -> Maybe Void Source # displayException :: Void -> String Source # | |
| Generic Void | |
| Ix Void | Since: base-4.8.0.0 |
Defined in Data.Void | |
| Read Void | Reading a Since: base-4.8.0.0 |
| Show Void | Since: base-4.8.0.0 |
| Binary Void | Since: binary-0.8.0.0 |
| NFData Void | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| Eq Void | Since: base-4.8.0.0 |
| Ord Void | Since: base-4.8.0.0 |
| Lift Void | |
| type Rep Void | Since: base-4.8.0.0 |
Data.Either
partitionEithers :: [Either a b] -> ([a], [b]) Source #
Partitions a list of Either into two lists.
All the Left elements are extracted, in order, to the first
component of the output. Similarly the Right elements are extracted
to the second component of the output.
Examples
Basic usage:
>>>let list = [ Left "foo", Right 3, Left "bar", Right 7, Left "baz" ]>>>partitionEithers list(["foo","bar","baz"],[3,7])
The pair returned by should be the same
pair as partitionEithers x(:lefts x, rights x)
>>>let list = [ Left "foo", Right 3, Left "bar", Right 7, Left "baz" ]>>>partitionEithers list == (lefts list, rights list)True
Data.Maybe
catMaybes :: [Maybe a] -> [a] Source #
The catMaybes function takes a list of Maybes and returns
a list of all the Just values.
Examples
Basic usage:
>>>catMaybes [Just 1, Nothing, Just 3][1,3]
When constructing a list of Maybe values, catMaybes can be used
to return all of the "success" results (if the list is the result
of a map, then mapMaybe would be more appropriate):
>>>import Text.Read ( readMaybe )>>>[readMaybe x :: Maybe Int | x <- ["1", "Foo", "3"] ][Just 1,Nothing,Just 3]>>>catMaybes $ [readMaybe x :: Maybe Int | x <- ["1", "Foo", "3"] ][1,3]
mapMaybe :: (a -> Maybe b) -> [a] -> [b] Source #
The mapMaybe function is a version of map which can throw
out elements. In particular, the functional argument returns
something of type . If this is Maybe bNothing, no element
is added on to the result list. If it is , then Just bb is
included in the result list.
Examples
Using is a shortcut for mapMaybe f x
in most cases:catMaybes $ map f x
>>>import Text.Read ( readMaybe )>>>let readMaybeInt = readMaybe :: String -> Maybe Int>>>mapMaybe readMaybeInt ["1", "Foo", "3"][1,3]>>>catMaybes $ map readMaybeInt ["1", "Foo", "3"][1,3]
If we map the Just constructor, the entire list should be returned:
>>>mapMaybe Just [1,2,3][1,2,3]
fromMaybe :: a -> Maybe a -> a Source #
The fromMaybe function takes a default value and a Maybe
value. If the Maybe is Nothing, it returns the default value;
otherwise, it returns the value contained in the Maybe.
Examples
Basic usage:
>>>fromMaybe "" (Just "Hello, World!")"Hello, World!"
>>>fromMaybe "" Nothing""
Read an integer from a string using readMaybe. If we fail to
parse an integer, we want to return 0 by default:
>>>import Text.Read ( readMaybe )>>>fromMaybe 0 (readMaybe "5")5>>>fromMaybe 0 (readMaybe "")0
maybeToList :: Maybe a -> [a] Source #
The maybeToList function returns an empty list when given
Nothing or a singleton list when given Just.
Examples
Basic usage:
>>>maybeToList (Just 7)[7]
>>>maybeToList Nothing[]
One can use maybeToList to avoid pattern matching when combined
with a function that (safely) works on lists:
>>>import Text.Read ( readMaybe )>>>sum $ maybeToList (readMaybe "3")3>>>sum $ maybeToList (readMaybe "")0
listToMaybe :: [a] -> Maybe a Source #
The listToMaybe function returns Nothing on an empty list
or where Just aa is the first element of the list.
Examples
Basic usage:
>>>listToMaybe []Nothing
>>>listToMaybe [9]Just 9
>>>listToMaybe [1,2,3]Just 1
Composing maybeToList with listToMaybe should be the identity
on singleton/empty lists:
>>>maybeToList $ listToMaybe [5][5]>>>maybeToList $ listToMaybe [][]
But not on lists with more than one element:
>>>maybeToList $ listToMaybe [1,2,3][1]
Data.List
unfoldr :: (b -> Maybe (a, b)) -> b -> [a] Source #
The unfoldr function is a `dual' to foldr: while foldr
reduces a list to a summary value, unfoldr builds a list from
a seed value. The function takes the element and returns Nothing
if it is done producing the list or returns Just (a,b), in which
case, a is a prepended to the list and b is used as the next
element in a recursive call. For example,
iterate f == unfoldr (\x -> Just (x, f x))
In some cases, unfoldr can undo a foldr operation:
unfoldr f' (foldr f z xs) == xs
if the following holds:
f' (f x y) = Just (x,y) f' z = Nothing
A simple use of unfoldr:
>>>unfoldr (\b -> if b == 0 then Nothing else Just (b, b-1)) 10[10,9,8,7,6,5,4,3,2,1]
isPrefixOf :: Eq a => [a] -> [a] -> Bool Source #
\(\mathcal{O}(\min(m,n))\). The isPrefixOf function takes two lists and
returns True iff the first list is a prefix of the second.
>>>"Hello" `isPrefixOf` "Hello World!"True
>>>"Hello" `isPrefixOf` "Wello Horld!"False
isSuffixOf :: Eq a => [a] -> [a] -> Bool Source #
The isSuffixOf function takes two lists and returns True iff
the first list is a suffix of the second. The second list must be
finite.
>>>"ld!" `isSuffixOf` "Hello World!"True
>>>"World" `isSuffixOf` "Hello World!"False
intercalate :: [a] -> [[a]] -> [a] Source #
intercalate xs xss is equivalent to (.
It inserts the list concat (intersperse xs xss))xs in between the lists in xss and concatenates the
result.
>>>intercalate ", " ["Lorem", "ipsum", "dolor"]"Lorem, ipsum, dolor"
intersperse :: a -> [a] -> [a] Source #
\(\mathcal{O}(n)\). The intersperse function takes an element and a list
and `intersperses' that element between the elements of the list. For
example,
>>>intersperse ',' "abcde""a,b,c,d,e"
nub :: Eq a => [a] -> [a] Source #
\(\mathcal{O}(n^2)\). The nub function removes duplicate elements from a
list. In particular, it keeps only the first occurrence of each element. (The
name nub means `essence'.) It is a special case of nubBy, which allows
the programmer to supply their own equality test.
>>>nub [1,2,3,4,3,2,1,2,4,3,5][1,2,3,4,5]
partition :: (a -> Bool) -> [a] -> ([a], [a]) Source #
The partition function takes a predicate a list and returns
the pair of lists of elements which do and do not satisfy the
predicate, respectively; i.e.,
partition p xs == (filter p xs, filter (not . p) xs)
>>>partition (`elem` "aeiou") "Hello World!"("eoo","Hll Wrld!")
Data.List.NonEmpty
Non-empty (and non-strict) list type.
Since: base-4.9.0.0
Constructors
| a :| [a] infixr 5 |
Instances
| Foldable NonEmpty | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => NonEmpty m -> m Source # foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m Source # foldMap' :: Monoid m => (a -> m) -> NonEmpty a -> m Source # foldr :: (a -> b -> b) -> b -> NonEmpty a -> b Source # foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b Source # foldl :: (b -> a -> b) -> b -> NonEmpty a -> b Source # foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b Source # foldr1 :: (a -> a -> a) -> NonEmpty a -> a Source # foldl1 :: (a -> a -> a) -> NonEmpty a -> a Source # toList :: NonEmpty a -> [a] Source # null :: NonEmpty a -> Bool Source # length :: NonEmpty a -> Int Source # elem :: Eq a => a -> NonEmpty a -> Bool Source # maximum :: Ord a => NonEmpty a -> a Source # minimum :: Ord a => NonEmpty a -> a Source # | |
| Eq1 NonEmpty | Since: base-4.10.0.0 |
| Ord1 NonEmpty | Since: base-4.10.0.0 |
Defined in Data.Functor.Classes | |
| Read1 NonEmpty | Since: base-4.10.0.0 |
Defined in Data.Functor.Classes Methods liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (NonEmpty a) Source # liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [NonEmpty a] Source # liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (NonEmpty a) Source # liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [NonEmpty a] Source # | |
| Show1 NonEmpty | Since: base-4.10.0.0 |
| Traversable NonEmpty | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
| Applicative NonEmpty | Since: base-4.9.0.0 |
Defined in GHC.Base | |
| Functor NonEmpty | Since: base-4.9.0.0 |
| Monad NonEmpty | Since: base-4.9.0.0 |
| NFData1 NonEmpty | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
| Lift a => Lift (NonEmpty a :: Type) | |
| Structured a => Structured (NonEmpty a) # | |
Defined in Distribution.Utils.Structured | |
| Data a => Data (NonEmpty a) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NonEmpty a -> c (NonEmpty a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (NonEmpty a) Source # toConstr :: NonEmpty a -> Constr Source # dataTypeOf :: NonEmpty a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (NonEmpty a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (NonEmpty a)) Source # gmapT :: (forall b. Data b => b -> b) -> NonEmpty a -> NonEmpty a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> NonEmpty a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> NonEmpty a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) Source # | |
| Semigroup (NonEmpty a) | Since: base-4.9.0.0 |
| IsList (NonEmpty a) | Since: base-4.9.0.0 |
| Generic (NonEmpty a) | |
| Read a => Read (NonEmpty a) | Since: base-4.11.0.0 |
| Show a => Show (NonEmpty a) | Since: base-4.11.0.0 |
| Binary a => Binary (NonEmpty a) | Since: binary-0.8.4.0 |
| NFData a => NFData (NonEmpty a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
| Eq a => Eq (NonEmpty a) | Since: base-4.9.0.0 |
| Ord a => Ord (NonEmpty a) | Since: base-4.9.0.0 |
| Generic1 NonEmpty | |
| type Item (NonEmpty a) | |
| type Rep (NonEmpty a) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep (NonEmpty a) = D1 ('MetaData "NonEmpty" "GHC.Base" "base" 'False) (C1 ('MetaCons ":|" ('InfixI 'LeftAssociative 9) 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [a]))) | |
| type Rep1 NonEmpty | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep1 NonEmpty = D1 ('MetaData "NonEmpty" "GHC.Base" "base" 'False) (C1 ('MetaCons ":|" ('InfixI 'LeftAssociative 9) 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1 :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 []))) | |
Data.Foldable
class Foldable (t :: Type -> Type) Source #
The Foldable class represents data structures that can be reduced to a summary value one element at a time. Strict left-associative folds are a good fit for space-efficient reduction, while lazy right-associative folds are a good fit for corecursive iteration, or for folds that short-circuit after processing an initial subsequence of the structure's elements.
Instances can be derived automatically by enabling the DeriveFoldable
extension. For example, a derived instance for a binary tree might be:
{-# LANGUAGE DeriveFoldable #-}
data Tree a = Empty
| Leaf a
| Node (Tree a) a (Tree a)
deriving FoldableA more detailed description can be found in the Overview section of Data.Foldable.
For the class laws see the Laws section of Data.Foldable.
