Next: Parabolic Cylinder Functions, Previous: Struve Functions, Up: Special Functions [Contents][Index]
The Hypergeometric Functions are defined in Abramowitz and Stegun, Handbook of Mathematical Functions, A&S Chapters 13 and A&S 15.
Maxima has very limited knowledge of these functions. They
can be returned from function hgfred.
Whittaker M function (A&S eqn 13.1.32):
$$ M_{\kappa,\mu}(z) = e^{-{1\over 2}z} z^{{1\over 2} + \mu} M\left({1\over 2} + \mu - \kappa, 1 + 2\mu, z\right) $$where M(a,b,z) is Kummer’s solution of the confluent hypergeometric equation.
This can also be expressed by the series (DLMF 13.14.E6): $$ M_{\kappa,\mu}(z) = e^{-{1\over 2} z} z^{{1\over 2} + \mu} \sum_{s=0}^{\infty} {\left({1\over 2} + \mu - \kappa\right)_s \over (1 + 2\mu)_s s!} z^s $$
Whittaker W function (A&S eqn 13.1.33): $$ W_{\kappa,\mu}(z) = e^{-{1\over 2}z} z^{{1\over 2} + \mu} U\left({1\over 2} + \mu - \kappa, 1+2\mu,z\right) $$
where U(a,b,z) is Kummer’s second solution of the confluent hypergeometric equation.
The \(_{p}F_{q}(a_1,a_2,...,a_p;b_1,b_2,...,b_q;z)\) hypergeometric function, where a a list of length p and b a list of length q.
The hypergeometric function. Unlike Maxima’s %f hypergeometric
function, the function hypergeometric is a simplifying
function; also, hypergeometric supports complex double and
big floating point evaluation. For the Gauss hypergeometric function,
that is p = 2 and q = 1, floating point evaluation
outside the unit circle is supported, but in general, it is not
supported.
When the option variable expand_hypergeometric is true (default
is false) and one of the arguments a1 through ap is a
negative integer (a polynomial case), hypergeometric returns an
expanded polynomial.
Examples:
(%i1) hypergeometric([],[],x); (%o1) %e^x
Polynomial cases automatically expand when expand_hypergeometric is true:
(%i2) hypergeometric([-3],[7],x); (%o2) hypergeometric([-3],[7],x) (%i3) hypergeometric([-3],[7],x), expand_hypergeometric : true; (%o3) -x^3/504+3*x^2/56-3*x/7+1
Both double float and big float evaluation is supported:
(%i4) hypergeometric([5.1],[7.1 + %i],0.42);
(%o4) 1.346250786375334 - 0.0559061414208204 %i
(%i5) hypergeometric([5,6],[8], 5.7 - %i);
(%o5) .007375824009774946 - .001049813688578674 %i
(%i6) hypergeometric([5,6],[8], 5.7b0 - %i), fpprec : 30;
(%o6) 7.37582400977494674506442010824b-3
- 1.04981368857867315858055393376b-3 %i
hypergeometric_simp simplifies hypergeometric functions
by applying hgfred
to the arguments of any hypergeometric functions in the expression e.
Only instances of hypergeometric are affected;
any %f, %w, and %m in the expression e are not affected.
Any unsimplified hypergeometric functions are returned unchanged
(instead of changing to %f as hgfred would).
load("hypergeometric"); loads this function.
See also hgfred.
Examples:
(%i1) load ("hypergeometric") $
(%i2) foo : [hypergeometric([1,1], [2], z), hypergeometric([1/2], [1], z)];
(%o2) [hypergeometric([1, 1], [2], z),
1
hypergeometric([-], [1], z)]
2
(%i3) hypergeometric_simp (foo);
log(1 - z) z z/2
(%o3) [- ----------, bessel_i(0, -) %e ]
z 2
(%i4) bar : hypergeometric([n], [m], z + 1);
(%o4) hypergeometric([n], [m], z + 1)
(%i5) hypergeometric_simp (bar);
(%o5) hypergeometric([n], [m], z + 1)
Simplify the generalized hypergeometric function in terms of other, simpler, forms. a is a list of numerator parameters and b is a list of the denominator parameters.
If hgfred cannot simplify the hypergeometric function, it returns
an expression of the form %f[p,q]([a], [b], x) where p is
the number of elements in a, and q is the number of elements
in b. This is the usual
\(_pF_q\) generalized hypergeometric
function.
(%i1) assume(not(equal(z,0)));
(%o1) [notequal(z, 0)]
(%i2) hgfred([v+1/2],[2*v+1],2*%i*z);
v/2 %i z
4 bessel_j(v, z) gamma(v + 1) %e
(%o2) ---------------------------------------
v
z
(%i3) hgfred([1,1],[2],z);
log(1 - z)
(%o3) - ----------
z
(%i4) hgfred([a,a+1/2],[3/2],z^2);
1 - 2 a 1 - 2 a
(z + 1) - (1 - z)
(%o4) -------------------------------
2 (1 - 2 a) z
It can be beneficial to load orthopoly too as the following example shows. Note that L is the generalized Laguerre polynomial.
(%i5) load("orthopoly")$
(%i6) hgfred([-2],[a],z);
(a - 1)
2 L (z)
2
(%o6) -------------
a (a + 1)
(%i7) ev(%);
2
z 2 z
(%o7) --------- - --- + 1
a (a + 1) a
Next: Parabolic Cylinder Functions, Previous: Struve Functions, Up: Special Functions [Contents][Index]