Instances
| Foldable Graph # | |
Defined in Distribution.Compat.Graph Methods fold :: Monoid m => Graph m -> m Source # foldMap :: Monoid m => (a -> m) -> Graph a -> m Source # foldMap' :: Monoid m => (a -> m) -> Graph a -> m Source # foldr :: (a -> b -> b) -> b -> Graph a -> b Source # foldr' :: (a -> b -> b) -> b -> Graph a -> b Source # foldl :: (b -> a -> b) -> b -> Graph a -> b Source # foldl' :: (b -> a -> b) -> b -> Graph a -> b Source # foldr1 :: (a -> a -> a) -> Graph a -> a Source # foldl1 :: (a -> a -> a) -> Graph a -> a Source # toList :: Graph a -> [a] Source # null :: Graph a -> Bool Source # length :: Graph a -> Int Source # elem :: Eq a => a -> Graph a -> Bool Source # maximum :: Ord a => Graph a -> a Source # minimum :: Ord a => Graph a -> a Source # | |
| Foldable NonEmptySet # | |
Defined in Distribution.Compat.NonEmptySet Methods fold :: Monoid m => NonEmptySet m -> m Source # foldMap :: Monoid m => (a -> m) -> NonEmptySet a -> m Source # foldMap' :: Monoid m => (a -> m) -> NonEmptySet a -> m Source # foldr :: (a -> b -> b) -> b -> NonEmptySet a -> b Source # foldr' :: (a -> b -> b) -> b -> NonEmptySet a -> b Source # foldl :: (b -> a -> b) -> b -> NonEmptySet a -> b Source # foldl' :: (b -> a -> b) -> b -> NonEmptySet a -> b Source # foldr1 :: (a -> a -> a) -> NonEmptySet a -> a Source # foldl1 :: (a -> a -> a) -> NonEmptySet a -> a Source # toList :: NonEmptySet a -> [a] Source # null :: NonEmptySet a -> Bool Source # length :: NonEmptySet a -> Int Source # elem :: Eq a => a -> NonEmptySet a -> Bool Source # maximum :: Ord a => NonEmptySet a -> a Source # minimum :: Ord a => NonEmptySet a -> a Source # sum :: Num a => NonEmptySet a -> a Source # product :: Num a => NonEmptySet a -> a Source # | |
| Foldable PerCompilerFlavor # | |
Defined in Distribution.Compiler Methods fold :: Monoid m => PerCompilerFlavor m -> m Source # foldMap :: Monoid m => (a -> m) -> PerCompilerFlavor a -> m Source # foldMap' :: Monoid m => (a -> m) -> PerCompilerFlavor a -> m Source # foldr :: (a -> b -> b) -> b -> PerCompilerFlavor a -> b Source # foldr' :: (a -> b -> b) -> b -> PerCompilerFlavor a -> b Source # foldl :: (b -> a -> b) -> b -> PerCompilerFlavor a -> b Source # foldl' :: (b -> a -> b) -> b -> PerCompilerFlavor a -> b Source # foldr1 :: (a -> a -> a) -> PerCompilerFlavor a -> a Source # foldl1 :: (a -> a -> a) -> PerCompilerFlavor a -> a Source # toList :: PerCompilerFlavor a -> [a] Source # null :: PerCompilerFlavor a -> Bool Source # length :: PerCompilerFlavor a -> Int Source # elem :: Eq a => a -> PerCompilerFlavor a -> Bool Source # maximum :: Ord a => PerCompilerFlavor a -> a Source # minimum :: Ord a => PerCompilerFlavor a -> a Source # sum :: Num a => PerCompilerFlavor a -> a Source # product :: Num a => PerCompilerFlavor a -> a Source # | |
| Foldable Field # | |
Defined in Distribution.Fields.Field Methods fold :: Monoid m => Field m -> m Source # foldMap :: Monoid m => (a -> m) -> Field a -> m Source # foldMap' :: Monoid m => (a -> m) -> Field a -> m Source # foldr :: (a -> b -> b) -> b -> Field a -> b Source # foldr' :: (a -> b -> b) -> b -> Field a -> b Source # foldl :: (b -> a -> b) -> b -> Field a -> b Source # foldl' :: (b -> a -> b) -> b -> Field a -> b Source # foldr1 :: (a -> a -> a) -> Field a -> a Source # foldl1 :: (a -> a -> a) -> Field a -> a Source # toList :: Field a -> [a] Source # null :: Field a -> Bool Source # length :: Field a -> Int Source # elem :: Eq a => a -> Field a -> Bool Source # maximum :: Ord a => Field a -> a Source # minimum :: Ord a => Field a -> a Source # | |
| Foldable FieldLine # | |
Defined in Distribution.Fields.Field Methods fold :: Monoid m => FieldLine m -> m Source # foldMap :: Monoid m => (a -> m) -> FieldLine a -> m Source # foldMap' :: Monoid m => (a -> m) -> FieldLine a -> m Source # foldr :: (a -> b -> b) -> b -> FieldLine a -> b Source # foldr' :: (a -> b -> b) -> b -> FieldLine a -> b Source # foldl :: (b -> a -> b) -> b -> FieldLine a -> b Source # foldl' :: (b -> a -> b) -> b -> FieldLine a -> b Source # foldr1 :: (a -> a -> a) -> FieldLine a -> a Source # foldl1 :: (a -> a -> a) -> FieldLine a -> a Source # toList :: FieldLine a -> [a] Source # null :: FieldLine a -> Bool Source # length :: FieldLine a -> Int Source # elem :: Eq a => a -> FieldLine a -> Bool Source # maximum :: Ord a => FieldLine a -> a Source # minimum :: Ord a => FieldLine a -> a Source # | |
| Foldable Name # | |
Defined in Distribution.Fields.Field Methods fold :: Monoid m => Name m -> m Source # foldMap :: Monoid m => (a -> m) -> Name a -> m Source # foldMap' :: Monoid m => (a -> m) -> Name a -> m Source # foldr :: (a -> b -> b) -> b -> Name a -> b Source # foldr' :: (a -> b -> b) -> b -> Name a -> b Source # foldl :: (b -> a -> b) -> b -> Name a -> b Source # foldl' :: (b -> a -> b) -> b -> Name a -> b Source # foldr1 :: (a -> a -> a) -> Name a -> a Source # foldl1 :: (a -> a -> a) -> Name a -> a Source # toList :: Name a -> [a] Source # null :: Name a -> Bool Source # length :: Name a -> Int Source # elem :: Eq a => a -> Name a -> Bool Source # maximum :: Ord a => Name a -> a Source # minimum :: Ord a => Name a -> a Source # | |
| Foldable SectionArg # | |
Defined in Distribution.Fields.Field Methods fold :: Monoid m => SectionArg m -> m Source # foldMap :: Monoid m => (a -> m) -> SectionArg a -> m Source # foldMap' :: Monoid m => (a -> m) -> SectionArg a -> m Source # foldr :: (a -> b -> b) -> b -> SectionArg a -> b Source # foldr' :: (a -> b -> b) -> b -> SectionArg a -> b Source # foldl :: (b -> a -> b) -> b -> SectionArg a -> b Source # foldl' :: (b -> a -> b) -> b -> SectionArg a -> b Source # foldr1 :: (a -> a -> a) -> SectionArg a -> a Source # foldl1 :: (a -> a -> a) -> SectionArg a -> a Source # toList :: SectionArg a -> [a] Source # null :: SectionArg a -> Bool Source # length :: SectionArg a -> Int Source # elem :: Eq a => a -> SectionArg a -> Bool Source # maximum :: Ord a => SectionArg a -> a Source # minimum :: Ord a => SectionArg a -> a Source # sum :: Num a => SectionArg a -> a Source # product :: Num a => SectionArg a -> a Source # | |
| Foldable PrettyField # | |
Defined in Distribution.Fields.Pretty Methods fold :: Monoid m => PrettyField m -> m Source # foldMap :: Monoid m => (a -> m) -> PrettyField a -> m Source # foldMap' :: Monoid m => (a -> m) -> PrettyField a -> m Source # foldr :: (a -> b -> b) -> b -> PrettyField a -> b Source # foldr' :: (a -> b -> b) -> b -> PrettyField a -> b Source # foldl :: (b -> a -> b) -> b -> PrettyField a -> b Source # foldl' :: (b -> a -> b) -> b -> PrettyField a -> b Source # foldr1 :: (a -> a -> a) -> PrettyField a -> a Source # foldl1 :: (a -> a -> a) -> PrettyField a -> a Source # toList :: PrettyField a -> [a] Source # null :: PrettyField a -> Bool Source # length :: PrettyField a -> Int Source # elem :: Eq a => a -> PrettyField a -> Bool Source # maximum :: Ord a => PrettyField a -> a Source # minimum :: Ord a => PrettyField a -> a Source # sum :: Num a => PrettyField a -> a Source # product :: Num a => PrettyField a -> a Source # | |
| Foldable Condition # | |
Defined in Distribution.Types.Condition Methods fold :: Monoid m => Condition m -> m Source # foldMap :: Monoid m => (a -> m) -> Condition a -> m Source # foldMap' :: Monoid m => (a -> m) -> Condition a -> m Source # foldr :: (a -> b -> b) -> b -> Condition a -> b Source # foldr' :: (a -> b -> b) -> b -> Condition a -> b Source # foldl :: (b -> a -> b) -> b -> Condition a -> b Source # foldl' :: (b -> a -> b) -> b -> Condition a -> b Source # foldr1 :: (a -> a -> a) -> Condition a -> a Source # foldl1 :: (a -> a -> a) -> Condition a -> a Source # toList :: Condition a -> [a] Source # null :: Condition a -> Bool Source # length :: Condition a -> Int Source # elem :: Eq a => a -> Condition a -> Bool Source # maximum :: Ord a => Condition a -> a Source # minimum :: Ord a => Condition a -> a Source # | |
| Foldable VersionRangeF # | |
Defined in Distribution.Types.VersionRange.Internal Methods fold :: Monoid m => VersionRangeF m -> m Source # foldMap :: Monoid m => (a -> m) -> VersionRangeF a -> m Source # foldMap' :: Monoid m => (a -> m) -> VersionRangeF a -> m Source # foldr :: (a -> b -> b) -> b -> VersionRangeF a -> b Source # foldr' :: (a -> b -> b) -> b -> VersionRangeF a -> b Source # foldl :: (b -> a -> b) -> b -> VersionRangeF a -> b Source # foldl' :: (b -> a -> b) -> b -> VersionRangeF a -> b Source # foldr1 :: (a -> a -> a) -> VersionRangeF a -> a Source # foldl1 :: (a -> a -> a) -> VersionRangeF a -> a Source # toList :: VersionRangeF a -> [a] Source # null :: VersionRangeF a -> Bool Source # length :: VersionRangeF a -> Int Source # elem :: Eq a => a -> VersionRangeF a -> Bool Source # maximum :: Ord a => VersionRangeF a -> a Source # minimum :: Ord a => VersionRangeF a -> a Source # sum :: Num a => VersionRangeF a -> a Source # product :: Num a => VersionRangeF a -> a Source # | |
| Foldable ZipList | Since: base-4.9.0.0 |
Defined in Control.Applicative Methods fold :: Monoid m => ZipList m -> m Source # foldMap :: Monoid m => (a -> m) -> ZipList a -> m Source # foldMap' :: Monoid m => (a -> m) -> ZipList a -> m Source # foldr :: (a -> b -> b) -> b -> ZipList a -> b Source # foldr' :: (a -> b -> b) -> b -> ZipList a -> b Source # foldl :: (b -> a -> b) -> b -> ZipList a -> b Source # foldl' :: (b -> a -> b) -> b -> ZipList a -> b Source # foldr1 :: (a -> a -> a) -> ZipList a -> a Source # foldl1 :: (a -> a -> a) -> ZipList a -> a Source # toList :: ZipList a -> [a] Source # null :: ZipList a -> Bool Source # length :: ZipList a -> Int Source # elem :: Eq a => a -> ZipList a -> Bool Source # maximum :: Ord a => ZipList a -> a Source # minimum :: Ord a => ZipList a -> a Source # | |
| Foldable Complex | Since: base-4.9.0.0 |
Defined in Data.Complex Methods fold :: Monoid m => Complex m -> m Source # foldMap :: Monoid m => (a -> m) -> Complex a -> m Source # foldMap' :: Monoid m => (a -> m) -> Complex a -> m Source # foldr :: (a -> b -> b) -> b -> Complex a -> b Source # foldr' :: (a -> b -> b) -> b -> Complex a -> b Source # foldl :: (b -> a -> b) -> b -> Complex a -> b Source # foldl' :: (b -> a -> b) -> b -> Complex a -> b Source # foldr1 :: (a -> a -> a) -> Complex a -> a Source # foldl1 :: (a -> a -> a) -> Complex a -> a Source # toList :: Complex a -> [a] Source # null :: Complex a -> Bool Source # length :: Complex a -> Int Source # elem :: Eq a => a -> Complex a -> Bool Source # maximum :: Ord a => Complex a -> a Source # minimum :: Ord a => Complex a -> a Source # | |
| Foldable Identity | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity Methods fold :: Monoid m => Identity m -> m Source # foldMap :: Monoid m => (a -> m) -> Identity a -> m Source # foldMap' :: Monoid m => (a -> m) -> Identity a -> m Source # foldr :: (a -> b -> b) -> b -> Identity a -> b Source # foldr' :: (a -> b -> b) -> b -> Identity a -> b Source # foldl :: (b -> a -> b) -> b -> Identity a -> b Source # foldl' :: (b -> a -> b) -> b -> Identity a -> b Source # foldr1 :: (a -> a -> a) -> Identity a -> a Source # foldl1 :: (a -> a -> a) -> Identity a -> a Source # toList :: Identity a -> [a] Source # null :: Identity a -> Bool Source # length :: Identity a -> Int Source # elem :: Eq a => a -> Identity a -> Bool Source # maximum :: Ord a => Identity a -> a Source # minimum :: Ord a => Identity a -> a Source # | |
| Foldable First | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => First m -> m Source # foldMap :: Monoid m => (a -> m) -> First a -> m Source # foldMap' :: Monoid m => (a -> m) -> First a -> m Source # foldr :: (a -> b -> b) -> b -> First a -> b Source # foldr' :: (a -> b -> b) -> b -> First a -> b Source # foldl :: (b -> a -> b) -> b -> First a -> b Source # foldl' :: (b -> a -> b) -> b -> First a -> b Source # foldr1 :: (a -> a -> a) -> First a -> a Source # foldl1 :: (a -> a -> a) -> First a -> a Source # toList :: First a -> [a] Source # null :: First a -> Bool Source # length :: First a -> Int Source # elem :: Eq a => a -> First a -> Bool Source # maximum :: Ord a => First a -> a Source # minimum :: Ord a => First a -> a Source # | |
| Foldable Last | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Last m -> m Source # foldMap :: Monoid m => (a -> m) -> Last a -> m Source # foldMap' :: Monoid m => (a -> m) -> Last a -> m Source # foldr :: (a -> b -> b) -> b -> Last a -> b Source # foldr' :: (a -> b -> b) -> b -> Last a -> b Source # foldl :: (b -> a -> b) -> b -> Last a -> b Source # foldl' :: (b -> a -> b) -> b -> Last a -> b Source # foldr1 :: (a -> a -> a) -> Last a -> a Source # foldl1 :: (a -> a -> a) -> Last a -> a Source # toList :: Last a -> [a] Source # null :: Last a -> Bool Source # length :: Last a -> Int Source # elem :: Eq a => a -> Last a -> Bool Source # maximum :: Ord a => Last a -> a Source # minimum :: Ord a => Last a -> a Source # | |
| Foldable Down | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Down m -> m Source # foldMap :: Monoid m => (a -> m) -> Down a -> m Source # foldMap' :: Monoid m => (a -> m) -> Down a -> m Source # foldr :: (a -> b -> b) -> b -> Down a -> b Source # foldr' :: (a -> b -> b) -> b -> Down a -> b Source # foldl :: (b -> a -> b) -> b -> Down a -> b Source # foldl' :: (b -> a -> b) -> b -> Down a -> b Source # foldr1 :: (a -> a -> a) -> Down a -> a Source # foldl1 :: (a -> a -> a) -> Down a -> a Source # toList :: Down a -> [a] Source # null :: Down a -> Bool Source # length :: Down a -> Int Source # elem :: Eq a => a -> Down a -> Bool Source # maximum :: Ord a => Down a -> a Source # minimum :: Ord a => Down a -> a Source # | |
| Foldable First | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => First m -> m Source # foldMap :: Monoid m => (a -> m) -> First a -> m Source # foldMap' :: Monoid m => (a -> m) -> First a -> m Source # foldr :: (a -> b -> b) -> b -> First a -> b Source # foldr' :: (a -> b -> b) -> b -> First a -> b Source # foldl :: (b -> a -> b) -> b -> First a -> b Source # foldl' :: (b -> a -> b) -> b -> First a -> b Source # foldr1 :: (a -> a -> a) -> First a -> a Source # foldl1 :: (a -> a -> a) -> First a -> a Source # toList :: First a -> [a] Source # null :: First a -> Bool Source # length :: First a -> Int Source # elem :: Eq a => a -> First a -> Bool Source # maximum :: Ord a => First a -> a Source # minimum :: Ord a => First a -> a Source # | |
| Foldable Last | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Last m -> m Source # foldMap :: Monoid m => (a -> m) -> Last a -> m Source # foldMap' :: Monoid m => (a -> m) -> Last a -> m Source # foldr :: (a -> b -> b) -> b -> Last a -> b Source # foldr' :: (a -> b -> b) -> b -> Last a -> b Source # foldl :: (b -> a -> b) -> b -> Last a -> b Source # foldl' :: (b -> a -> b) -> b -> Last a -> b Source # foldr1 :: (a -> a -> a) -> Last a -> a Source # foldl1 :: (a -> a -> a) -> Last a -> a Source # toList :: Last a -> [a] Source # null :: Last a -> Bool Source # length :: Last a -> Int Source # elem :: Eq a => a -> Last a -> Bool Source # maximum :: Ord a => Last a -> a Source # minimum :: Ord a => Last a -> a Source # | |
| Foldable Max | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Max m -> m Source # foldMap :: Monoid m => (a -> m) -> Max a -> m Source # foldMap' :: Monoid m => (a -> m) -> Max a -> m Source # foldr :: (a -> b -> b) -> b -> Max a -> b Source # foldr' :: (a -> b -> b) -> b -> Max a -> b Source # foldl :: (b -> a -> b) -> b -> Max a -> b Source # foldl' :: (b -> a -> b) -> b -> Max a -> b Source # foldr1 :: (a -> a -> a) -> Max a -> a Source # foldl1 :: (a -> a -> a) -> Max a -> a Source # toList :: Max a -> [a] Source # null :: Max a -> Bool Source # length :: Max a -> Int Source # elem :: Eq a => a -> Max a -> Bool Source # maximum :: Ord a => Max a -> a Source # minimum :: Ord a => Max a -> a Source # | |
| Foldable Min | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Min m -> m Source # foldMap :: Monoid m => (a -> m) -> Min a -> m Source # foldMap' :: Monoid m => (a -> m) -> Min a -> m Source # foldr :: (a -> b -> b) -> b -> Min a -> b Source # foldr' :: (a -> b -> b) -> b -> Min a -> b Source # foldl :: (b -> a -> b) -> b -> Min a -> b Source # foldl' :: (b -> a -> b) -> b -> Min a -> b Source # foldr1 :: (a -> a -> a) -> Min a -> a Source # foldl1 :: (a -> a -> a) -> Min a -> a Source # toList :: Min a -> [a] Source # null :: Min a -> Bool Source # length :: Min a -> Int Source # elem :: Eq a => a -> Min a -> Bool Source # maximum :: Ord a => Min a -> a Source # minimum :: Ord a => Min a -> a Source # | |
| Foldable Option | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Option m -> m Source # foldMap :: Monoid m => (a -> m) -> Option a -> m Source # foldMap' :: Monoid m => (a -> m) -> Option a -> m Source # foldr :: (a -> b -> b) -> b -> Option a -> b Source # foldr' :: (a -> b -> b) -> b -> Option a -> b Source # foldl :: (b -> a -> b) -> b -> Option a -> b Source # foldl' :: (b -> a -> b) -> b -> Option a -> b Source # foldr1 :: (a -> a -> a) -> Option a -> a Source # foldl1 :: (a -> a -> a) -> Option a -> a Source # toList :: Option a -> [a] Source # null :: Option a -> Bool Source # length :: Option a -> Int Source # elem :: Eq a => a -> Option a -> Bool Source # maximum :: Ord a => Option a -> a Source # minimum :: Ord a => Option a -> a Source # | |
| Foldable Dual | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Dual m -> m Source # foldMap :: Monoid m => (a -> m) -> Dual a -> m Source # foldMap' :: Monoid m => (a -> m) -> Dual a -> m Source # foldr :: (a -> b -> b) -> b -> Dual a -> b Source # foldr' :: (a -> b -> b) -> b -> Dual a -> b Source # foldl :: (b -> a -> b) -> b -> Dual a -> b Source # foldl' :: (b -> a -> b) -> b -> Dual a -> b Source # foldr1 :: (a -> a -> a) -> Dual a -> a Source # foldl1 :: (a -> a -> a) -> Dual a -> a Source # toList :: Dual a -> [a] Source # null :: Dual a -> Bool Source # length :: Dual a -> Int Source # elem :: Eq a => a -> Dual a -> Bool Source # maximum :: Ord a => Dual a -> a Source # minimum :: Ord a => Dual a -> a Source # | |
| Foldable Product | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Product m -> m Source # foldMap :: Monoid m => (a -> m) -> Product a -> m Source # foldMap' :: Monoid m => (a -> m) -> Product a -> m Source # foldr :: (a -> b -> b) -> b -> Product a -> b Source # foldr' :: (a -> b -> b) -> b -> Product a -> b Source # foldl :: (b -> a -> b) -> b -> Product a -> b Source # foldl' :: (b -> a -> b) -> b -> Product a -> b Source # foldr1 :: (a -> a -> a) -> Product a -> a Source # foldl1 :: (a -> a -> a) -> Product a -> a Source # toList :: Product a -> [a] Source # null :: Product a -> Bool Source # length :: Product a -> Int Source # elem :: Eq a => a -> Product a -> Bool Source # maximum :: Ord a => Product a -> a Source # minimum :: Ord a => Product a -> a Source # | |
| Foldable Sum | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Sum m -> m Source # foldMap :: Monoid m => (a -> m) -> Sum a -> m Source # foldMap' :: Monoid m => (a -> m) -> Sum a -> m Source # foldr :: (a -> b -> b) -> b -> Sum a -> b Source # foldr' :: (a -> b -> b) -> b -> Sum a -> b Source # foldl :: (b -> a -> b) -> b -> Sum a -> b Source # foldl' :: (b -> a -> b) -> b -> Sum a -> b Source # foldr1 :: (a -> a -> a) -> Sum a -> a Source # foldl1 :: (a -> a -> a) -> Sum a -> a Source # toList :: Sum a -> [a] Source # null :: Sum a -> Bool Source # length :: Sum a -> Int Source # elem :: Eq a => a -> Sum a -> Bool Source # maximum :: Ord a => Sum a -> a Source # minimum :: Ord a => Sum a -> a Source # | |
| Foldable NonEmpty | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => NonEmpty m -> m Source # foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m Source # foldMap' :: Monoid m => (a -> m) -> NonEmpty a -> m Source # foldr :: (a -> b -> b) -> b -> NonEmpty a -> b Source # foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b Source # foldl :: (b -> a -> b) -> b -> NonEmpty a -> b Source # foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b Source # foldr1 :: (a -> a -> a) -> NonEmpty a -> a Source # foldl1 :: (a -> a -> a) -> NonEmpty a -> a Source # toList :: NonEmpty a -> [a] Source # null :: NonEmpty a -> Bool Source # length :: NonEmpty a -> Int Source # elem :: Eq a => a -> NonEmpty a -> Bool Source # maximum :: Ord a => NonEmpty a -> a Source # minimum :: Ord a => NonEmpty a -> a Source # | |
| Foldable Par1 | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Par1 m -> m Source # foldMap :: Monoid m => (a -> m) -> Par1 a -> m Source # foldMap' :: Monoid m => (a -> m) -> Par1 a -> m Source # foldr :: (a -> b -> b) -> b -> Par1 a -> b Source # foldr' :: (a -> b -> b) -> b -> Par1 a -> b Source # foldl :: (b -> a -> b) -> b -> Par1 a -> b Source # foldl' :: (b -> a -> b) -> b -> Par1 a -> b Source # foldr1 :: (a -> a -> a) -> Par1 a -> a Source # foldl1 :: (a -> a -> a) -> Par1 a -> a Source # toList :: Par1 a -> [a] Source # null :: Par1 a -> Bool Source # length :: Par1 a -> Int Source # elem :: Eq a => a -> Par1 a -> Bool Source # maximum :: Ord a => Par1 a -> a Source # minimum :: Ord a => Par1 a -> a Source # | |
| Foldable SCC | Since: containers-0.5.9 |
Defined in Data.Graph Methods fold :: Monoid m => SCC m -> m Source # foldMap :: Monoid m => (a -> m) -> SCC a -> m Source # foldMap' :: Monoid m => (a -> m) -> SCC a -> m Source # foldr :: (a -> b -> b) -> b -> SCC a -> b Source # foldr' :: (a -> b -> b) -> b -> SCC a -> b Source # foldl :: (b -> a -> b) -> b -> SCC a -> b Source # foldl' :: (b -> a -> b) -> b -> SCC a -> b Source # foldr1 :: (a -> a -> a) -> SCC a -> a Source # foldl1 :: (a -> a -> a) -> SCC a -> a Source # toList :: SCC a -> [a] Source # null :: SCC a -> Bool Source # length :: SCC a -> Int Source # elem :: Eq a => a -> SCC a -> Bool Source # maximum :: Ord a => SCC a -> a Source # minimum :: Ord a => SCC a -> a Source # | |
| Foldable IntMap | Folds in order of increasing key. |
Defined in Data.IntMap.Internal Methods fold :: Monoid m => IntMap m -> m Source # foldMap :: Monoid m => (a -> m) -> IntMap a -> m Source # foldMap' :: Monoid m => (a -> m) -> IntMap a -> m Source # foldr :: (a -> b -> b) -> b -> IntMap a -> b Source # foldr' :: (a -> b -> b) -> b -> IntMap a -> b Source # foldl :: (b -> a -> b) -> b -> IntMap a -> b Source # foldl' :: (b -> a -> b) -> b -> IntMap a -> b Source # foldr1 :: (a -> a -> a) -> IntMap a -> a Source # foldl1 :: (a -> a -> a) -> IntMap a -> a Source # toList :: IntMap a -> [a] Source # null :: IntMap a -> Bool Source # length :: IntMap a -> Int Source # elem :: Eq a => a -> IntMap a -> Bool Source # maximum :: Ord a => IntMap a -> a Source # minimum :: Ord a => IntMap a -> a Source # | |
| Foldable Digit | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Digit m -> m Source # foldMap :: Monoid m => (a -> m) -> Digit a -> m Source # foldMap' :: Monoid m => (a -> m) -> Digit a -> m Source # foldr :: (a -> b -> b) -> b -> Digit a -> b Source # foldr' :: (a -> b -> b) -> b -> Digit a -> b Source # foldl :: (b -> a -> b) -> b -> Digit a -> b Source # foldl' :: (b -> a -> b) -> b -> Digit a -> b Source # foldr1 :: (a -> a -> a) -> Digit a -> a Source # foldl1 :: (a -> a -> a) -> Digit a -> a Source # toList :: Digit a -> [a] Source # null :: Digit a -> Bool Source # length :: Digit a -> Int Source # elem :: Eq a => a -> Digit a -> Bool Source # maximum :: Ord a => Digit a -> a Source # minimum :: Ord a => Digit a -> a Source # | |
| Foldable Elem | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Elem m -> m Source # foldMap :: Monoid m => (a -> m) -> Elem a -> m Source # foldMap' :: Monoid m => (a -> m) -> Elem a -> m Source # foldr :: (a -> b -> b) -> b -> Elem a -> b Source # foldr' :: (a -> b -> b) -> b -> Elem a -> b Source # foldl :: (b -> a -> b) -> b -> Elem a -> b Source # foldl' :: (b -> a -> b) -> b -> Elem a -> b Source # foldr1 :: (a -> a -> a) -> Elem a -> a Source # foldl1 :: (a -> a -> a) -> Elem a -> a Source # toList :: Elem a -> [a] Source # null :: Elem a -> Bool Source # length :: Elem a -> Int Source # elem :: Eq a => a -> Elem a -> Bool Source # maximum :: Ord a => Elem a -> a Source # minimum :: Ord a => Elem a -> a Source # | |
| Foldable FingerTree | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => FingerTree m -> m Source # foldMap :: Monoid m => (a -> m) -> FingerTree a -> m Source # foldMap' :: Monoid m => (a -> m) -> FingerTree a -> m Source # foldr :: (a -> b -> b) -> b -> FingerTree a -> b Source # foldr' :: (a -> b -> b) -> b -> FingerTree a -> b Source # foldl :: (b -> a -> b) -> b -> FingerTree a -> b Source # foldl' :: (b -> a -> b) -> b -> FingerTree a -> b Source # foldr1 :: (a -> a -> a) -> FingerTree a -> a Source # foldl1 :: (a -> a -> a) -> FingerTree a -> a Source # toList :: FingerTree a -> [a] Source # null :: FingerTree a -> Bool Source # length :: FingerTree a -> Int Source # elem :: Eq a => a -> FingerTree a -> Bool Source # maximum :: Ord a => FingerTree a -> a Source # minimum :: Ord a => FingerTree a -> a Source # sum :: Num a => FingerTree a -> a Source # product :: Num a => FingerTree a -> a Source # | |
| Foldable Node | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Node m -> m Source # foldMap :: Monoid m => (a -> m) -> Node a -> m Source # foldMap' :: Monoid m => (a -> m) -> Node a -> m Source # foldr :: (a -> b -> b) -> b -> Node a -> b Source # foldr' :: (a -> b -> b) -> b -> Node a -> b Source # foldl :: (b -> a -> b) -> b -> Node a -> b Source # foldl' :: (b -> a -> b) -> b -> Node a -> b Source # foldr1 :: (a -> a -> a) -> Node a -> a Source # foldl1 :: (a -> a -> a) -> Node a -> a Source # toList :: Node a -> [a] Source # null :: Node a -> Bool Source # length :: Node a -> Int Source # elem :: Eq a => a -> Node a -> Bool Source # maximum :: Ord a => Node a -> a Source # minimum :: Ord a => Node a -> a Source # | |
| Foldable Seq | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Seq m -> m Source # foldMap :: Monoid m => (a -> m) -> Seq a -> m Source # foldMap' :: Monoid m => (a -> m) -> Seq a -> m Source # foldr :: (a -> b -> b) -> b -> Seq a -> b Source # foldr' :: (a -> b -> b) -> b -> Seq a -> b Source # foldl :: (b -> a -> b) -> b -> Seq a -> b Source # foldl' :: (b -> a -> b) -> b -> Seq a -> b Source # foldr1 :: (a -> a -> a) -> Seq a -> a Source # foldl1 :: (a -> a -> a) -> Seq a -> a Source # toList :: Seq a -> [a] Source # null :: Seq a -> Bool Source # length :: Seq a -> Int Source # elem :: Eq a => a -> Seq a -> Bool Source # maximum :: Ord a => Seq a -> a Source # minimum :: Ord a => Seq a -> a Source # | |
| Foldable ViewL | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => ViewL m -> m Source # foldMap :: Monoid m => (a -> m) -> ViewL a -> m Source # foldMap' :: Monoid m => (a -> m) -> ViewL a -> m Source # foldr :: (a -> b -> b) -> b -> ViewL a -> b Source # foldr' :: (a -> b -> b) -> b -> ViewL a -> b Source # foldl :: (b -> a -> b) -> b -> ViewL a -> b Source # foldl' :: (b -> a -> b) -> b -> ViewL a -> b Source # foldr1 :: (a -> a -> a) -> ViewL a -> a Source # foldl1 :: (a -> a -> a) -> ViewL a -> a Source # toList :: ViewL a -> [a] Source # null :: ViewL a -> Bool Source # length :: ViewL a -> Int Source # elem :: Eq a => a -> ViewL a -> Bool Source # maximum :: Ord a => ViewL a -> a Source # minimum :: Ord a => ViewL a -> a Source # | |
| Foldable ViewR | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => ViewR m -> m Source # foldMap :: Monoid m => (a -> m) -> ViewR a -> m Source # foldMap' :: Monoid m => (a -> m) -> ViewR a -> m Source # foldr :: (a -> b -> b) -> b -> ViewR a -> b Source # foldr' :: (a -> b -> b) -> b -> ViewR a -> b Source # foldl :: (b -> a -> b) -> b -> ViewR a -> b Source # foldl' :: (b -> a -> b) -> b -> ViewR a -> b Source # foldr1 :: (a -> a -> a) -> ViewR a -> a Source # foldl1 :: (a -> a -> a) -> ViewR a -> a Source # toList :: ViewR a -> [a] Source # null :: ViewR a -> Bool Source # length :: ViewR a -> Int Source # elem :: Eq a => a -> ViewR a -> Bool Source # maximum :: Ord a => ViewR a -> a Source # minimum :: Ord a => ViewR a -> a Source # | |
| Foldable Set | Folds in order of increasing key. |
Defined in Data.Set.Internal Methods fold :: Monoid m => Set m -> m Source # foldMap :: Monoid m => (a -> m) -> Set a -> m Source # foldMap' :: Monoid m => (a -> m) -> Set a -> m Source # foldr :: (a -> b -> b) -> b -> Set a -> b Source # foldr' :: (a -> b -> b) -> b -> Set a -> b Source # foldl :: (b -> a -> b) -> b -> Set a -> b Source # foldl' :: (b -> a -> b) -> b -> Set a -> b Source # foldr1 :: (a -> a -> a) -> Set a -> a Source # foldl1 :: (a -> a -> a) -> Set a -> a Source # toList :: Set a -> [a] Source # null :: Set a -> Bool Source # length :: Set a -> Int Source # elem :: Eq a => a -> Set a -> Bool Source # maximum :: Ord a => Set a -> a Source # minimum :: Ord a => Set a -> a Source # | |
| Foldable Tree | |
Defined in Data.Tree Methods fold :: Monoid m => Tree m -> m Source # foldMap :: Monoid m => (a -> m) -> Tree a -> m Source # foldMap' :: Monoid m => (a -> m) -> Tree a -> m Source # foldr :: (a -> b -> b) -> b -> Tree a -> b Source # foldr' :: (a -> b -> b) -> b -> Tree a -> b Source # foldl :: (b -> a -> b) -> b -> Tree a -> b Source # foldl' :: (b -> a -> b) -> b -> Tree a -> b Source # foldr1 :: (a -> a -> a) -> Tree a -> a Source # foldl1 :: (a -> a -> a) -> Tree a -> a Source # toList :: Tree a -> [a] Source # null :: Tree a -> Bool Source # length :: Tree a -> Int Source # elem :: Eq a => a -> Tree a -> Bool Source # maximum :: Ord a => Tree a -> a Source # minimum :: Ord a => Tree a -> a Source # | |
| Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m Source # foldMap :: Monoid m => (a -> m) -> Maybe a -> m Source # foldMap' :: Monoid m => (a -> m) -> Maybe a -> m Source # foldr :: (a -> b -> b) -> b -> Maybe a -> b Source # foldr' :: (a -> b -> b) -> b -> Maybe a -> b Source # foldl :: (b -> a -> b) -> b -> Maybe a -> b Source # foldl' :: (b -> a -> b) -> b -> Maybe a -> b Source # foldr1 :: (a -> a -> a) -> Maybe a -> a Source # foldl1 :: (a -> a -> a) -> Maybe a -> a Source # toList :: Maybe a -> [a] Source # null :: Maybe a -> Bool Source # length :: Maybe a -> Int Source # elem :: Eq a => a -> Maybe a -> Bool Source # maximum :: Ord a => Maybe a -> a Source # minimum :: Ord a => Maybe a -> a Source # | |
| Foldable Solo | Since: base-4.15 |
Defined in Data.Foldable Methods fold :: Monoid m => Solo m -> m Source # foldMap :: Monoid m => (a -> m) -> Solo a -> m Source # foldMap' :: Monoid m => (a -> m) -> Solo a -> m Source # foldr :: (a -> b -> b) -> b -> Solo a -> b Source # foldr' :: (a -> b -> b) -> b -> Solo a -> b Source # foldl :: (b -> a -> b) -> b -> Solo a -> b Source # foldl' :: (b -> a -> b) -> b -> Solo a -> b Source # foldr1 :: (a -> a -> a) -> Solo a -> a Source # foldl1 :: (a -> a -> a) -> Solo a -> a Source # toList :: Solo a -> [a] Source # null :: Solo a -> Bool Source # length :: Solo a -> Int Source # elem :: Eq a => a -> Solo a -> Bool Source # maximum :: Ord a => Solo a -> a Source # minimum :: Ord a => Solo a -> a Source # | |
| Foldable [] | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => [m] -> m Source # foldMap :: Monoid m => (a -> m) -> [a] -> m Source # foldMap' :: Monoid m => (a -> m) -> [a] -> m Source # foldr :: (a -> b -> b) -> b -> [a] -> b Source # foldr' :: (a -> b -> b) -> b -> [a] -> b Source # foldl :: (b -> a -> b) -> b -> [a] -> b Source # foldl' :: (b -> a -> b) -> b -> [a] -> b Source # foldr1 :: (a -> a -> a) -> [a] -> a Source # foldl1 :: (a -> a -> a) -> [a] -> a Source # elem :: Eq a => a -> [a] -> Bool Source # maximum :: Ord a => [a] -> a Source # minimum :: Ord a => [a] -> a Source # | |
| Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Either a m -> m Source # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m Source # foldMap' :: Monoid m => (a0 -> m) -> Either a a0 -> m Source # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b Source # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b Source # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b Source # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b Source # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 Source # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 Source # toList :: Either a a0 -> [a0] Source # null :: Either a a0 -> Bool Source # length :: Either a a0 -> Int Source # elem :: Eq a0 => a0 -> Either a a0 -> Bool Source # maximum :: Ord a0 => Either a a0 -> a0 Source # minimum :: Ord a0 => Either a a0 -> a0 Source # | |
| Foldable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Proxy m -> m Source # foldMap :: Monoid m => (a -> m) -> Proxy a -> m Source # foldMap' :: Monoid m => (a -> m) -> Proxy a -> m Source # foldr :: (a -> b -> b) -> b -> Proxy a -> b Source # foldr' :: (a -> b -> b) -> b -> Proxy a -> b Source # foldl :: (b -> a -> b) -> b -> Proxy a -> b Source # foldl' :: (b -> a -> b) -> b -> Proxy a -> b Source # foldr1 :: (a -> a -> a) -> Proxy a -> a Source # foldl1 :: (a -> a -> a) -> Proxy a -> a Source # toList :: Proxy a -> [a] Source # null :: Proxy a -> Bool Source # length :: Proxy a -> Int Source # elem :: Eq a => a -> Proxy a -> Bool Source # maximum :: Ord a => Proxy a -> a Source # minimum :: Ord a => Proxy a -> a Source # | |
| Foldable (Arg a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods fold :: Monoid m => Arg a m -> m Source # foldMap :: Monoid m => (a0 -> m) -> Arg a a0 -> m Source # foldMap' :: Monoid m => (a0 -> m) -> Arg a a0 -> m Source # foldr :: (a0 -> b -> b) -> b -> Arg a a0 -> b Source # foldr' :: (a0 -> b -> b) -> b -> Arg a a0 -> b Source # foldl :: (b -> a0 -> b) -> b -> Arg a a0 -> b Source # foldl' :: (b -> a0 -> b) -> b -> Arg a a0 -> b Source # foldr1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 Source # foldl1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 Source # toList :: Arg a a0 -> [a0] Source # null :: Arg a a0 -> Bool Source # length :: Arg a a0 -> Int Source # elem :: Eq a0 => a0 -> Arg a a0 -> Bool Source # maximum :: Ord a0 => Arg a a0 -> a0 Source # minimum :: Ord a0 => Arg a a0 -> a0 Source # | |
| Foldable (Array i) | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Array i m -> m Source # foldMap :: Monoid m => (a -> m) -> Array i a -> m Source # foldMap' :: Monoid m => (a -> m) -> Array i a -> m Source # foldr :: (a -> b -> b) -> b -> Array i a -> b Source # foldr' :: (a -> b -> b) -> b -> Array i a -> b Source # foldl :: (b -> a -> b) -> b -> Array i a -> b Source # foldl' :: (b -> a -> b) -> b -> Array i a -> b Source # foldr1 :: (a -> a -> a) -> Array i a -> a Source # foldl1 :: (a -> a -> a) -> Array i a -> a Source # toList :: Array i a -> [a] Source # null :: Array i a -> Bool Source # length :: Array i a -> Int Source # elem :: Eq a => a -> Array i a -> Bool Source # maximum :: Ord a => Array i a -> a Source # minimum :: Ord a => Array i a -> a Source # | |
| Foldable (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => U1 m -> m Source # foldMap :: Monoid m => (a -> m) -> U1 a -> m Source # foldMap' :: Monoid m => (a -> m) -> U1 a -> m Source # foldr :: (a -> b -> b) -> b -> U1 a -> b Source # foldr' :: (a -> b -> b) -> b -> U1 a -> b Source # foldl :: (b -> a -> b) -> b -> U1 a -> b Source # foldl' :: (b -> a -> b) -> b -> U1 a -> b Source # foldr1 :: (a -> a -> a) -> U1 a -> a Source # foldl1 :: (a -> a -> a) -> U1 a -> a Source # toList :: U1 a -> [a] Source # length :: U1 a -> Int Source # elem :: Eq a => a -> U1 a -> Bool Source # maximum :: Ord a => U1 a -> a Source # minimum :: Ord a => U1 a -> a Source # | |
| Foldable (UAddr :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UAddr m -> m Source # foldMap :: Monoid m => (a -> m) -> UAddr a -> m Source # foldMap' :: Monoid m => (a -> m) -> UAddr a -> m Source # foldr :: (a -> b -> b) -> b -> UAddr a -> b Source # foldr' :: (a -> b -> b) -> b -> UAddr a -> b Source # foldl :: (b -> a -> b) -> b -> UAddr a -> b Source # foldl' :: (b -> a -> b) -> b -> UAddr a -> b Source # foldr1 :: (a -> a -> a) -> UAddr a -> a Source # foldl1 :: (a -> a -> a) -> UAddr a -> a Source # toList :: UAddr a -> [a] Source # null :: UAddr a -> Bool Source # length :: UAddr a -> Int Source # elem :: Eq a => a -> UAddr a -> Bool Source # maximum :: Ord a => UAddr a -> a Source # minimum :: Ord a => UAddr a -> a Source # | |
| Foldable (UChar :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UChar m -> m Source # foldMap :: Monoid m => (a -> m) -> UChar a -> m Source # foldMap' :: Monoid m => (a -> m) -> UChar a -> m Source # foldr :: (a -> b -> b) -> b -> UChar a -> b Source # foldr' :: (a -> b -> b) -> b -> UChar a -> b Source # foldl :: (b -> a -> b) -> b -> UChar a -> b Source # foldl' :: (b -> a -> b) -> b -> UChar a -> b Source # foldr1 :: (a -> a -> a) -> UChar a -> a Source # foldl1 :: (a -> a -> a) -> UChar a -> a Source # toList :: UChar a -> [a] Source # null :: UChar a -> Bool Source # length :: UChar a -> Int Source # elem :: Eq a => a -> UChar a -> Bool Source # maximum :: Ord a => UChar a -> a Source # minimum :: Ord a => UChar a -> a Source # | |
| Foldable (UDouble :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UDouble m -> m Source # foldMap :: Monoid m => (a -> m) -> UDouble a -> m Source # foldMap' :: Monoid m => (a -> m) -> UDouble a -> m Source # foldr :: (a -> b -> b) -> b -> UDouble a -> b Source # foldr' :: (a -> b -> b) -> b -> UDouble a -> b Source # foldl :: (b -> a -> b) -> b -> UDouble a -> b Source # foldl' :: (b -> a -> b) -> b -> UDouble a -> b Source # foldr1 :: (a -> a -> a) -> UDouble a -> a Source # foldl1 :: (a -> a -> a) -> UDouble a -> a Source # toList :: UDouble a -> [a] Source # null :: UDouble a -> Bool Source # length :: UDouble a -> Int Source # elem :: Eq a => a -> UDouble a -> Bool Source # maximum :: Ord a => UDouble a -> a Source # minimum :: Ord a => UDouble a -> a Source # | |
| Foldable (UFloat :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UFloat m -> m Source # foldMap :: Monoid m => (a -> m) -> UFloat a -> m Source # foldMap' :: Monoid m => (a -> m) -> UFloat a -> m Source # foldr :: (a -> b -> b) -> b -> UFloat a -> b Source # foldr' :: (a -> b -> b) -> b -> UFloat a -> b Source # foldl :: (b -> a -> b) -> b -> UFloat a -> b Source # foldl' :: (b -> a -> b) -> b -> UFloat a -> b Source # foldr1 :: (a -> a -> a) -> UFloat a -> a Source # foldl1 :: (a -> a -> a) -> UFloat a -> a Source # toList :: UFloat a -> [a] Source # null :: UFloat a -> Bool Source # length :: UFloat a -> Int Source # elem :: Eq a => a -> UFloat a -> Bool Source # maximum :: Ord a => UFloat a -> a Source # minimum :: Ord a => UFloat a -> a Source # | |
| Foldable (UInt :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UInt m -> m Source # foldMap :: Monoid m => (a -> m) -> UInt a -> m Source # foldMap' :: Monoid m => (a -> m) -> UInt a -> m Source # foldr :: (a -> b -> b) -> b -> UInt a -> b Source # foldr' :: (a -> b -> b) -> b -> UInt a -> b Source # foldl :: (b -> a -> b) -> b -> UInt a -> b Source # foldl' :: (b -> a -> b) -> b -> UInt a -> b Source # foldr1 :: (a -> a -> a) -> UInt a -> a Source # foldl1 :: (a -> a -> a) -> UInt a -> a Source # toList :: UInt a -> [a] Source # null :: UInt a -> Bool Source # length :: UInt a -> Int Source # elem :: Eq a => a -> UInt a -> Bool Source # maximum :: Ord a => UInt a -> a Source # minimum :: Ord a => UInt a -> a Source # | |
| Foldable (UWord :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UWord m -> m Source # foldMap :: Monoid m => (a -> m) -> UWord a -> m Source # foldMap' :: Monoid m => (a -> m) -> UWord a -> m Source # foldr :: (a -> b -> b) -> b -> UWord a -> b Source # foldr' :: (a -> b -> b) -> b -> UWord a -> b Source # foldl :: (b -> a -> b) -> b -> UWord a -> b Source # foldl' :: (b -> a -> b) -> b -> UWord a -> b Source # foldr1 :: (a -> a -> a) -> UWord a -> a Source # foldl1 :: (a -> a -> a) -> UWord a -> a Source # toList :: UWord a -> [a] Source # null :: UWord a -> Bool Source # length :: UWord a -> Int Source # elem :: Eq a => a -> UWord a -> Bool Source # maximum :: Ord a => UWord a -> a Source # minimum :: Ord a => UWord a -> a Source # | |
| Foldable (V1 :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => V1 m -> m Source # foldMap :: Monoid m => (a -> m) -> V1 a -> m Source # foldMap' :: Monoid m => (a -> m) -> V1 a -> m Source # foldr :: (a -> b -> b) -> b -> V1 a -> b Source # foldr' :: (a -> b -> b) -> b -> V1 a -> b Source # foldl :: (b -> a -> b) -> b -> V1 a -> b Source # foldl' :: (b -> a -> b) -> b -> V1 a -> b Source # foldr1 :: (a -> a -> a) -> V1 a -> a Source # foldl1 :: (a -> a -> a) -> V1 a -> a Source # toList :: V1 a -> [a] Source # length :: V1 a -> Int Source # elem :: Eq a => a -> V1 a -> Bool Source # maximum :: Ord a => V1 a -> a Source # minimum :: Ord a => V1 a -> a Source # | |
| Foldable (Map k) | Folds in order of increasing key. |
Defined in Data.Map.Internal Methods fold :: Monoid m => Map k m -> m Source # foldMap :: Monoid m => (a -> m) -> Map k a -> m Source # foldMap' :: Monoid m => (a -> m) -> Map k a -> m Source # foldr :: (a -> b -> b) -> b -> Map k a -> b Source # foldr' :: (a -> b -> b) -> b -> Map k a -> b Source # foldl :: (b -> a -> b) -> b -> Map k a -> b Source # foldl' :: (b -> a -> b) -> b -> Map k a -> b Source # foldr1 :: (a -> a -> a) -> Map k a -> a Source # foldl1 :: (a -> a -> a) -> Map k a -> a Source # toList :: Map k a -> [a] Source # null :: Map k a -> Bool Source # length :: Map k a -> Int Source # elem :: Eq a => a -> Map k a -> Bool Source # maximum :: Ord a => Map k a -> a Source # minimum :: Ord a => Map k a -> a Source # | |
| Foldable f => Foldable (ListT f) | |
Defined in Control.Monad.Trans.List Methods fold :: Monoid m => ListT f m -> m Source # foldMap :: Monoid m => (a -> m) -> ListT f a -> m Source # foldMap' :: Monoid m => (a -> m) -> ListT f a -> m Source # foldr :: (a -> b -> b) -> b -> ListT f a -> b Source # foldr' :: (a -> b -> b) -> b -> ListT f a -> b Source # foldl :: (b -> a -> b) -> b -> ListT f a -> b Source # foldl' :: (b -> a -> b) -> b -> ListT f a -> b Source # foldr1 :: (a -> a -> a) -> ListT f a -> a Source # foldl1 :: (a -> a -> a) -> ListT f a -> a Source # toList :: ListT f a -> [a] Source # null :: ListT f a -> Bool Source # length :: ListT f a -> Int Source # elem :: Eq a => a -> ListT f a -> Bool Source # maximum :: Ord a => ListT f a -> a Source # minimum :: Ord a => ListT f a -> a Source # | |
| Foldable f => Foldable (MaybeT f) | |
Defined in Control.Monad.Trans.Maybe Methods fold :: Monoid m => MaybeT f m -> m Source # foldMap :: Monoid m => (a -> m) -> MaybeT f a -> m Source # foldMap' :: Monoid m => (a -> m) -> MaybeT f a -> m Source # foldr :: (a -> b -> b) -> b -> MaybeT f a -> b Source # foldr' :: (a -> b -> b) -> b -> MaybeT f a -> b Source # foldl :: (b -> a -> b) -> b -> MaybeT f a -> b Source # foldl' :: (b -> a -> b) -> b -> MaybeT f a -> b Source # foldr1 :: (a -> a -> a) -> MaybeT f a -> a Source # foldl1 :: (a -> a -> a) -> MaybeT f a -> a Source # toList :: MaybeT f a -> [a] Source # null :: MaybeT f a -> Bool Source # length :: MaybeT f a -> Int Source # elem :: Eq a => a -> MaybeT f a -> Bool Source # maximum :: Ord a => MaybeT f a -> a Source # minimum :: Ord a => MaybeT f a -> a Source # | |
| Foldable ((,) a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (a, m) -> m Source # foldMap :: Monoid m => (a0 -> m) -> (a, a0) -> m Source # foldMap' :: Monoid m => (a0 -> m) -> (a, a0) -> m Source # foldr :: (a0 -> b -> b) -> b -> (a, a0) -> b Source # foldr' :: (a0 -> b -> b) -> b -> (a, a0) -> b Source # foldl :: (b -> a0 -> b) -> b -> (a, a0) -> b Source # foldl' :: (b -> a0 -> b) -> b -> (a, a0) -> b Source # foldr1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 Source # foldl1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 Source # toList :: (a, a0) -> [a0] Source # null :: (a, a0) -> Bool Source # length :: (a, a0) -> Int Source # elem :: Eq a0 => a0 -> (a, a0) -> Bool Source # maximum :: Ord a0 => (a, a0) -> a0 Source # minimum :: Ord a0 => (a, a0) -> a0 Source # | |
| Foldable (CondBranch v c) # | |
Defined in Distribution.Types.CondTree Methods fold :: Monoid m => CondBranch v c m -> m Source # foldMap :: Monoid m => (a -> m) -> CondBranch v c a -> m Source # foldMap' :: Monoid m => (a -> m) -> CondBranch v c a -> m Source # foldr :: (a -> b -> b) -> b -> CondBranch v c a -> b Source # foldr' :: (a -> b -> b) -> b -> CondBranch v c a -> b Source # foldl :: (b -> a -> b) -> b -> CondBranch v c a -> b Source # foldl' :: (b -> a -> b) -> b -> CondBranch v c a -> b Source # foldr1 :: (a -> a -> a) -> CondBranch v c a -> a Source # foldl1 :: (a -> a -> a) -> CondBranch v c a -> a Source # toList :: CondBranch v c a -> [a] Source # null :: CondBranch v c a -> Bool Source # length :: CondBranch v c a -> Int Source # elem :: Eq a => a -> CondBranch v c a -> Bool Source # maximum :: Ord a => CondBranch v c a -> a Source # minimum :: Ord a => CondBranch v c a -> a Source # sum :: Num a => CondBranch v c a -> a Source # product :: Num a => CondBranch v c a -> a Source # | |
| Foldable (CondTree v c) # | |
Defined in Distribution.Types.CondTree Methods fold :: Monoid m => CondTree v c m -> m Source # foldMap :: Monoid m => (a -> m) -> CondTree v c a -> m Source # foldMap' :: Monoid m => (a -> m) -> CondTree v c a -> m Source # foldr :: (a -> b -> b) -> b -> CondTree v c a -> b Source # foldr' :: (a -> b -> b) -> b -> CondTree v c a -> b Source # foldl :: (b -> a -> b) -> b -> CondTree v c a -> b Source # foldl' :: (b -> a -> b) -> b -> CondTree v c a -> b Source # foldr1 :: (a -> a -> a) -> CondTree v c a -> a Source # foldl1 :: (a -> a -> a) -> CondTree v c a -> a Source # toList :: CondTree v c a -> [a] Source # null :: CondTree v c a -> Bool Source # length :: CondTree v c a -> Int Source # elem :: Eq a => a -> CondTree v c a -> Bool Source # maximum :: Ord a => CondTree v c a -> a Source # minimum :: Ord a => CondTree v c a -> a Source # | |
| Foldable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
Defined in Data.Functor.Const Methods fold :: Monoid m0 => Const m m0 -> m0 Source # foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 Source # foldMap' :: Monoid m0 => (a -> m0) -> Const m a -> m0 Source # foldr :: (a -> b -> b) -> b -> Const m a -> b Source # foldr' :: (a -> b -> b) -> b -> Const m a -> b Source # foldl :: (b -> a -> b) -> b -> Const m a -> b Source # foldl' :: (b -> a -> b) -> b -> Const m a -> b Source # foldr1 :: (a -> a -> a) -> Const m a -> a Source # foldl1 :: (a -> a -> a) -> Const m a -> a Source # toList :: Const m a -> [a] Source # null :: Const m a -> Bool Source # length :: Const m a -> Int Source # elem :: Eq a => a -> Const m a -> Bool Source # maximum :: Ord a => Const m a -> a Source # minimum :: Ord a => Const m a -> a Source # | |
| Foldable f => Foldable (Ap f) | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Ap f m -> m Source # foldMap :: Monoid m => (a -> m) -> Ap f a -> m Source # foldMap' :: Monoid m => (a -> m) -> Ap f a -> m Source # foldr :: (a -> b -> b) -> b -> Ap f a -> b Source # foldr' :: (a -> b -> b) -> b -> Ap f a -> b Source # foldl :: (b -> a -> b) -> b -> Ap f a -> b Source # foldl' :: (b -> a -> b) -> b -> Ap f a -> b Source # foldr1 :: (a -> a -> a) -> Ap f a -> a Source # foldl1 :: (a -> a -> a) -> Ap f a -> a Source # toList :: Ap f a -> [a] Source # null :: Ap f a -> Bool Source # length :: Ap f a -> Int Source # elem :: Eq a => a -> Ap f a -> Bool Source # maximum :: Ord a => Ap f a -> a Source # minimum :: Ord a => Ap f a -> a Source # | |
| Foldable f => Foldable (Alt f) | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Alt f m -> m Source # foldMap :: Monoid m => (a -> m) -> Alt f a -> m Source # foldMap' :: Monoid m => (a -> m) -> Alt f a -> m Source # foldr :: (a -> b -> b) -> b -> Alt f a -> b Source # foldr' :: (a -> b -> b) -> b -> Alt f a -> b Source # foldl :: (b -> a -> b) -> b -> Alt f a -> b Source # foldl' :: (b -> a -> b) -> b -> Alt f a -> b Source # foldr1 :: (a -> a -> a) -> Alt f a -> a Source # foldl1 :: (a -> a -> a) -> Alt f a -> a Source # toList :: Alt f a -> [a] Source # null :: Alt f a -> Bool Source # length :: Alt f a -> Int Source # elem :: Eq a => a -> Alt f a -> Bool Source # maximum :: Ord a => Alt f a -> a Source # minimum :: Ord a => Alt f a -> a Source # | |
| Foldable f => Foldable (Rec1 f) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Rec1 f m -> m Source # foldMap :: Monoid m => (a -> m) -> Rec1 f a -> m Source # foldMap' :: Monoid m => (a -> m) -> Rec1 f a -> m Source # foldr :: (a -> b -> b) -> b -> Rec1 f a -> b Source # foldr' :: (a -> b -> b) -> b -> Rec1 f a -> b Source # foldl :: (b -> a -> b) -> b -> Rec1 f a -> b Source # foldl' :: (b -> a -> b) -> b -> Rec1 f a -> b Source # foldr1 :: (a -> a -> a) -> Rec1 f a -> a Source # foldl1 :: (a -> a -> a) -> Rec1 f a -> a Source # toList :: Rec1 f a -> [a] Source # null :: Rec1 f a -> Bool Source # length :: Rec1 f a -> Int Source # elem :: Eq a => a -> Rec1 f a -> Bool Source # maximum :: Ord a => Rec1 f a -> a Source # minimum :: Ord a => Rec1 f a -> a Source # | |
| Foldable f => Foldable (ErrorT e f) | |
Defined in Control.Monad.Trans.Error Methods fold :: Monoid m => ErrorT e f m -> m Source # foldMap :: Monoid m => (a -> m) -> ErrorT e f a -> m Source # foldMap' :: Monoid m => (a -> m) -> ErrorT e f a -> m Source # foldr :: (a -> b -> b) -> b -> ErrorT e f a -> b Source # foldr' :: (a -> b -> b) -> b -> ErrorT e f a -> b Source # foldl :: (b -> a -> b) -> b -> ErrorT e f a -> b Source # foldl' :: (b -> a -> b) -> b -> ErrorT e f a -> b Source # foldr1 :: (a -> a -> a) -> ErrorT e f a -> a Source # foldl1 :: (a -> a -> a) -> ErrorT e f a -> a Source # toList :: ErrorT e f a -> [a] Source # null :: ErrorT e f a -> Bool Source # length :: ErrorT e f a -> Int Source # elem :: Eq a => a -> ErrorT e f a -> Bool Source # maximum :: Ord a => ErrorT e f a -> a Source # minimum :: Ord a => ErrorT e f a -> a Source # | |
| Foldable f => Foldable (ExceptT e f) | |
Defined in Control.Monad.Trans.Except Methods fold :: Monoid m => ExceptT e f m -> m Source # foldMap :: Monoid m => (a -> m) -> ExceptT e f a -> m Source # foldMap' :: Monoid m => (a -> m) -> ExceptT e f a -> m Source # foldr :: (a -> b -> b) -> b -> ExceptT e f a -> b Source # foldr' :: (a -> b -> b) -> b -> ExceptT e f a -> b Source # foldl :: (b -> a -> b) -> b -> ExceptT e f a -> b Source # foldl' :: (b -> a -> b) -> b -> ExceptT e f a -> b Source # foldr1 :: (a -> a -> a) -> ExceptT e f a -> a Source # foldl1 :: (a -> a -> a) -> ExceptT e f a -> a Source # toList :: ExceptT e f a -> [a] Source # null :: ExceptT e f a -> Bool Source # length :: ExceptT e f a -> Int Source # elem :: Eq a => a -> ExceptT e f a -> Bool Source # maximum :: Ord a => ExceptT e f a -> a Source # minimum :: Ord a => ExceptT e f a -> a Source # | |
| Foldable f => Foldable (IdentityT f) | |
Defined in Control.Monad.Trans.Identity Methods fold :: Monoid m => IdentityT f m -> m Source # foldMap :: Monoid m => (a -> m) -> IdentityT f a -> m Source # foldMap' :: Monoid m => (a -> m) -> IdentityT f a -> m Source # foldr :: (a -> b -> b) -> b -> IdentityT f a -> b Source # foldr' :: (a -> b -> b) -> b -> IdentityT f a -> b Source # foldl :: (b -> a -> b) -> b -> IdentityT f a -> b Source # foldl' :: (b -> a -> b) -> b -> IdentityT f a -> b Source # foldr1 :: (a -> a -> a) -> IdentityT f a -> a Source # foldl1 :: (a -> a -> a) -> IdentityT f a -> a Source # toList :: IdentityT f a -> [a] Source # null :: IdentityT f a -> Bool Source # length :: IdentityT f a -> Int Source # elem :: Eq a => a -> IdentityT f a -> Bool Source # maximum :: Ord a => IdentityT f a -> a Source # minimum :: Ord a => IdentityT f a -> a Source # | |
| Foldable f => Foldable (WriterT w f) | |
Defined in Control.Monad.Trans.Writer.Lazy Methods fold :: Monoid m => WriterT w f m -> m Source # foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m Source # foldMap' :: Monoid m => (a -> m) -> WriterT w f a -> m Source # foldr :: (a -> b -> b) -> b -> WriterT w f a -> b Source # foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b Source # foldl :: (b -> a -> b) -> b -> WriterT w f a -> b Source # foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b Source # foldr1 :: (a -> a -> a) -> WriterT w f a -> a Source # foldl1 :: (a -> a -> a) -> WriterT w f a -> a Source # toList :: WriterT w f a -> [a] Source # null :: WriterT w f a -> Bool Source # length :: WriterT w f a -> Int Source # elem :: Eq a => a -> WriterT w f a -> Bool Source # maximum :: Ord a => WriterT w f a -> a Source # minimum :: Ord a => WriterT w f a -> a Source # | |
| Foldable f => Foldable (WriterT w f) | |
Defined in Control.Monad.Trans.Writer.Strict Methods fold :: Monoid m => WriterT w f m -> m Source # foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m Source # foldMap' :: Monoid m => (a -> m) -> WriterT w f a -> m Source # foldr :: (a -> b -> b) -> b -> WriterT w f a -> b Source # foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b Source # foldl :: (b -> a -> b) -> b -> WriterT w f a -> b Source # foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b Source # foldr1 :: (a -> a -> a) -> WriterT w f a -> a Source # foldl1 :: (a -> a -> a) -> WriterT w f a -> a Source # toList :: WriterT w f a -> [a] Source # null :: WriterT w f a -> Bool Source # length :: WriterT w f a -> Int Source # elem :: Eq a => a -> WriterT w f a -> Bool Source # maximum :: Ord a => WriterT w f a -> a Source # minimum :: Ord a => WriterT w f a -> a Source # | |
| (Foldable f, Foldable g) => Foldable (Product f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product Methods fold :: Monoid m => Product f g m -> m Source # foldMap :: Monoid m => (a -> m) -> Product f g a -> m Source # foldMap' :: Monoid m => (a -> m) -> Product f g a -> m Source # foldr :: (a -> b -> b) -> b -> Product f g a -> b Source # foldr' :: (a -> b -> b) -> b -> Product f g a -> b Source # foldl :: (b -> a -> b) -> b -> Product f g a -> b Source # foldl' :: (b -> a -> b) -> b -> Product f g a -> b Source # foldr1 :: (a -> a -> a) -> Product f g a -> a Source # foldl1 :: (a -> a -> a) -> Product f g a -> a Source # toList :: Product f g a -> [a] Source # null :: Product f g a -> Bool Source # length :: Product f g a -> Int Source # elem :: Eq a => a -> Product f g a -> Bool Source # maximum :: Ord a => Product f g a -> a Source # minimum :: Ord a => Product f g a -> a Source # | |
| (Foldable f, Foldable g) => Foldable (Sum f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Sum Methods fold :: Monoid m => Sum f g m -> m Source # foldMap :: Monoid m => (a -> m) -> Sum f g a -> m Source # foldMap' :: Monoid m => (a -> m) -> Sum f g a -> m Source # foldr :: (a -> b -> b) -> b -> Sum f g a -> b Source # foldr' :: (a -> b -> b) -> b -> Sum f g a -> b Source # foldl :: (b -> a -> b) -> b -> Sum f g a -> b Source # foldl' :: (b -> a -> b) -> b -> Sum f g a -> b Source # foldr1 :: (a -> a -> a) -> Sum f g a -> a Source # foldl1 :: (a -> a -> a) -> Sum f g a -> a Source # toList :: Sum f g a -> [a] Source # null :: Sum f g a -> Bool Source # length :: Sum f g a -> Int Source # elem :: Eq a => a -> Sum f g a -> Bool Source # maximum :: Ord a => Sum f g a -> a Source # minimum :: Ord a => Sum f g a -> a Source # | |
| (Foldable f, Foldable g) => Foldable (f :*: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :*: g) m -> m Source # foldMap :: Monoid m => (a -> m) -> (f :*: g) a -> m Source # foldMap' :: Monoid m => (a -> m) -> (f :*: g) a -> m Source # foldr :: (a -> b -> b) -> b -> (f :*: g) a -> b Source # foldr' :: (a -> b -> b) -> b -> (f :*: g) a -> b Source # foldl :: (b -> a -> b) -> b -> (f :*: g) a -> b Source # foldl' :: (b -> a -> b) -> b -> (f :*: g) a -> b Source # foldr1 :: (a -> a -> a) -> (f :*: g) a -> a Source # foldl1 :: (a -> a -> a) -> (f :*: g) a -> a Source # toList :: (f :*: g) a -> [a] Source # null :: (f :*: g) a -> Bool Source # length :: (f :*: g) a -> Int Source # elem :: Eq a => a -> (f :*: g) a -> Bool Source # maximum :: Ord a => (f :*: g) a -> a Source # minimum :: Ord a => (f :*: g) a -> a Source # | |
| (Foldable f, Foldable g) => Foldable (f :+: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :+: g) m -> m Source # foldMap :: Monoid m => (a -> m) -> (f :+: g) a -> m Source # foldMap' :: Monoid m => (a -> m) -> (f :+: g) a -> m Source # foldr :: (a -> b -> b) -> b -> (f :+: g) a -> b Source # foldr' :: (a -> b -> b) -> b -> (f :+: g) a -> b Source # foldl :: (b -> a -> b) -> b -> (f :+: g) a -> b Source # foldl' :: (b -> a -> b) -> b -> (f :+: g) a -> b Source # foldr1 :: (a -> a -> a) -> (f :+: g) a -> a Source # foldl1 :: (a -> a -> a) -> (f :+: g) a -> a Source # toList :: (f :+: g) a -> [a] Source # null :: (f :+: g) a -> Bool Source # length :: (f :+: g) a -> Int Source # elem :: Eq a => a -> (f :+: g) a -> Bool Source # maximum :: Ord a => (f :+: g) a -> a Source # minimum :: Ord a => (f :+: g) a -> a Source # | |
| Foldable (K1 i c :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => K1 i c m -> m Source # foldMap :: Monoid m => (a -> m) -> K1 i c a -> m Source # foldMap' :: Monoid m => (a -> m) -> K1 i c a -> m Source # foldr :: (a -> b -> b) -> b -> K1 i c a -> b Source # foldr' :: (a -> b -> b) -> b -> K1 i c a -> b Source # foldl :: (b -> a -> b) -> b -> K1 i c a -> b Source # foldl' :: (b -> a -> b) -> b -> K1 i c a -> b Source # foldr1 :: (a -> a -> a) -> K1 i c a -> a Source # foldl1 :: (a -> a -> a) -> K1 i c a -> a Source # toList :: K1 i c a -> [a] Source # null :: K1 i c a -> Bool Source # length :: K1 i c a -> Int Source # elem :: Eq a => a -> K1 i c a -> Bool Source # maximum :: Ord a => K1 i c a -> a Source # minimum :: Ord a => K1 i c a -> a Source # | |
| (Foldable f, Foldable g) => Foldable (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose Methods fold :: Monoid m => Compose f g m -> m Source # foldMap :: Monoid m => (a -> m) -> Compose f g a -> m Source # foldMap' :: Monoid m => (a -> m) -> Compose f g a -> m Source # foldr :: (a -> b -> b) -> b -> Compose f g a -> b Source # foldr' :: (a -> b -> b) -> b -> Compose f g a -> b Source # foldl :: (b -> a -> b) -> b -> Compose f g a -> b Source # foldl' :: (b -> a -> b) -> b -> Compose f g a -> b Source # foldr1 :: (a -> a -> a) -> Compose f g a -> a Source # foldl1 :: (a -> a -> a) -> Compose f g a -> a Source # toList :: Compose f g a -> [a] Source # null :: Compose f g a -> Bool Source # length :: Compose f g a -> Int Source # elem :: Eq a => a -> Compose f g a -> Bool Source # maximum :: Ord a => Compose f g a -> a Source # minimum :: Ord a => Compose f g a -> a Source # | |
| (Foldable f, Foldable g) => Foldable (f :.: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :.: g) m -> m Source # foldMap :: Monoid m => (a -> m) -> (f :.: g) a -> m Source # foldMap' :: Monoid m => (a -> m) -> (f :.: g) a -> m Source # foldr :: (a -> b -> b) -> b -> (f :.: g) a -> b Source # foldr' :: (a -> b -> b) -> b -> (f :.: g) a -> b Source # foldl :: (b -> a -> b) -> b -> (f :.: g) a -> b Source # foldl' :: (b -> a -> b) -> b -> (f :.: g) a -> b Source # foldr1 :: (a -> a -> a) -> (f :.: g) a -> a Source # foldl1 :: (a -> a -> a) -> (f :.: g) a -> a Source # toList :: (f :.: g) a -> [a] Source # null :: (f :.: g) a -> Bool Source # length :: (f :.: g) a -> Int Source # elem :: Eq a => a -> (f :.: g) a -> Bool Source # maximum :: Ord a => (f :.: g) a -> a Source # minimum :: Ord a => (f :.: g) a -> a Source # | |
| Foldable f => Foldable (M1 i c f) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => M1 i c f m -> m Source # foldMap :: Monoid m => (a -> m) -> M1 i c f a -> m Source # foldMap' :: Monoid m => (a -> m) -> M1 i c f a -> m Source # foldr :: (a -> b -> b) -> b -> M1 i c f a -> b Source # foldr' :: (a -> b -> b) -> b -> M1 i c f a -> b Source # foldl :: (b -> a -> b) -> b -> M1 i c f a -> b Source # foldl' :: (b -> a -> b) -> b -> M1 i c f a -> b Source # foldr1 :: (a -> a -> a) -> M1 i c f a -> a Source # foldl1 :: (a -> a -> a) -> M1 i c f a -> a Source # toList :: M1 i c f a -> [a] Source # null :: M1 i c f a -> Bool Source # length :: M1 i c f a -> Int Source # elem :: Eq a => a -> M1 i c f a -> Bool Source # maximum :: Ord a => M1 i c f a -> a Source # minimum :: Ord a => M1 i c f a -> a Source # | |
foldMap :: (Foldable t, Monoid m) => (a -> m) -> t a -> m Source #
Map each element of the structure into a monoid, and combine the
results with (. This fold is right-associative and lazy in the
accumulator. For strict left-associative folds consider <>)foldMap'
instead.
Examples
Basic usage:
>>>foldMap Sum [1, 3, 5]Sum {getSum = 9}
>>>foldMap Product [1, 3, 5]Product {getProduct = 15}
>>>foldMap (replicate 3) [1, 2, 3][1,1,1,2,2,2,3,3,3]
When a Monoid's ( is lazy in its second argument, <>)foldMap can
return a result even from an unbounded structure. For example, lazy
accumulation enables Data.ByteString.Builder to efficiently serialise
large data structures and produce the output incrementally:
>>>import qualified Data.ByteString.Lazy as L>>>import qualified Data.ByteString.Builder as B>>>let bld :: Int -> B.Builder; bld i = B.intDec i <> B.word8 0x20>>>let lbs = B.toLazyByteString $ foldMap bld [0..]>>>L.take 64 lbs"0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24"
foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b Source #
Right-associative fold of a structure, lazy in the accumulator.
In the case of lists, foldr, when applied to a binary operator, a
starting value (typically the right-identity of the operator), and a
list, reduces the list using the binary operator, from right to left:
foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)
Note that since the head of the resulting expression is produced by an
application of the operator to the first element of the list, given an
operator lazy in its right argument, foldr can produce a terminating
expression from an unbounded list.
For a general Foldable structure this should be semantically identical
to,
foldr f z =foldrf z .toList
Examples
Basic usage:
>>>foldr (||) False [False, True, False]True
>>>foldr (||) False []False
>>>foldr (\c acc -> acc ++ [c]) "foo" ['a', 'b', 'c', 'd']"foodcba"
Infinite structures
⚠️ Applying foldr to infinite structures usually doesn't terminate.
It may still terminate under one of the following conditions:
- the folding function is short-circuiting
- the folding function is lazy on its second argument
Short-circuiting
( short-circuits on ||)True values, so the following terminates
because there is a True value finitely far from the left side:
>>>foldr (||) False (True : repeat False)True
But the following doesn't terminate:
>>>foldr (||) False (repeat False ++ [True])* Hangs forever *
Laziness in the second argument
Applying foldr to infinite structures terminates when the operator is
lazy in its second argument (the initial accumulator is never used in
this case, and so could be left undefined, but [] is more clear):
>>>take 5 $ foldr (\i acc -> i : fmap (+3) acc) [] (repeat 1)[1,4,7,10,13]
null :: Foldable t => t a -> Bool Source #
Test whether the structure is empty. The default implementation is Left-associative and lazy in both the initial element and the accumulator. Thus optimised for structures where the first element can be accessed in constant time. Structures where this is not the case should have a non-default implementation.
Examples
Basic usage:
>>>null []True
>>>null [1]False
null is expected to terminate even for infinite structures.
The default implementation terminates provided the structure
is bounded on the left (there is a leftmost element).
>>>null [1..]False
Since: base-4.8.0.0
length :: Foldable t => t a -> Int Source #
Returns the size/length of a finite structure as an Int. The
default implementation just counts elements starting with the leftmost.
Instances for structures that can compute the element count faster
than via element-by-element counting, should provide a specialised
implementation.
Examples
Basic usage:
>>>length []0
>>>length ['a', 'b', 'c']3>>>length [1..]* Hangs forever *
Since: base-4.8.0.0
foldl' :: Foldable t => (b -> a -> b) -> b -> t a -> b Source #
Left-associative fold of a structure but with strict application of the operator.
This ensures that each step of the fold is forced to Weak Head Normal
Form before being applied, avoiding the collection of thunks that would
otherwise occur. This is often what you want to strictly reduce a
finite structure to a single strict result (e.g. sum).
For a general Foldable structure this should be semantically identical
to,
foldl' f z =foldl'f z .toList
Since: base-4.6.0.0
traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f () Source #
Map each element of a structure to an Applicative action, evaluate these
actions from left to right, and ignore the results. For a version that
doesn't ignore the results see traverse.
traverse_ is just like mapM_, but generalised to Applicative actions.
Examples
Basic usage:
>>>traverse_ print ["Hello", "world", "!"]"Hello" "world" "!"
for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f () Source #
for_ is traverse_ with its arguments flipped. For a version
that doesn't ignore the results see for. This
is forM_ generalised to Applicative actions.
for_ is just like forM_, but generalised to Applicative actions.
Examples
Basic usage:
>>>for_ [1..4] print1 2 3 4
any :: Foldable t => (a -> Bool) -> t a -> Bool Source #
Determines whether any element of the structure satisfies the predicate.
Examples
Basic usage:
>>>any (> 3) []False
>>>any (> 3) [1,2]False
>>>any (> 3) [1,2,3,4,5]True
>>>any (> 3) [1..]True
>>>any (> 3) [0, -1..]* Hangs forever *
all :: Foldable t => (a -> Bool) -> t a -> Bool Source #
Determines whether all elements of the structure satisfy the predicate.
Examples
Basic usage:
>>>all (> 3) []True
>>>all (> 3) [1,2]False
>>>all (> 3) [1,2,3,4,5]False
>>>all (> 3) [1..]False
>>>all (> 3) [4..]* Hangs forever *
toList :: Foldable t => t a -> [a] Source #
List of elements of a structure, from left to right. If the entire list is intended to be reduced via a fold, just fold the structure directly bypassing the list.
Examples
Basic usage:
>>>toList Nothing[]
>>>toList (Just 42)[42]
>>>toList (Left "foo")[]
>>>toList (Node (Leaf 5) 17 (Node Empty 12 (Leaf 8)))[5,17,12,8]
For lists, toList is the identity:
>>>toList [1, 2, 3][1,2,3]
Since: base-4.8.0.0
Data.Traversable
class (Functor t, Foldable t) => Traversable (t :: Type -> Type) Source #
Functors representing data structures that can be transformed to
structures of the same shape by performing an Applicative (or,
therefore, Monad) action on each element from left to right.
A more detailed description of what same shape means, the various methods, how traversals are constructed, and example advanced use-cases can be found in the Overview section of Data.Traversable.
For the class laws see the Laws section of Data.Traversable.
Instances
traverse :: (Traversable t, Applicative f) => (a -> f b) -> t a -> f (t b) Source #
Map each element of a structure to an action, evaluate these actions
from left to right, and collect the results. For a version that ignores
the results see traverse_.
Examples
Basic usage:
In the first two examples we show each evaluated action mapping to the output structure.
>>>traverse Just [1,2,3,4]Just [1,2,3,4]
>>>traverse id [Right 1, Right 2, Right 3, Right 4]Right [1,2,3,4]
In the next examples, we show that Nothing and Left values short
circuit the created structure.
>>>traverse (const Nothing) [1,2,3,4]Nothing
>>>traverse (\x -> if odd x then Just x else Nothing) [1,2,3,4]Nothing
>>>traverse id [Right 1, Right 2, Right 3, Right 4, Left 0]Left 0
sequenceA :: (Traversable t, Applicative f) => t (f a) -> f (t a) Source #
Evaluate each action in the structure from left to right, and
collect the results. For a version that ignores the results
see sequenceA_.
Examples
Basic usage:
For the first two examples we show sequenceA fully evaluating a a structure and collecting the results.
>>>sequenceA [Just 1, Just 2, Just 3]Just [1,2,3]
>>>sequenceA [Right 1, Right 2, Right 3]Right [1,2,3]
The next two example show Nothing and Just will short circuit
the resulting structure if present in the input. For more context,
check the Traversable instances for Either and Maybe.
>>>sequenceA [Just 1, Just 2, Just 3, Nothing]Nothing
>>>sequenceA [Right 1, Right 2, Right 3, Left 4]Left 4
for :: (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b) Source #
Data.Function
on :: (b -> b -> c) -> (a -> b) -> a -> a -> c infixl 0 Source #
Data.Ord
comparing :: Ord a => (b -> a) -> b -> b -> Ordering Source #
comparing p x y = compare (p x) (p y)
Useful combinator for use in conjunction with the xxxBy family
of functions from Data.List, for example:
... sortBy (comparing fst) ...
Control.Arrow
first :: Arrow a => a b c -> a (b, d) (c, d) Source #
Send the first component of the input through the argument arrow, and copy the rest unchanged to the output.
Control.Monad
liftM2 :: Monad m => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r Source #
Promote a function to a monad, scanning the monadic arguments from left to right. For example,
liftM2 (+) [0,1] [0,2] = [0,2,1,3] liftM2 (+) (Just 1) Nothing = Nothing
when :: Applicative f => Bool -> f () -> f () Source #
Conditional execution of Applicative expressions. For example,
when debug (putStrLn "Debugging")
will output the string Debugging if the Boolean value debug
is True, and otherwise do nothing.
void :: Functor f => f a -> f () Source #
discards or ignores the result of evaluation, such
as the return value of an void valueIO action.
Examples
Replace the contents of a with unit:Maybe Int
>>>void NothingNothing>>>void (Just 3)Just ()
Replace the contents of an
with unit, resulting in an Either Int Int:Either Int ()
>>>void (Left 8675309)Left 8675309>>>void (Right 8675309)Right ()
Replace every element of a list with unit:
>>>void [1,2,3][(),(),()]
Replace the second element of a pair with unit:
>>>void (1,2)(1,())
Discard the result of an IO action:
>>>mapM print [1,2]1 2 [(),()]>>>void $ mapM print [1,2]1 2
foldM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b Source #
The foldM function is analogous to foldl, except that its result is
encapsulated in a monad. Note that foldM works from left-to-right over
the list arguments. This could be an issue where ( and the `folded
function' are not commutative.>>)
foldM f a1 [x1, x2, ..., xm] == do a2 <- f a1 x1 a3 <- f a2 x2 ... f am xm
If right-to-left evaluation is required, the input list should be reversed.
filterM :: Applicative m => (a -> m Bool) -> [a] -> m [a] Source #
This generalizes the list-based filter function.
join :: Monad m => m (m a) -> m a Source #
The join function is the conventional monad join operator. It
is used to remove one level of monadic structure, projecting its
bound argument into the outer level.
'' can be understood as the join bssdo expression
do bs <- bss bs
Examples
A common use of join is to run an IO computation returned from
an STM transaction, since STM transactions
can't perform IO directly. Recall that
atomically :: STM a -> IO a
is used to run STM transactions atomically. So, by
specializing the types of atomically and join to
atomically:: STM (IO b) -> IO (IO b)join:: IO (IO b) -> IO b
we can compose them as
join.atomically:: STM (IO b) -> IO b
guard :: Alternative f => Bool -> f () Source #
Conditional failure of Alternative computations. Defined by
guard True =pure() guard False =empty
Examples
Common uses of guard include conditionally signaling an error in
an error monad and conditionally rejecting the current choice in an
Alternative-based parser.
As an example of signaling an error in the error monad Maybe,
consider a safe division function safeDiv x y that returns
Nothing when the denominator y is zero and otherwise. For example:Just (x `div`
y)
>>> safeDiv 4 0 Nothing >>> safeDiv 4 2 Just 2
A definition of safeDiv using guards, but not guard:
safeDiv :: Int -> Int -> Maybe Int
safeDiv x y | y /= 0 = Just (x `div` y)
| otherwise = Nothing
A definition of safeDiv using guard and Monad do-notation:
safeDiv :: Int -> Int -> Maybe Int safeDiv x y = do guard (y /= 0) return (x `div` y)
Control.Exception
Arguments
| :: Exception e | |
| => IO a | The computation to run |
| -> (e -> IO a) | Handler to invoke if an exception is raised |
| -> IO a |
This is the simplest of the exception-catching functions. It takes a single argument, runs it, and if an exception is raised the "handler" is executed, with the value of the exception passed as an argument. Otherwise, the result is returned as normal. For example:
catch (readFile f)
(\e -> do let err = show (e :: IOException)
hPutStr stderr ("Warning: Couldn't open " ++ f ++ ": " ++ err)
return "")Note that we have to give a type signature to e, or the program
will not typecheck as the type is ambiguous. While it is possible
to catch exceptions of any type, see the section "Catching all
exceptions" (in Control.Exception) for an explanation of the problems with doing so.
For catching exceptions in pure (non-IO) expressions, see the
function evaluate.
Note that due to Haskell's unspecified evaluation order, an
expression may throw one of several possible exceptions: consider
the expression (error "urk") + (1 `div` 0). Does
the expression throw
ErrorCall "urk", or DivideByZero?
The answer is "it might throw either"; the choice is
non-deterministic. If you are catching any type of exception then you
might catch either. If you are calling catch with type
IO Int -> (ArithException -> IO Int) -> IO Int then the handler may
get run with DivideByZero as an argument, or an ErrorCall "urk"
exception may be propagated further up. If you call it again, you
might get a the opposite behaviour. This is ok, because catch is an
IO computation.
throwIO :: Exception e => e -> IO a Source #
A variant of throw that can only be used within the IO monad.
Although throwIO has a type that is an instance of the type of throw, the
two functions are subtly different:
throw e `seq` x ===> throw e throwIO e `seq` x ===> x
The first example will cause the exception e to be raised,
whereas the second one won't. In fact, throwIO will only cause
an exception to be raised when it is used within the IO monad.
The throwIO variant should be used in preference to throw to
raise an exception within the IO monad because it guarantees
ordering with respect to other IO operations, whereas throw
does not.
evaluate :: a -> IO a Source #
Evaluate the argument to weak head normal form.
evaluate is typically used to uncover any exceptions that a lazy value
may contain, and possibly handle them.
evaluate only evaluates to weak head normal form. If deeper
evaluation is needed, the force function from Control.DeepSeq
may be handy:
evaluate $ force x
There is a subtle difference between and evaluate x,
analogous to the difference between return $! xthrowIO and throw. If the lazy
value x throws an exception, will fail to return an
return $! xIO action and will throw an exception instead. , on the
other hand, always produces an evaluate xIO action; that action will throw an
exception upon execution iff x throws an exception upon evaluation.
The practical implication of this difference is that due to the imprecise exceptions semantics,
(return $! error "foo") >> error "bar"
may throw either "foo" or "bar", depending on the optimizations
performed by the compiler. On the other hand,
evaluate (error "foo") >> error "bar"
is guaranteed to throw "foo".
The rule of thumb is to use evaluate to force or handle exceptions in
lazy values. If, on the other hand, you are forcing a lazy value for
efficiency reasons only and do not care about exceptions, you may
use .return $! x
class (Typeable e, Show e) => Exception e where Source #
Any type that you wish to throw or catch as an exception must be an
instance of the Exception class. The simplest case is a new exception
type directly below the root:
data MyException = ThisException | ThatException
deriving Show
instance Exception MyExceptionThe default method definitions in the Exception class do what we need
in this case. You can now throw and catch ThisException and
ThatException as exceptions:
*Main> throw ThisException `catch` \e -> putStrLn ("Caught " ++ show (e :: MyException))
Caught ThisException
In more complicated examples, you may wish to define a whole hierarchy of exceptions:
---------------------------------------------------------------------
-- Make the root exception type for all the exceptions in a compiler
data SomeCompilerException = forall e . Exception e => SomeCompilerException e
instance Show SomeCompilerException where
show (SomeCompilerException e) = show e
instance Exception SomeCompilerException
compilerExceptionToException :: Exception e => e -> SomeException
compilerExceptionToException = toException . SomeCompilerException
compilerExceptionFromException :: Exception e => SomeException -> Maybe e
compilerExceptionFromException x = do
SomeCompilerException a <- fromException x
cast a
---------------------------------------------------------------------
-- Make a subhierarchy for exceptions in the frontend of the compiler
data SomeFrontendException = forall e . Exception e => SomeFrontendException e
instance Show SomeFrontendException where
show (SomeFrontendException e) = show e
instance Exception SomeFrontendException where
toException = compilerExceptionToException
fromException = compilerExceptionFromException
frontendExceptionToException :: Exception e => e -> SomeException
frontendExceptionToException = toException . SomeFrontendException
frontendExceptionFromException :: Exception e => SomeException -> Maybe e
frontendExceptionFromException x = do
SomeFrontendException a <- fromException x
cast a
---------------------------------------------------------------------
-- Make an exception type for a particular frontend compiler exception
data MismatchedParentheses = MismatchedParentheses
deriving Show
instance Exception MismatchedParentheses where
toException = frontendExceptionToException
fromException = frontendExceptionFromExceptionWe can now catch a MismatchedParentheses exception as
MismatchedParentheses, SomeFrontendException or
SomeCompilerException, but not other types, e.g. IOException:
*Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: MismatchedParentheses))
Caught MismatchedParentheses
*Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: SomeFrontendException))
Caught MismatchedParentheses
*Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: SomeCompilerException))
Caught MismatchedParentheses
*Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: IOException))
*** Exception: MismatchedParentheses
Minimal complete definition
Nothing
Methods
toException :: e -> SomeException Source #
fromException :: SomeException -> Maybe e Source #
displayException :: e -> String Source #
Render this exception value in a human-friendly manner.
Default implementation: .show
Since: base-4.8.0.0
Instances
data IOException Source #
Exceptions that occur in the IO monad.
An IOException records a more specific error type, a descriptive
string and maybe the handle that was used when the error was
flagged.
Instances
| Exception IOException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods toException :: IOException -> SomeException Source # fromException :: SomeException -> Maybe IOException Source # displayException :: IOException -> String Source # | |
| Show IOException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception | |
| Eq IOException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception | |
| Error IOException | |
Defined in Control.Monad.Trans.Error | |
data SomeException Source #
The SomeException type is the root of the exception type hierarchy.
When an exception of type e is thrown, behind the scenes it is
encapsulated in a SomeException.
Constructors
| Exception e => SomeException e |
Instances
| Exception SomeException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods toException :: SomeException -> SomeException Source # fromException :: SomeException -> Maybe SomeException Source # | |
| Show SomeException | Since: base-3.0 |
Defined in GHC.Exception.Type | |
Control.DeepSeq
deepseq :: NFData a => a -> b -> b Source #
deepseq: fully evaluates the first argument, before returning the
second.
The name deepseq is used to illustrate the relationship to seq:
where seq is shallow in the sense that it only evaluates the top
level of its argument, deepseq traverses the entire data structure
evaluating it completely.
deepseq can be useful for forcing pending exceptions,
eradicating space leaks, or forcing lazy I/O to happen. It is
also useful in conjunction with parallel Strategies (see the
parallel package).
There is no guarantee about the ordering of evaluation. The
implementation may evaluate the components of the structure in
any order or in parallel. To impose an actual order on
evaluation, use pseq from Control.Parallel in the
parallel package.
Since: deepseq-1.1.0.0
force :: NFData a => a -> a Source #
a variant of deepseq that is useful in some circumstances:
force x = x `deepseq` x
force x fully evaluates x, and then returns it. Note that
force x only performs evaluation when the value of force x
itself is demanded, so essentially it turns shallow evaluation into
deep evaluation.
force can be conveniently used in combination with ViewPatterns:
{-# LANGUAGE BangPatterns, ViewPatterns #-}
import Control.DeepSeq
someFun :: ComplexData -> SomeResult
someFun (force -> !arg) = {- 'arg' will be fully evaluated -}Another useful application is to combine force with
evaluate in order to force deep evaluation
relative to other IO operations:
import Control.Exception (evaluate)
import Control.DeepSeq
main = do
result <- evaluate $ force $ pureComputation
{- 'result' will be fully evaluated at this point -}
return ()Finally, here's an exception safe variant of the readFile' example:
readFile' :: FilePath -> IO String
readFile' fn = bracket (openFile fn ReadMode) hClose $ \h ->
evaluate . force =<< hGetContents hSince: deepseq-1.2.0.0
Data.Char
isSpace :: Char -> Bool Source #
Returns True for any Unicode space character, and the control
characters \t, \n, \r, \f, \v.
isUpper :: Char -> Bool Source #
Selects upper-case or title-case alphabetic Unicode characters (letters). Title case is used by a small number of letter ligatures like the single-character form of Lj.
isAlpha :: Char -> Bool Source #
Selects alphabetic Unicode characters (lower-case, upper-case and
title-case letters, plus letters of caseless scripts and modifiers letters).
This function is equivalent to isLetter.
isAlphaNum :: Char -> Bool Source #
Selects alphabetic or numeric Unicode characters.
Note that numeric digits outside the ASCII range, as well as numeric
characters which aren't digits, are selected by this function but not by
isDigit. Such characters may be part of identifiers but are not used by
the printer and reader to represent numbers.
toLower :: Char -> Char Source #
Convert a letter to the corresponding lower-case letter, if any. Any other character is returned unchanged.
toUpper :: Char -> Char Source #
Convert a letter to the corresponding upper-case letter, if any. Any other character is returned unchanged.
Data.Void
Since Void values logically don't exist, this witnesses the
logical reasoning tool of "ex falso quodlibet".
>>>let x :: Either Void Int; x = Right 5>>>:{case x of Right r -> r Left l -> absurd l :} 5
Since: base-4.8.0.0
Data.Word & Data.Int
Instances
| Structured Word # | |
Defined in Distribution.Utils.Structured | |
| Bits Word | Since: base-2.1 |
Defined in Data.Bits Methods (.&.) :: Word -> Word -> Word Source # (.|.) :: Word -> Word -> Word Source # xor :: Word -> Word -> Word Source # complement :: Word -> Word Source # shift :: Word -> Int -> Word Source # rotate :: Word -> Int -> Word Source # setBit :: Word -> Int -> Word Source # clearBit :: Word -> Int -> Word Source # complementBit :: Word -> Int -> Word Source # testBit :: Word -> Int -> Bool Source # bitSizeMaybe :: Word -> Maybe Int Source # bitSize :: Word -> Int Source # isSigned :: Word -> Bool Source # shiftL :: Word -> Int -> Word Source # unsafeShiftL :: Word -> Int -> Word Source # shiftR :: Word -> Int -> Word Source # unsafeShiftR :: Word -> Int -> Word Source # rotateL :: Word -> Int -> Word Source # | |
| FiniteBits Word | Since: base-4.6.0.0 |
| Data Word | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word -> c Word Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word Source # toConstr :: Word -> Constr Source # dataTypeOf :: Word -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word) Source # gmapT :: (forall b. Data b => b -> b) -> Word -> Word Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Word -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word -> m Word Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word Source # | |
| Bounded Word | Since: base-2.1 |
| Enum Word | Since: base-2.1 |
| Ix Word | Since: base-4.6.0.0 |
| Num Word | Since: base-2.1 |
| Read Word | Since: base-4.5.0.0 |
| Integral Word | Since: base-2.1 |
Defined in GHC.Real | |
| Real Word | Since: base-2.1 |
| Show Word | Since: base-2.1 |
| Binary Word | |
| NFData Word | |
Defined in Control.DeepSeq | |
| Eq Word | |
| Ord Word | |
| IArray UArray Word | |
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Word -> (i, i) Source # numElements :: Ix i => UArray i Word -> Int unsafeArray :: Ix i => (i, i) -> [(Int, Word)] -> UArray i Word unsafeAt :: Ix i => UArray i Word -> Int -> Word unsafeReplace :: Ix i => UArray i Word -> [(Int, Word)] -> UArray i Word unsafeAccum :: Ix i => (Word -> e' -> Word) -> UArray i Word -> [(Int, e')] -> UArray i Word unsafeAccumArray :: Ix i => (Word -> e' -> Word) -> Word -> (i, i) -> [(Int, e')] -> UArray i Word | |
| Lift Word | |
| Generic1 (URec Word :: k -> Type) | |
| Foldable (UWord :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UWord m -> m Source # foldMap :: Monoid m => (a -> m) -> UWord a -> m Source # foldMap' :: Monoid m => (a -> m) -> UWord a -> m Source # foldr :: (a -> b -> b) -> b -> UWord a -> b Source # foldr' :: (a -> b -> b) -> b -> UWord a -> b Source # foldl :: (b -> a -> b) -> b -> UWord a -> b Source # foldl' :: (b -> a -> b) -> b -> UWord a -> b Source # foldr1 :: (a -> a -> a) -> UWord a -> a Source # foldl1 :: (a -> a -> a) -> UWord a -> a Source # toList :: UWord a -> [a] Source # null :: UWord a -> Bool Source # length :: UWord a -> Int Source # elem :: Eq a => a -> UWord a -> Bool Source # maximum :: Ord a => UWord a -> a Source # minimum :: Ord a => UWord a -> a Source # | |
| Traversable (UWord :: Type -> Type) | Since: base-4.9.0.0 |
| MArray (STUArray s) Word (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Word -> ST s (i, i) Source # getNumElements :: Ix i => STUArray s i Word -> ST s Int newArray :: Ix i => (i, i) -> Word -> ST s (STUArray s i Word) Source # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word) Source # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word) unsafeRead :: Ix i => STUArray s i Word -> Int -> ST s Word unsafeWrite :: Ix i => STUArray s i Word -> Int -> Word -> ST s () | |
| Functor (URec Word :: Type -> Type) | Since: base-4.9.0.0 |
| Generic (URec Word p) | |
| Show (URec Word p) | Since: base-4.9.0.0 |
| Eq (URec Word p) | Since: base-4.9.0.0 |
| Ord (URec Word p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| data URec Word (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
| type Rep1 (URec Word :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| type Rep (URec Word p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
8-bit unsigned integer type
Instances
16-bit unsigned integer type
Instances
32-bit unsigned integer type
Instances
64-bit unsigned integer type
Instances
8-bit signed integer type
Instances
| Structured Int8 # | |
Defined in Distribution.Utils.Structured | |
| Bits Int8 | Since: base-2.1 |
Defined in GHC.Int Methods (.&.) :: Int8 -> Int8 -> Int8 Source # (.|.) :: Int8 -> Int8 -> Int8 Source # xor :: Int8 -> Int8 -> Int8 Source # complement :: Int8 -> Int8 Source # shift :: Int8 -> Int -> Int8 Source # rotate :: Int8 -> Int -> Int8 Source # setBit :: Int8 -> Int -> Int8 Source # clearBit :: Int8 -> Int -> Int8 Source # complementBit :: Int8 -> Int -> Int8 Source # testBit :: Int8 -> Int -> Bool Source # bitSizeMaybe :: Int8 -> Maybe Int Source # bitSize :: Int8 -> Int Source # isSigned :: Int8 -> Bool Source # shiftL :: Int8 -> Int -> Int8 Source # unsafeShiftL :: Int8 -> Int -> Int8 Source # shiftR :: Int8 -> Int -> Int8 Source # unsafeShiftR :: Int8 -> Int -> Int8 Source # rotateL :: Int8 -> Int -> Int8 Source # | |
| FiniteBits Int8 | Since: base-4.6.0.0 |
| Data Int8 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int8 -> c Int8 Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int8 Source # toConstr :: Int8 -> Constr Source # dataTypeOf :: Int8 -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int8) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int8) Source # gmapT :: (forall b. Data b => b -> b) -> Int8 -> Int8 Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int8 -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int8 -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Int8 -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int8 -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 Source # | |
| Bounded Int8 | Since: base-2.1 |
| Enum Int8 | Since: base-2.1 |
| Ix Int8 | Since: base-2.1 |
| Num Int8 | Since: base-2.1 |
| Read Int8 | Since: base-2.1 |
| Integral Int8 | Since: base-2.1 |
Defined in GHC.Int | |
| Real Int8 | Since: base-2.1 |
| Show Int8 | Since: base-2.1 |
| Binary Int8 | |
| NFData Int8 | |
Defined in Control.DeepSeq | |
| Eq Int8 | Since: base-2.1 |
| Ord Int8 | Since: base-2.1 |
| IArray UArray Int8 | |
Defined in Data.Array.Base Methods bounds :: Ix i => UArray i Int8 -> (i, i) Source # numElements :: Ix i => UArray i Int8 -> Int unsafeArray :: Ix i => (i, i) -> [(Int, Int8)] -> UArray i Int8 unsafeAt :: Ix i => UArray i Int8 -> Int -> Int8 unsafeReplace :: Ix i => UArray i Int8 -> [(Int, Int8)] -> UArray i Int8 unsafeAccum :: Ix i => (Int8 -> e' -> Int8) -> UArray i Int8 -> [(Int, e')] -> UArray i Int8 unsafeAccumArray :: Ix i => (Int8 -> e' -> Int8) -> Int8 -> (i, i) -> [(Int, e')] -> UArray i Int8 | |
| Lift Int8 | |
| MArray (STUArray s) Int8 (ST s) | |
Defined in Data.Array.Base Methods getBounds :: Ix i => STUArray s i Int8 -> ST s (i, i) Source # getNumElements :: Ix i => STUArray s i Int8 -> ST s Int newArray :: Ix i => (i, i) -> Int8 -> ST s (STUArray s i Int8) Source # newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int8) Source # unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int8) unsafeRead :: Ix i => STUArray s i Int8 -> Int -> ST s Int8 unsafeWrite :: Ix i => STUArray s i Int8 -> Int -> Int8 -> ST s () | |
16-bit signed integer type
Instances
32-bit signed integer type
Instances
64-bit signed integer type
Instances
Text.PrettyPrint
System.Exit
Defines the exit codes that a program can return.
Constructors
| ExitSuccess | indicates successful termination; |
| ExitFailure Int | indicates program failure with an exit code. The exact interpretation of the code is operating-system dependent. In particular, some values may be prohibited (e.g. 0 on a POSIX-compliant system). |
Instances
| Exception ExitCode | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods toException :: ExitCode -> SomeException Source # fromException :: SomeException -> Maybe ExitCode Source # displayException :: ExitCode -> String Source # | |
| Generic ExitCode | |
| Read ExitCode | |
| Show ExitCode | |
| NFData ExitCode | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
| Eq ExitCode | |
| Ord ExitCode | |
Defined in GHC.IO.Exception | |
| type Rep ExitCode | |
Defined in GHC.IO.Exception type Rep ExitCode = D1 ('MetaData "ExitCode" "GHC.IO.Exception" "base" 'False) (C1 ('MetaCons "ExitSuccess" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ExitFailure" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int))) | |
exitWith :: ExitCode -> IO a Source #
Computation exitWith code throws ExitCode code.
Normally this terminates the program, returning code to the
program's caller.
On program termination, the standard Handles stdout and
stderr are flushed automatically; any other buffered Handles
need to be flushed manually, otherwise the buffered data will be
discarded.
A program that fails in any other way is treated as if it had
called exitFailure.
A program that terminates successfully without calling exitWith
explicitly is treated as if it had called exitWith ExitSuccess.
As an ExitCode is not an IOError, exitWith bypasses
the error handling in the IO monad and cannot be intercepted by
catch from the Prelude. However it is a SomeException, and can
be caught using the functions of Control.Exception. This means
that cleanup computations added with bracket
(from Control.Exception) are also executed properly on exitWith.
Note: in GHC, exitWith should be called from the main program
thread in order to exit the process. When called from another
thread, exitWith will throw an ExitException as normal, but the
exception will not cause the process itself to exit.
exitSuccess :: IO a Source #
The computation exitSuccess is equivalent to
exitWith ExitSuccess, It terminates the program
successfully.
exitFailure :: IO a Source #
The computation exitFailure is equivalent to
exitWith (ExitFailure exitfail),
where exitfail is implementation-dependent.
Text.Read
readMaybe :: Read a => String -> Maybe a Source #
Parse a string using the Read instance.
Succeeds if there is exactly one valid result.
>>>readMaybe "123" :: Maybe IntJust 123
>>>readMaybe "hello" :: Maybe IntNothing
Since: base-4.6.0.0
Debug.Trace (as deprecated functions)
traceShowId :: Show a => a -> a #
Deprecated: Don't leave me in the code